JPH08158871A - Cooling device of internal combustion engine - Google Patents

Cooling device of internal combustion engine

Info

Publication number
JPH08158871A
JPH08158871A JP6299719A JP29971994A JPH08158871A JP H08158871 A JPH08158871 A JP H08158871A JP 6299719 A JP6299719 A JP 6299719A JP 29971994 A JP29971994 A JP 29971994A JP H08158871 A JPH08158871 A JP H08158871A
Authority
JP
Japan
Prior art keywords
cooling water
communication passage
cooling
passage
intercooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6299719A
Other languages
Japanese (ja)
Inventor
Manabu Tateno
学 立野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6299719A priority Critical patent/JPH08158871A/en
Publication of JPH08158871A publication Critical patent/JPH08158871A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)

Abstract

PURPOSE: To prevent an excessive temperature rise of cooling water at the time of a high load during warming up without increasing discharge of a water pump and to cool an intercooler after warming up in an internal combustion engine with a supercharger and the intercooler. CONSTITUTION: A cooling device 20 to circulate cooling water by way of changing cooling water channels 21-23 passing a cooling means 13 and a cooling water channel 24 by-passing it over to each other by a thermostat 40 and an intercooler 5 are furnished. Additionally, a water channel 25 communicated to a flow passage change-over valve 50 through the intercooler 5 from the discharge side of a water pump 30 of cooling water and two water channels 26, 27 respectively communicated to one end and the other end of the cooling means 13 from two discharge ports of the flow passage change-over valve 50 are provided, cooling water of the intercooler 5 is returned without passing the cooling means 13 at the time of a low load during warming up an engine, cooling water of the intercooler 5 is returned through the cooling means 13 at the time of a high load during warming up, and cooling water of the engine 1 and cooling water of the intercooler 5 are both returned through the cooling means 13 after warming up the engine 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の冷却装置に関
し、特に、内燃機関の吸気通路に設けられたインタクー
ラの冷却もウォータポンプを増設することなく行うこと
ができる内燃機関の冷却装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for an internal combustion engine, and more particularly to a cooling device for an internal combustion engine which can cool an intercooler provided in an intake passage of the internal combustion engine without adding a water pump.

【0002】[0002]

【従来の技術】一般に水冷式の内燃機関には、気筒内で
の燃焼によって発生する熱による過度の温度上昇を防止
するために、機関本体内に冷却水を循環させて機関を冷
却する冷却装置が備えられている。冷却水はウォータポ
ンプで圧送され、内燃機関を冷却して温度の上昇した冷
却水はラジエータに送られて冷却され、温度の低下した
冷却水が内燃機関に循環するようになっている。
2. Description of the Related Art Generally, in a water-cooled internal combustion engine, a cooling device that circulates cooling water in the engine body to cool the engine in order to prevent an excessive temperature rise due to heat generated by combustion in a cylinder. Is provided. Cooling water is pressure-fed by a water pump, cooling the internal combustion engine to raise the temperature of the cooling water is sent to a radiator for cooling, and cooling water of the lower temperature circulates to the internal combustion engine.

【0003】また、内燃機関の冷間始動時には機関本体
が冷えており、所定の温度まで機関を暖機する必要があ
る。このような場合に冷却水がラジエータを経由して循
環されると、機関の暖機時間が長くなる。そこで、冷却
装置にはサーモスタットとラジエータをバイパスするバ
イパス通路が設けられており、冷却水温度が所定温度未
満の時は冷却水がサーモスタットを介してこのバイパス
通路から機関に循環し、ラジエータを通過しないように
なっている。
In addition, when the internal combustion engine is cold started, the engine body is cold, and it is necessary to warm up the engine to a predetermined temperature. If the cooling water is circulated through the radiator in such a case, the warm-up time of the engine becomes long. Therefore, the cooling device is provided with a bypass passage that bypasses the thermostat and the radiator, and when the cooling water temperature is lower than a predetermined temperature, the cooling water circulates from the bypass passage to the engine through the thermostat and does not pass through the radiator. It is like this.

【0004】ところで、近年、内燃機関の出力向上のた
めに内燃機関に過給機と空気冷却器(インタクーラ)を
装備するものがある。このインタクーラは過給機で圧縮
されて温度の上昇した吸気を冷やして吸気の体積効率を
向上させるものであり、空冷式や水冷式のものがある。
水冷式のインタクーラを搭載した従来の内燃機関の冷却
装置としては、実開昭57-42114号公報に開示のものがあ
る。この冷却装置では、機関の冷却水通路に設けられた
流路切換装置により、機関の暖機中の低負荷時にウォー
タポンプと機関の間に冷却水を循環させ、暖機中の高負
荷時に冷却水の一部をインタクーラ、ウォータポンプ、
内燃機関に供給して機関の高負荷時に吸気を冷却し、暖
機後に新規の冷却水をインタクーラ、ウォータポンプ、
内燃機関に供給するものが開示されている。
By the way, in recent years, there are some internal combustion engines equipped with a supercharger and an air cooler (intercooler) in order to improve the output of the internal combustion engine. This intercooler cools the intake air that has been compressed by the supercharger and has risen in temperature to improve the volumetric efficiency of the intake air, and there are air cooling type and water cooling type.
A conventional cooling device for an internal combustion engine equipped with a water-cooled intercooler is disclosed in Japanese Utility Model Laid-Open No. 57-42114. In this cooling device, a flow path switching device provided in the cooling water passage of the engine circulates cooling water between the water pump and the engine during low load during warm-up of the engine, and cools during high load during warm-up. Part of the water is intercooler, water pump,
Supplying to the internal combustion engine to cool the intake air when the engine is under heavy load, and after warming up new cooling water with an intercooler, water pump,
A supply for an internal combustion engine is disclosed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、実開昭
57-42114号公報に開示の技術では、機関の暖機後には冷
却水が全量インタクーラを通過してから内燃機関に供給
される、即ち、インタクーラと内燃機関とが直列になる
ため、ウォータポンプの吐出能力を向上させる必要があ
るという問題点があった。
[Problems to be Solved by the Invention]
In the technology disclosed in Japanese Patent Laid-Open No. 57-42114, after the engine is warmed up, the entire amount of cooling water is supplied to the internal combustion engine after passing through the intercooler, that is, since the intercooler and the internal combustion engine are in series, There is a problem that it is necessary to improve the discharge capacity.

【0006】そこで、本発明は、機関が暖機中の低負荷
時には冷却水によって暖機を促進することができ、ま
た、暖機中の高負荷時には冷却水の一部を冷却すること
によって暖機の促進を図ると共に冷却水の必要以上の昇
温を防止することができ、更に、暖機後にはウォータポ
ンプの吐出能力を向上させることなく、冷却水の冷却を
図ることができる内燃機関の冷却装置を提供することを
目的とする。
Therefore, according to the present invention, the warming-up can be promoted by the cooling water when the engine is warming up and the load is low, and the engine can be warmed up by cooling a part of the cooling water when the engine is warming up. It is possible to prevent the temperature of the cooling water from being increased more than necessary and to cool the cooling water after the warming up without improving the discharge capacity of the water pump. An object is to provide a cooling device.

【0007】[0007]

【課題を解決するための手段】前記目的を達成する本発
明の内燃機関の冷却装置は、ウォータポンプの吐出口と
内燃機関の冷却水通路入口とを連通する第1連通路と、
内燃機関の冷却水通路出口と冷却水の冷却手段の一端と
を連通する第2連通路と、冷却手段の他端とポンプの吸
入口とを連通する第3連通路と、第2連通路の途中に位
置する第1の分岐点と第3連通路の途中に位置する第2
の分岐点とを連通する第4連通路と、この第2の分岐点
に設けられて冷却水温度が所定温度未満の時に第4連通
路をポンプに連通し、冷却水温度が所定温度以上の時に
冷却手段の他端をポンプに連通するサーモスタットとか
ら構成される冷却装置を備える内燃機関であって、その
吸気通路にインタクーラを装備するものにおいて、冷却
装置に更に、第1連通路の途中に位置する第3の分岐点
とインタクーラの冷却水入口とを連通する第5の連通路
と、インタクーラの冷却水出口と第2連通路の第1の分
岐点より冷却手段側に位置する第4の分岐点とを連通す
る第6の連通路と、第6連通路の途中に位置する第5の
分岐点と第3の連通路のサーモスタットより冷却手段側
に位置する第6の分岐点とを連通する第7連通路と、第
5の分岐点に設けられた流路切換弁と、内燃機関の運転
状態パラメータを検出する運転状態パラメータ検出手段
と、内燃機関が暖機中でかつ低負荷時、および内燃機関
の暖機後に、インタークーラの冷却水出口が第2連通路
に連通するように流路切換弁を切り換えると共に、内燃
機関が暖機中でかつ高負荷時に、インタークーラの冷却
水出口が第3連通路に連通するように流路切換弁を切り
換える流路切換弁制御手段とを設けたことを特徴として
いる。
A cooling device for an internal combustion engine according to the present invention, which achieves the above object, comprises a first communication passage communicating between a discharge port of a water pump and a cooling water passage inlet of the internal combustion engine.
A second communication passage that connects the cooling water passage outlet of the internal combustion engine to one end of the cooling water cooling means, a third communication passage that connects the other end of the cooling means and the suction port of the pump, and a second communication passage The first branch point located on the way and the second point located on the way to the third communication passage
And a fourth communication passage communicating with a branch point of the cooling water, and a fourth communication passage provided at the second branch point to communicate the fourth communication passage with a pump when the cooling water temperature is lower than a predetermined temperature. An internal combustion engine equipped with a cooling device, which sometimes comprises a thermostat for communicating the other end of the cooling means with a pump, wherein the intake passage is equipped with an intercooler, and the cooling device is further provided in the middle of the first communication passage. A fifth communicating passage that connects the located third branch point to the cooling water inlet of the intercooler, and a fourth communicating passage that is located closer to the cooling means than the cooling water outlet of the intercooler and the first branch point of the second communicating passage. A sixth communication passage communicating with the branch point, a fifth branch point located in the middle of the sixth communication passage, and a sixth branch point located on the cooling means side of the thermostat of the third communication passage. Provided at the 7th communication passage and the 5th branch point Flow path switching valve, operating state parameter detecting means for detecting operating state parameters of the internal combustion engine, cooling water outlet of the intercooler during warming up of the internal combustion engine and low load, and after warming up of the internal combustion engine Is connected to the second communication passage, and when the internal combustion engine is warming up and the load is high, the flow passage switching valve is connected so that the cooling water outlet of the intercooler communicates with the third communication passage. And a flow path switching valve control means for switching between the two.

【0008】[0008]

【作用】本発明の内燃機関の冷却装置によれば、冷却水
は機関の暖機状態と機関の負荷状態に応じて以下のよう
な2系統の経路,を同時に流れる。 (1) 機関が暖機中の低負荷時 ウォータポンプ→第1連通路→内燃機関の冷却通路
→第2連通路の一部→第4連通路→サーモスタット→第
3連通路の一部→ウォータポンプ ウォータポンプ→第1連通路の一部→第5連通路→
インタクーラ→第6連通路→第2連通路の一部→第4連
通路→サーモスタット→第3連通路の一部→ウォータポ
ンプ (2) 機関が暖機中の高負荷時 ウォータポンプ→第1連通路→内燃機関の冷却通路
→第2連通路の一部→第4連通路→サーモスタット→第
3連通路の一部→ウォータポンプ ウォータポンプ→第1連通路の一部→第5連通路→
インタクーラ→第6連通路の一部→第7連通路→第3連
通路の一部→冷却手段→第2連通路の一部→第4連通路
→サーモスタット→第3連通路の一部→ウォータポンプ (3) 機関の暖機後 ウォータポンプ→第1連通路→内燃機関の冷却通路
→第2連通路→冷却手段→第3連通路→ウォータポンプ ウォータポンプ→第1連通路の一部→第5連通路→
インタクーラ→第6連通路→第2連通路の一部→冷却手
段→第3連通路→ウォータポンプ
According to the cooling system for an internal combustion engine of the present invention, the cooling water simultaneously flows through the following two routes according to the warm-up state of the engine and the load state of the engine. (1) When the engine is warming up and under low load Water pump → first communication passage → cooling passage of internal combustion engine → part of second communication passage → fourth communication passage → thermostat → part of third communication passage → water Pump Water pump → Part of 1st communication path → 5th communication path →
Intercooler → 6th communication passage → Part of 2nd communication passage → 4th communication passage → Thermostat → Part of 3rd communication passage → Water pump (2) At high load while engine is warming up Water pump → 1st connection Passage → Cooling passage of internal combustion engine → Part of second communication passage → Fourth communication passage → Thermostat → Part of third communication passage → Water pump Water pump → Part of first communication passage → Fifth communication passage →
Intercooler-> Part of 6th communication path-> 7th communication path-> Part of 3rd communication path-> Cooling means-> Part of 2nd communication path-> 4th communication path->Thermostat-> Part of 3rd communication path-> Water Pump (3) After warming up the engine Water pump → First communication passage → Internal combustion engine cooling passage → Second communication passage → Cooling means → Third communication passage → Water pump Water pump → Part of first communication passage → First passage 5 passages →
Intercooler → Sixth communication path → Part of second communication path → Cooling means → Third communication path → Water pump

【0009】[0009]

【実施例】以下添付図面を用いて本発明の実施例を詳細
に説明する。図1は過給機4とインタクーラ5とを備え
た内燃機関1における本発明の冷却装置20の構成を示
すものである。内燃機関1の吸気通路2には、エアクリ
ーナ3の下流側に上流側から過給機4のコンプレッサ4
A、インタクーラ5、スロットル弁6が設けられてい
る。過給機4のコンプレッサ4Aは、内燃機関1の排気
通路8に設けられたタービン4Bの同軸上に設けられて
おり、排気ガスでタービン4Bが回転すると回転して吸
気を圧縮するようになっている。インタクーラ5は水冷
式であり、コンプレッサ4Aによって圧縮されて温度が
高められた吸気の温度を低下させて吸気の体積効率を高
めるものである。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows a structure of a cooling device 20 of the present invention in an internal combustion engine 1 provided with a supercharger 4 and an intercooler 5. In the intake passage 2 of the internal combustion engine 1, the compressor 4 of the supercharger 4 is arranged from the upstream side to the downstream side of the air cleaner 3.
A, an intercooler 5, and a throttle valve 6 are provided. The compressor 4A of the supercharger 4 is provided coaxially with the turbine 4B provided in the exhaust passage 8 of the internal combustion engine 1. When the turbine 4B is rotated by the exhaust gas, the compressor 4A rotates to compress intake air. There is. The intercooler 5 is a water-cooled type, and lowers the temperature of the intake air that has been compressed by the compressor 4A and increased in temperature to increase the volumetric efficiency of the intake air.

【0010】また、吸気通路2のスロットル弁6にはそ
の開度によって機関の負荷を検出する負荷センサ7が設
けられており、その出力はエンジン・コントロール・ユ
ニット(ECU)10に入力されている。更に、内燃機
関1の本体内の冷却水通路には水温センサ9が設けられ
ており、その出力もECU10に入力されるようになっ
ている。
Further, the throttle valve 6 of the intake passage 2 is provided with a load sensor 7 for detecting the load of the engine based on its opening degree, and its output is inputted to an engine control unit (ECU) 10. . Further, a water temperature sensor 9 is provided in the cooling water passage in the main body of the internal combustion engine 1, and the output thereof is also input to the ECU 10.

【0011】内燃機関1には過給機4およびインタクー
ラ5の有無に係わらず、内燃機関1を冷却する冷却装置
20が設けられている。この冷却装置20は、運転中に
内燃機関1を通過して温度の上昇した冷却水を冷やして
循環する運転中の経路と、冷間始動時に内燃機関1を通
過した冷却水を冷やすことなくそのまま内燃機関1に戻
して暖機特性を向上させる暖機中の経路とを備えてい
る。運転中の経路と暖機中の経路とは冷却水温度によっ
て通路を切り換えるサーモスタット40によって行われ
る。
The internal combustion engine 1 is provided with a cooling device 20 for cooling the internal combustion engine 1 regardless of the presence or absence of the supercharger 4 and the intercooler 5. This cooling device 20 keeps the cooling water that has passed through the internal combustion engine 1 during operation and circulates by cooling the cooling water whose temperature has risen and the cooling water that has passed through the internal combustion engine 1 during cold start without cooling. A path during warming up to improve the warming up characteristics by returning to the internal combustion engine 1. The running route and the warming-up route are performed by a thermostat 40 that switches the passage according to the cooling water temperature.

【0012】運転中の経路は、ウォータポンプ30の吐
出口と内燃機関1の冷却水通路入口11とを連通する第
1連通路21と、内燃機関1の冷却水通路出口12と冷
却水の冷却手段であるラジエータ13の一端とを連通す
る第2連通路22と、ラジエータ13の他端とウォータ
ポンプ30の吸入口とを連通する第3連通路23とから
構成される。
The route during operation is such that the first communication passage 21 that connects the discharge port of the water pump 30 and the cooling water passage inlet 11 of the internal combustion engine 1, the cooling water passage outlet 12 of the internal combustion engine 1, and the cooling water are cooled. A second communication passage 22 that communicates with one end of the radiator 13 that is a means, and a third communication passage 23 that communicates the other end of the radiator 13 with the suction port of the water pump 30.

【0013】暖機中の経路は、第2連通路22の途中に
位置する第1の分岐点31と第3連通路23の途中に位
置する第2の分岐点32とを連通する第4連通路24
と、この第2の分岐点32に設けられて冷却水温度が所
定温度未満の時に第4連通路24をウォータポンプ30
に接続し、冷却水温度が所定温度以上の時にラジエータ
13の他端をウォータポンプ30に接続するサーモスタ
ット40とから構成される。
The warming-up path is a fourth connecting point that connects a first branch point 31 located in the middle of the second communicating path 22 and a second branch point 32 located in the middle of the third communicating path 23. Passage 24
When the cooling water temperature is lower than a predetermined temperature, the fourth communication passage 24 is provided at the second branch point 32, and the fourth communication passage 24 is connected to the water pump 30.
And a thermostat 40 for connecting the other end of the radiator 13 to the water pump 30 when the cooling water temperature is equal to or higher than a predetermined temperature.

【0014】次に、内燃機関1に過給機4が備えられて
おり、吸気通路2にインタクーラ5を備える場合に、図
1に示す実施例では、前述の冷却装置20にインタクー
ラの冷却経路を追加している。インタクーラ5の冷却経
路は、第1連通路21の途中に位置する第3の分岐点3
3とインタクーラ5の冷却水入口5Aとを連通する第5
連通路25と、インタクーラ5の冷却水出口5Bと第2
連通路22の第1の分岐点31よりラジエータ13側に
位置する第4の分岐点34とを連通する第6連通路26
と、第6連通路26の途中に位置する第5の分岐点35
と第3連通路23のサーモスタット40よりラジエータ
13側に位置する第6の分岐点36とを連通する第7連
通路27と、第5の分岐点35に設けられた流路切換弁
50とから構成される。
Next, when the internal combustion engine 1 is provided with the supercharger 4 and the intake passage 2 is provided with the intercooler 5, in the embodiment shown in FIG. 1, the cooling path of the intercooler is provided in the cooling device 20 described above. I am adding. The cooling path of the intercooler 5 is the third branch point 3 located in the middle of the first communication passage 21.
No. 3 for communicating the cooling water inlet 5A of the intercooler 5 with each other
The communication passage 25, the cooling water outlet 5B of the intercooler 5, and the second
The sixth communication passage 26 that communicates with the fourth branch point 34 located on the radiator 13 side of the first branch point 31 of the communication passage 22.
And a fifth branch point 35 located in the middle of the sixth communication passage 26.
From the seventh communication passage 27 that communicates with the sixth branch point 36 located on the radiator 13 side of the thermostat 40 of the third communication passage 23, and the flow path switching valve 50 provided at the fifth branch point 35. Composed.

【0015】流路切換弁50は、この実施例では電磁三
方弁として構成されており、そのアクチュエータ51は
前述のECU10からの信号によって駆動され、図中の
黒−黒で示す経路を連通させるか、或いは白−白で示す
経路を連通させるかの切換動作が行われる。黒−黒の経
路が連通された場合には、流路切換弁50を介して第6
連通路26が連通し、インタクーラ5の冷却水出口5B
から出た冷却水は第6連通路26を通って第2連通路2
2に流入する。一方、白−白の経路が連通された場合に
は、インタクーラ5の冷却水出口5Bから出た冷却水は
第6連通路26の一部を通って第7連通路27に入り、
第3連通路23に流入する。
The flow path switching valve 50 is constructed as an electromagnetic three-way valve in this embodiment, and its actuator 51 is driven by a signal from the above-mentioned ECU 10 to connect the paths shown by black-black in the figure. Alternatively, a switching operation is performed to determine whether the path shown in white-white is connected. When the black-black path is connected, the sixth path is provided via the flow path switching valve 50.
The communication passage 26 communicates with the cooling water outlet 5B of the intercooler 5.
The cooling water from the second communication passage 2 passes through the sixth communication passage 26.
Inflow to 2. On the other hand, when the white-white path is connected, the cooling water from the cooling water outlet 5B of the intercooler 5 passes through a part of the sixth communication path 26 and enters the seventh communication path 27,
It flows into the third communication passage 23.

【0016】ECU10はこの流路切換弁50のアクチ
ュエータ51への流路切換信号を内燃機関1の運転状態
に応じて出力する。すなわち、ECU10は、内燃機関
1が暖機中でかつ低負荷時、および内燃機関1の暖機後
に、インタークーラ5の冷却水出口5Bが第2連通路2
2に連通するように流路切換弁50を切り換えて黒−黒
の経路を連通させると共に、内燃機関1が暖機中でかつ
高負荷時に、インタークーラ5の冷却水出口5Bが第3
連通路23に連通するように流路切換弁50を切り換え
て白−白の経路を連通させる。
The ECU 10 outputs a flow passage switching signal to the actuator 51 of the flow passage switching valve 50 according to the operating state of the internal combustion engine 1. That is, the ECU 10 determines that the cooling water outlet 5B of the intercooler 5 is in the second communication passage 2 when the internal combustion engine 1 is warming up and at a low load, and after the internal combustion engine 1 is warming up.
2, the flow passage switching valve 50 is switched to connect the black-black path, and when the internal combustion engine 1 is warming up and the load is high, the cooling water outlet 5B of the intercooler 5 is in the third position.
The flow path switching valve 50 is switched so as to communicate with the communication passage 23 so that the white-white path is communicated.

【0017】次に、以上のように構成された実施例の冷
却装置20の機関の暖機状態と、機関の負荷に応じた冷
却水の循環経路の違いを図2から図4を用いて説明す
る。 (1) 機関が暖機中の低負荷時〔図2〕 機関が暖機中の低負荷時は冷却水温が低く、ウォータポ
ンプ30の吸入口はサーモスタット40を介して第4連
通路24に接続されている。また、この状態では、EC
U10は流路切換弁50の黒−黒を連通させ、インタク
ーラ5の冷却水出口5Bを第6連通路26に接続してい
る。
Next, the difference between the warm-up state of the engine and the circulation path of the cooling water according to the load of the engine of the cooling device 20 of the embodiment configured as described above will be described with reference to FIGS. 2 to 4. To do. (1) When the engine is warming up and the load is low [Fig. 2] When the engine is warming up and the load is low, the cooling water temperature is low and the suction port of the water pump 30 is connected to the fourth communication passage 24 via the thermostat 40. Has been done. In this state, EC
U10 connects black-black of the flow path switching valve 50, and connects the cooling water outlet 5B of the intercooler 5 to the sixth communication passage 26.

【0018】この状態では、冷却水は図2に矢印で示す
ように、2通りの経路を流れる。第1の経路を流れる冷
却水は、ウォータポンプ30から吐出された後、第1連
通路21を通って冷却通路入口11から内燃機関1に入
って内部を冷却し、冷却水出口12から出て第2連通路
22の一部を通って第4連通路24に入り、サーモスタ
ット40から第3連通路23の一部を通ってウォータポ
ンプ30に戻る。第2の経路を流れる冷却水は、ウォー
タポンプ30から吐出された後、第1連通路21の一部
を通って第5連通路25に入り、インタクーラ5で熱交
換した後に流路切換弁50を経て第6連通路26に入
り、第2連通路22の一部を通って第4連通路24に入
り、サーモスタット40から第3連通路23の一部を通
ってウォータポンプ30に戻る。
In this state, the cooling water flows through two paths as shown by the arrows in FIG. After being discharged from the water pump 30, the cooling water flowing through the first passage enters the internal combustion engine 1 from the cooling passage inlet 11 through the first communication passage 21, cools the inside, and then exits from the cooling water outlet 12. It passes through a part of the 2nd communicating path 22, enters into the 4th communicating path 24, and returns from the thermostat 40 to a water pump 30 through a part of the 3rd communicating path 23. After being discharged from the water pump 30, the cooling water flowing through the second path enters the fifth communication path 25 through a part of the first communication path 21 and exchanges heat with the intercooler 5, and then the flow path switching valve 50. Through the second communication passage 22 to the fourth communication passage 24, and from the thermostat 40 to the water pump 30 through a part of the third communication passage 23.

【0019】このように、機関が暖機中の低負荷時は、
インタクーラ5に冷却水の一部が流れるので過給機によ
って圧縮された吸気(過給気)が冷却される。また、イ
ンタクーラ5において冷却水が過給気温度によって暖め
られるので、内燃機関1の暖機を促進することができ
る。この時は機関冷却水に過給気冷却熱が加わり、暖機
が促進されると共に、機関吸気ポート壁温上昇によって
ポート濡れが減ってエミッションが減る。 (2) 機関が暖機中の高負荷時〔図3〕 機関が暖機中の高負荷状態は、冷却水温が低く、ウォー
タポンプ30の吸入口がサーモスタット40を介して第
4連通路24に接続されている状態で、急激なアクセル
の踏込みによって機関負荷が急激に上昇した時に起こ
る。この時は圧力と温度の高い過給気がインタクーラ5
を流れるので、インタクーラ5の冷却能力の増大が必要
な時である。この状態では、ECU10は機関の高負荷
状態を負荷センサ7からの出力によって検出し、流路切
換弁50の白−白を連通させ、インタクーラ5の冷却水
出口5Bを第7連通路27に接続する。
Thus, when the engine is warming up and the load is low,
Since a part of the cooling water flows through the intercooler 5, the intake air (supercharged air) compressed by the supercharger is cooled. Further, since the cooling water is warmed by the supercharged air temperature in the intercooler 5, the warm-up of the internal combustion engine 1 can be promoted. At this time, the supercooled air cooling heat is added to the engine cooling water to accelerate warm-up, and due to the rise in the temperature of the engine intake port wall, port wetting is reduced and emission is reduced. (2) When the engine is warming up and under high load [Fig. 3] When the engine is warming up and under high load, the cooling water temperature is low and the suction port of the water pump 30 is connected to the fourth communication passage 24 via the thermostat 40. This occurs when the engine load suddenly rises due to a sudden depression of the accelerator while connected. At this time, the supercharged air with high pressure and temperature is intercooler 5
It is when it is necessary to increase the cooling capacity of the intercooler 5. In this state, the ECU 10 detects the high load state of the engine by the output from the load sensor 7, connects the white of the flow path switching valve 50 to the white, and connects the cooling water outlet 5B of the intercooler 5 to the seventh communication passage 27. To do.

【0020】この状態では、冷却水は図3に矢印で示す
ように、2通りの経路を流れる。第1の経路を流れる冷
却水は、ウォータポンプ30から吐出された後、第1連
通路21を通って冷却通路入口11から内燃機関1に入
って内部を冷却し、冷却水出口12から出て第2連通路
22の一部を通って第4連通路24に入り、サーモスタ
ット40から第3連通路23の一部を通ってウォータポ
ンプ30に戻る。第2の経路を流れる冷却水は、ウォー
タポンプ30から吐出された後、第1連通路21の一部
を通って第5連通路25に入り、インタクーラ5で熱交
換した後に流路切換弁50を経て第7連通路27に入
り、第3連通路23の一部を通ってラジエータ13の出
口13Bからラジエータ13内に入り、ラジエータ13
内を逆流して入口13Aから出た後、第2連通路22の
一部を通って第4連通路24に入り、サーモスタット4
0から第3連通路23の一部を通ってウォータポンプ3
0に戻る。
In this state, the cooling water flows through two paths as shown by the arrows in FIG. After being discharged from the water pump 30, the cooling water flowing through the first passage enters the internal combustion engine 1 from the cooling passage inlet 11 through the first communication passage 21, cools the inside, and then exits from the cooling water outlet 12. It passes through a part of the 2nd communicating path 22, enters into the 4th communicating path 24, and returns from the thermostat 40 to a water pump 30 through a part of the 3rd communicating path 23. After being discharged from the water pump 30, the cooling water flowing through the second path enters the fifth communication path 25 through a part of the first communication path 21 and exchanges heat with the intercooler 5, and then the flow path switching valve 50. Through the seventh communication passage 27, through a part of the third communication passage 23, from the outlet 13B of the radiator 13 into the radiator 13,
After flowing back through the inside of the inlet 13A and passing through a part of the second communication passage 22 into the fourth communication passage 24, the thermostat 4
From 0 to a part of the third communication passage 23, the water pump 3
Return to 0.

【0021】このように、機関が暖機中の高負荷時は、
多大な過給気で温度上昇したインタクーラ5を流れた冷
却水はラジエータ13を逆流することによって冷却され
るので、インタクーラ5の冷却能力を増大させることが
できる。 (3) 機関の暖機後〔図4〕 機関の暖機後は冷却水温が高いのでサーモスタット40
が開き、ウォータポンプ30の吸入口が第3連通路23
を介してラジエータ13に接続されている。また、この
状態では、ECU10は流路切換弁50の黒−黒を連通
させ、インタクーラ5の冷却水出口5Bを第6連通路2
6に接続している。
In this way, when the engine is warming up and under high load,
Since the cooling water flowing through the intercooler 5 whose temperature has risen due to a large amount of supercharged air is cooled by backflowing the radiator 13, the cooling capacity of the intercooler 5 can be increased. (3) After warming up the engine [Fig. 4] Since the temperature of the cooling water is high after warming up the engine, the thermostat 40
Is opened, and the suction port of the water pump 30 is connected to the third communication passage 23.
It is connected to the radiator 13 via. Further, in this state, the ECU 10 causes the black-black of the flow path switching valve 50 to communicate with each other, and the cooling water outlet 5B of the intercooler 5 is connected to the sixth communication passage 2.
Connected to 6.

【0022】この状態では、冷却水は図4に矢印で示す
ように、2通りの経路を流れる。第1の経路を流れる冷
却水は、ウォータポンプ30から吐出された後、第1連
通路21を通って冷却通路入口11から内燃機関1に入
って内部を冷却し、冷却水出口12から出て第2連通路
22を通ってラジエータ13の入口13Aからラジエー
タ13内に入り、ラジエータ13で冷却された後にラジ
エータ13内を流れて出口13Bから出た後、第3連通
路23を通ってサーモスタット40からウォータポンプ
30に戻る。第2の経路を流れる冷却水は、ウォータポ
ンプ30から吐出された後、第1連通路21の一部を通
って第5連通路25に入り、インタクーラ5で熱交換し
た後に流路切換弁50を経て第6連通路26に入り、第
2連通路22の一部を通ってラジエータ13の入口13
Aからラジエータ13内に入り、第1の経路と同様にウ
ォータポンプ30に戻る。
In this state, the cooling water flows through two paths as shown by the arrows in FIG. After being discharged from the water pump 30, the cooling water flowing through the first passage enters the internal combustion engine 1 from the cooling passage inlet 11 through the first communication passage 21, cools the inside, and then exits from the cooling water outlet 12. After entering the radiator 13 through the second communication passage 22 from the inlet 13A of the radiator 13, being cooled by the radiator 13, flowing through the radiator 13 and exiting from the outlet 13B, the thermostat 40 is passed through the third communication passage 23. Return to the water pump 30 from. After being discharged from the water pump 30, the cooling water flowing through the second path enters the fifth communication path 25 through a part of the first communication path 21 and exchanges heat with the intercooler 5, and then the flow path switching valve 50. Through the sixth communication passage 26, and through a part of the second communication passage 22 to the inlet 13 of the radiator 13.
It enters into the radiator 13 from A and returns to the water pump 30 similarly to the first path.

【0023】このように、機関の暖機後は、インタクー
ラ5に冷却水の一部が流れるので過給機によって圧縮さ
れた吸気(過給気)が冷却される。なお、この実施例で
は流路切換弁50は完全に流路を切り換えるように構成
されているが、流路切換弁50に流量調節可能なものを
採用し、機関の負荷が小さい時は流路切換弁50を通過
する冷却水量を少なくし、機関の負荷が大きい時は流路
切換弁50を通過する冷却水量を増大するようにすれ
ば、機関暖機後に急激にアクセルが踏み込まれてインタ
クーラ5の温度が急上昇した場合でも、冷却水による熱
交換量を増やすことが可能になって機関の高温ダメージ
が防止される。
As described above, after the engine is warmed up, a part of the cooling water flows through the intercooler 5, so that the intake air (supercharged air) compressed by the supercharger is cooled. In this embodiment, the flow passage switching valve 50 is configured to completely switch the flow passage, but a flow passage switching valve 50 that can adjust the flow rate is used, and when the engine load is small, the flow passage is changed. If the amount of cooling water passing through the switching valve 50 is reduced and the amount of cooling water passing through the flow passage switching valve 50 is increased when the load on the engine is large, the accelerator is suddenly depressed after the engine warms up and the intercooler 5 Even if the temperature of the engine suddenly rises, it is possible to increase the amount of heat exchange by the cooling water and prevent high temperature damage to the engine.

【0024】図5はこの流路切換弁50の別の実施例を
示すものであり、冷却水の流量調整が可能な流路切換弁
50の構成を示している。この実施例の流路切換弁50
は、図5(a) に示すように、アクチュエータ(この実施
例ではステップモータ)51と切換弁体53とから構成
されている。切換弁体53はアクチュエータ51の回転
軸52に取り付けられており、切換弁体53の中には切
換水路54が設けられている。そして、この流路切換弁
50は、図5(b) に示すようにインタクーラ5に接続す
る第6連通路26、第2連通路22に接続する第6連通
路26と第7連通路27(図示せず)が接続するハウジ
ング55内に収容されている。アクチュエータ51はこ
の切換弁体53を90°回転させることによって第6連
通路2六を全通させるか、インタクーラ5に接続する第
6連通路26を第7連通路27に接続するかの何れかの
状態にすることができる。
FIG. 5 shows another embodiment of the flow path switching valve 50, and shows the structure of the flow path switching valve 50 capable of adjusting the flow rate of the cooling water. Flow path switching valve 50 of this embodiment
As shown in FIG. 5A, is composed of an actuator (step motor in this embodiment) 51 and a switching valve body 53. The switching valve body 53 is attached to the rotary shaft 52 of the actuator 51, and a switching water passage 54 is provided in the switching valve body 53. As shown in FIG. 5B, the flow passage switching valve 50 includes a sixth communication passage 26 connected to the intercooler 5, a sixth communication passage 26 connected to the second communication passage 22, and a seventh communication passage 27 ( (Not shown) is housed in a housing 55 to which it is connected. The actuator 51 either fully rotates the sixth communication passage 26 by rotating the switching valve body 53 by 90 °, or connects the sixth communication passage 26 connected to the intercooler 5 to the seventh communication passage 27. Can be in the state of.

【0025】図5(c) は図5(a) に示した流路切換弁5
0が第5連通路25と第7連通路27とを接続する場合
の切換弁体53の位置(切換水路54の状態)を説明す
る図であり、図5(d) は図5(a) の流路切換弁50が第
6連通路26を全通させる場合の切換弁体53の位置
(切換水路54の状態)を説明する図である。なお、こ
の実施例の流路切換弁50は、前述のように冷却水の流
量が調節可能になっている。すなわち、図5(d) に破線
で示すように、切換弁体53の回転角度を変えて切換水
路54と第6連通路26との重なり度合いを調整するこ
とにより、機関負荷が小さい時は流路切換弁50を通過
する冷却水量を少なくし、機関の負荷が大きい時は流路
切換弁50を通過する冷却水量を増大することができ
る。この結果、インタクーラ5の入口5Aにおける冷却
水の温度が一定であれば、流路切換弁50で冷却水量を
多くすればインタクーラ5の冷却能力が向上し、最大水
量までインタクーラ5の温度を低下させることができ
る。
FIG. 5 (c) is a flow path switching valve 5 shown in FIG. 5 (a).
FIG. 5 is a diagram illustrating the position of the switching valve body 53 (state of the switching water passage 54) when 0 connects the fifth communication passage 25 and the seventh communication passage 27, and FIG. 5 (d) is FIG. 5 (a). 6 is a diagram illustrating the position of the switching valve body 53 (state of the switching water passage 54) when the flow path switching valve 50 of FIG. The flow path switching valve 50 of this embodiment can adjust the flow rate of the cooling water as described above. That is, as shown by the broken line in FIG. 5 (d), the rotation angle of the switching valve body 53 is changed to adjust the degree of overlap between the switching water passage 54 and the sixth communication passage 26, so that when the engine load is small, the flow is reduced. It is possible to reduce the amount of cooling water passing through the passage switching valve 50 and increase the amount of cooling water passing through the passage switching valve 50 when the load on the engine is large. As a result, if the temperature of the cooling water at the inlet 5A of the intercooler 5 is constant, the cooling capacity of the intercooler 5 is improved by increasing the cooling water amount by the flow path switching valve 50, and the temperature of the intercooler 5 is lowered to the maximum water amount. be able to.

【0026】また、インタクーラ5に冷却水を分流させ
た分、内燃機関1を冷却させる冷却水の水量が減り、内
燃機関1の冷却水出口12から排出される冷却水の温度
が上昇する。インタクーラ5を通過した冷却水もインタ
クーラ5との熱交換によって温度が上昇しているので、
ラジエータ13の能力を変えなければ、ラジエータ13
から排出される冷却水温も上昇する。冷却水温が上昇す
るとサーモスタット40の開度が大きくなり、ウォータ
ポンプ30の入口抵抗が減って冷却水量が増大する。冷
却水量が増大すればラジエータ13の能力代分、ラジエ
ータ13からの冷却水処理量が増大し、サーモスタット
40が冷却水の流量をインタクーラの要求冷却代と機関
の要求冷却代に合わせて制御する。これにより、流路切
換弁50によるインタクーラ5の冷却能力向上が可能と
なる。
The amount of the cooling water for cooling the internal combustion engine 1 is reduced by the amount of the cooling water diverted to the intercooler 5, and the temperature of the cooling water discharged from the cooling water outlet 12 of the internal combustion engine 1 is increased. Since the temperature of the cooling water that has passed through the intercooler 5 also rises due to heat exchange with the intercooler 5,
If the capacity of the radiator 13 is not changed, the radiator 13
The temperature of the cooling water discharged from the plant also rises. When the cooling water temperature rises, the opening degree of the thermostat 40 increases, the inlet resistance of the water pump 30 decreases, and the amount of cooling water increases. As the amount of cooling water increases, the amount of cooling water processed from the radiator 13 increases by the capacity of the radiator 13, and the thermostat 40 controls the flow rate of cooling water according to the required cooling amount of the intercooler and the required cooling amount of the engine. This makes it possible to improve the cooling capacity of the intercooler 5 by the flow path switching valve 50.

【0027】図6は図1の第2の分岐点32に設けられ
たサーモスタット40の構成の一例を示すものである。
サーモスタット40はそのケーシング44内にスプリン
グ43によって冷却水温が低い時には閉弁している第2
の弁体42が設けられており、ケーシング44の外部に
は冷却水温が高い時にケーシング44から離れる方向に
移動する第1の弁体41が設けられている。また、ケー
シング44内には冷却水温が上昇すると膨張するサーモ
ワックス45が内蔵されており、このサーモワックス4
5が膨張すると第1の弁体42がケーシング44から離
れる方向に移動し、同時に第2の弁体42が開弁するよ
うになっている。
FIG. 6 shows an example of the structure of the thermostat 40 provided at the second branch point 32 of FIG.
The thermostat 40 is closed in the casing 44 by the spring 43 when the cooling water temperature is low.
The valve body 42 is provided, and the first valve body 41 that moves in a direction away from the casing 44 when the cooling water temperature is high is provided outside the casing 44. Further, a thermo wax 45 that expands when the cooling water temperature rises is built in the casing 44.
When 5 expands, the first valve body 42 moves in a direction away from the casing 44, and at the same time, the second valve body 42 opens.

【0028】このように構成されたサーモスタット40
は、開口(図示せず)を備えたドーム部46を外部に露
出させた状態でハウジング40に取り付けられており、
このハウジング14の第1の弁体41が移動する方向に
は弁座15が設けられている。ハウジング14の側面に
はウォータポンプ30に接続する第1連通路21が接続
されており、ドーム部46の外側にはラジエータ13に
接続する第3連通路23が接続されており、弁座15の
外側には第4連通路24が接続している。図6は冷却水
温が低い時のサーモスタット40の状態を示しており、
この状態では第2の弁体42がドーム部46を封止して
いるために、第1連通路21は第4連通路24に接続さ
れている。そして、この状態から冷却水温が上昇すると
サーモワックス45が膨張し、スプリング43に抗して
第1の弁体41を上昇させて弁座15を封止する。第1
の弁体41が上昇すると、これに伴って第2の弁体42
も上昇し、ドーム部46を開弁する。この結果、冷却水
温が高い時には第1連通路21が第3連通路23に接続
される。
The thermostat 40 constructed as described above
Is attached to the housing 40 with the dome portion 46 having an opening (not shown) exposed to the outside,
A valve seat 15 is provided in a direction in which the first valve body 41 of the housing 14 moves. The first communication passage 21 connected to the water pump 30 is connected to the side surface of the housing 14, and the third communication passage 23 connected to the radiator 13 is connected to the outside of the dome portion 46, and the first communication passage 21 is connected to the valve seat 15. The fourth communication passage 24 is connected to the outside. FIG. 6 shows the state of the thermostat 40 when the cooling water temperature is low,
In this state, since the second valve body 42 seals the dome portion 46, the first communication passage 21 is connected to the fourth communication passage 24. Then, when the cooling water temperature rises from this state, the thermowax 45 expands and the first valve body 41 is raised against the spring 43 to seal the valve seat 15. First
When the valve body 41 of the second valve body rises, the second valve body 42
Also rises to open the dome portion 46. As a result, when the cooling water temperature is high, the first communication passage 21 is connected to the third communication passage 23.

【0029】図7は本発明の内燃機関の冷却装置20を
使用した内燃機関1の機関始動後の冷却水温の上昇特性
を示す特性図である。以上説明した実施例の冷却装置2
0を使用すれば、時刻t1で機関が冷間始動された暖機
中は時間の経過に伴って冷却水温がリニアに上昇し、暖
機が終了した時刻t2の時点以降はサーモスタット40
の働きによって水温が一定に保たれる。
FIG. 7 is a characteristic diagram showing an increase characteristic of the cooling water temperature after starting the engine of the internal combustion engine 1 using the cooling device 20 for the internal combustion engine of the present invention. Cooling device 2 of the embodiment described above
If 0 is used, the temperature of the cooling water increases linearly with the passage of time during warm-up when the engine is cold started at time t1, and after the time t2 when warm-up ends, the thermostat 40
Keeps the water temperature constant.

【0030】このような状態において、機関の暖機中に
アクセルが急激に踏み込まれると、過給気の温度の上昇
により、インタクーラ5と熱交換を行った後の冷却水温
は通常は破線で示すように上昇するが、前述のように動
作する本発明の冷却装置20では、温度が上昇した冷却
水温はラジエータ13によって冷却されるので、冷却水
温は実線のように上昇する。また、機関の暖機後にアク
セルが急激に踏み込まれた場合でも、過給気の温度の上
昇によってインタクーラ5と熱交換を行った後の冷却水
温は通常は破線で示すように上昇するが、本発明の冷却
装置20では流路切換弁50を流れる冷却水量を増大さ
せることによって、温度が上昇した冷却水温はラジエー
タ13によって効率良く冷却されるので、冷却水温は実
線のように一定温度を保つことができ、内燃機関の過度
の温度上昇を防止できる。
In such a state, when the accelerator is suddenly depressed while the engine is warming up, the temperature of the cooling water after heat exchange with the intercooler 5 is normally indicated by a broken line due to the rise in the temperature of the supercharged air. However, in the cooling device 20 of the present invention which operates as described above, the cooling water temperature whose temperature has risen is cooled by the radiator 13, so the cooling water temperature rises as shown by the solid line. Even if the accelerator is suddenly depressed after warming up the engine, the temperature of the cooling water after heat exchange with the intercooler 5 normally rises as shown by the broken line even though the temperature of the supercharged air rises. In the cooling device 20 of the invention, by increasing the amount of cooling water flowing through the flow path switching valve 50, the cooling water temperature whose temperature has risen is efficiently cooled by the radiator 13, so the cooling water temperature should be kept constant as indicated by the solid line. It is possible to prevent excessive temperature rise of the internal combustion engine.

【0031】[0031]

【発明の効果】以上説明したように、本発明の内燃機関
の冷却装置によれば、冷却水は、機関機関の暖機中の低
負荷時には冷却手段によって冷却されず、機関の暖機中
の高負荷時にはその一部が冷却手段によって冷却され、
機関の暖機後は全量冷却手段によって冷却されるので、
機関が暖機中の低負荷時には冷却水によって暖機を促進
することができ、また、暖機中の高負荷時には冷却水の
一部を冷却することによって暖機の促進を図ると共に冷
却水の必要以上の昇温を防止することができ、更に、暖
機後にはウォータポンプの吐出能力を向上させることな
く、冷却水の冷却を効率良く図ることができるという効
果がある。このため、本発明では過給機と水冷式インタ
クーラを装備する内燃機関において、単一の冷却手段と
ポンプで冷却水の冷却を行うことができるので、コスト
ダウンが図れる。また、冷却水経路にこだわらずにイン
タクーラの設置が可能である。
As described above, according to the cooling device for an internal combustion engine of the present invention, the cooling water is not cooled by the cooling means at the time of low load during warm-up of the engine, and is kept warm during the warm-up of the engine. At high load, part of it is cooled by the cooling means,
After the engine is warmed up, the entire amount is cooled by the cooling means,
When the engine is warming up and the load is low, warming up can be promoted by the cooling water, and when the engine is warming up and under high load, part of the cooling water can be cooled to promote warming up and the cooling water can be promoted. There is an effect that it is possible to prevent an excessive temperature rise, and further, after the warm-up, the cooling water can be efficiently cooled without improving the discharge capacity of the water pump. Therefore, in the present invention, the cooling water can be cooled by the single cooling means and the pump in the internal combustion engine equipped with the supercharger and the water-cooled intercooler, so that the cost can be reduced. Also, an intercooler can be installed without sticking to the cooling water path.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷却装置を備えた内燃機関の構成を示
す全体構成図である。
FIG. 1 is an overall configuration diagram showing a configuration of an internal combustion engine provided with a cooling device of the present invention.

【図2】図1の内燃機関の冷却装置における機関暖機中
の低負荷時の循環経路を示す説明図である。
FIG. 2 is an explanatory diagram showing a circulation path at a low load during engine warm-up in the internal combustion engine cooling device of FIG. 1;

【図3】図1の内燃機関の冷却装置における機関暖機中
の高負荷時の循環経路を示す説明図である。
FIG. 3 is an explanatory diagram showing a circulation path during high load during engine warm-up in the internal combustion engine cooling device of FIG. 1;

【図4】図1の内燃機関の冷却装置における機関暖機終
了後の循環経路を示す説明図である。
FIG. 4 is an explanatory diagram showing a circulation path after completion of engine warming in the internal combustion engine cooling device of FIG. 1;

【図5】(a) は図1の流路切換弁の一実施例の基本構成
を示す斜視図、(b) は(a) の流路切換弁を内蔵したハウ
ジングの断面図、(c) は(a) の流路切換弁が第5連通路
と第7連通路とを接続する場合の弁体の位置を説明する
図、(d) は(a) の流路切換弁が第5連通路と第6連通路
とを接続する場合の弁体の位置を説明する図である。
5 (a) is a perspective view showing the basic structure of an embodiment of the flow path switching valve of FIG. 1, (b) is a sectional view of a housing incorporating the flow path switching valve of (a), (c). Is a diagram for explaining the position of the valve element when the flow passage switching valve of (a) connects the fifth communication passage and the seventh communication passage, and (d) is the flow passage switching valve of (a) fifth communication passage. It is a figure explaining the position of a valve body when connecting a passage and the 6th free passage.

【図6】図1の第2分岐点に設けられたサーモスタット
の構成の一例を示す断面図である。
FIG. 6 is a cross-sectional view showing an example of the configuration of a thermostat provided at the second branch point of FIG.

【図7】本発明の内燃機関の冷却装置を使用した内燃機
関の機関始動後の冷却水温の上昇特性を示す特性図であ
る。
FIG. 7 is a characteristic diagram showing a rising characteristic of a cooling water temperature after engine start of an internal combustion engine using the internal combustion engine cooling device of the present invention.

【符号の説明】[Explanation of symbols]

1…内燃機関 2…吸気通路 4…過給機 5…インタクーラ 6…スロットル弁 7…負荷センサ 8…排気通路 9…水温センサ 10…ECU (エンジン・コントロール・ユニット) 13…ラジエータ 14…サーモスタットのハウジング 15…弁座 20…冷却装置 21〜27…第1〜第7の連通路 31〜36…第1〜第6の分岐点 40…サーモスタット 41…第1の弁体 42…第2の弁体 45…サーモワックス 50…流路切換弁 51…アクチュエータ 53…切換弁体 54…切換水路 DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Intake passage 4 ... Supercharger 5 ... Intercooler 6 ... Throttle valve 7 ... Load sensor 8 ... Exhaust passage 9 ... Water temperature sensor 10 ... ECU (engine control unit) 13 ... Radiator 14 ... Thermostat housing 15 ... Valve seat 20 ... Cooling device 21-27 ... 1st-7th communication passage 31-36 ... 1st-6th branch point 40 ... Thermostat 41 ... 1st valve body 42 ... 2nd valve body 45 ... Thermo wax 50 ... Flow path switching valve 51 ... Actuator 53 ... Switching valve body 54 ... Switching water channel

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ウォータポンプの吐出口と内燃機関の冷
却水通路入口とを連通する第1連通路と、内燃機関の冷
却水通路出口と冷却水の冷却手段の一端とを連通する第
2連通路と、前記冷却手段の他端と前記ポンプの吸入口
とを連通する第3連通路と、前記第2連通路の途中に位
置する第1の分岐点と前記第3連通路の途中に位置する
第2の分岐点とを連通する第4連通路と、この第2の分
岐点に設けられて冷却水温度が所定温度未満の時に前記
第4連通路を前記ポンプに連通し、冷却水温度が所定温
度以上の時に前記冷却手段の他端を前記ポンプに連通す
るサーモスタットとから構成される冷却装置を備える内
燃機関であって、その吸気通路にインタクーラを装備す
るものにおいて、前記冷却装置に更に、 前記第1連通路の途中に位置する第3の分岐点と前記イ
ンタクーラの冷却水入口とを連通する第5の連通路と、 前記インタクーラの冷却水出口と前記第2連通路の前記
第1の分岐点より前記冷却手段側に位置する第4の分岐
点とを連通する第6の連通路と、 前記第6連通路の途中に位置する第5の分岐点と前記第
3の連通路の前記サーモスタットより前記冷却手段側に
位置する第6の分岐点とを連通する第7連通路と、 前記第5の分岐点に設けられた流路切換弁と、 内燃機関の運転状態パラメータを検出する運転状態パラ
メータ検出手段と、 内燃機関が暖機中でかつ低負荷時、および内燃機関の暖
機後に、前記インタークーラの冷却水出口が前記第2連
通路に連通するように前記流路切換弁を切り換えると共
に、内燃機関が暖機中でかつ高負荷時に、前記インター
クーラの冷却水出口が前記第3連通路に連通するように
前記流路切換弁を切り換える流路切換弁制御手段とを設
けたことを特徴とする内燃機関の冷却装置。
1. A first communication passage that connects a discharge port of a water pump and a cooling water passage inlet of an internal combustion engine, and a second communication passage that communicates a cooling water passage outlet of the internal combustion engine with one end of cooling water cooling means. A passage, a third communicating passage that connects the other end of the cooling means and the suction port of the pump, a first branch point located in the middle of the second communicating passage, and a middle of the third communicating passage A fourth communication passage communicating with the second branch point, and a fourth communication passage provided at the second branch point and communicating the fourth communication passage with the pump when the cooling water temperature is lower than a predetermined temperature. An internal combustion engine having a cooling device including a thermostat that communicates the other end of the cooling means to the pump when the temperature is equal to or higher than a predetermined temperature, and the cooling device further includes an intercooler in the intake passage. Located in the middle of the first communication passage A fifth communication passage that connects the third branch point and the cooling water inlet of the intercooler, a cooling water outlet of the intercooler, and a fifth communication passage that is located closer to the cooling means than the first branch point of the second communication passage. A sixth communication passage communicating with the fourth branch point, a fifth branch point located in the middle of the sixth communication passage, and a sixth communication passage located closer to the cooling means than the thermostat of the third communication passage. A seventh communication passage communicating with the branch point of the internal combustion engine, a flow path switching valve provided at the fifth branch point, an operating state parameter detecting means for detecting an operating state parameter of the internal combustion engine, and an internal combustion engine warming up. In the middle and low load, and after warming up the internal combustion engine, the flow path switching valve is switched so that the cooling water outlet of the intercooler communicates with the second communication passage, and the internal combustion engine is warming up and When the load is high, the intercooler Cooling system for an internal combustion engine 却水 outlet is characterized by providing a flow path switching valve control means for switching the flow path switching valve so as to communicate with the third communication passage.
JP6299719A 1994-12-02 1994-12-02 Cooling device of internal combustion engine Pending JPH08158871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6299719A JPH08158871A (en) 1994-12-02 1994-12-02 Cooling device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6299719A JPH08158871A (en) 1994-12-02 1994-12-02 Cooling device of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH08158871A true JPH08158871A (en) 1996-06-18

Family

ID=17876145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6299719A Pending JPH08158871A (en) 1994-12-02 1994-12-02 Cooling device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH08158871A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267180A (en) * 2007-04-17 2008-11-06 Toyota Motor Corp Control device for variable flow rate water pump
US7669416B2 (en) * 2003-04-30 2010-03-02 Behr Gmbh & Co. Kg Circuit for cooling charge air, and method for operating such a circuit
JP2010264876A (en) * 2009-05-14 2010-11-25 Toyota Motor Corp Cooling device
US8028522B2 (en) * 2005-09-06 2011-10-04 Behr Gmbh & Co. Kg Cooling system for a motor vehicle
JP2013019313A (en) * 2011-07-11 2013-01-31 Toyota Motor Corp Cooling device for internal combustion engine
JP2016217168A (en) * 2015-05-15 2016-12-22 いすゞ自動車株式会社 Engine cooling device and engine cooling method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7669416B2 (en) * 2003-04-30 2010-03-02 Behr Gmbh & Co. Kg Circuit for cooling charge air, and method for operating such a circuit
US8028522B2 (en) * 2005-09-06 2011-10-04 Behr Gmbh & Co. Kg Cooling system for a motor vehicle
JP2008267180A (en) * 2007-04-17 2008-11-06 Toyota Motor Corp Control device for variable flow rate water pump
JP2010264876A (en) * 2009-05-14 2010-11-25 Toyota Motor Corp Cooling device
JP2013019313A (en) * 2011-07-11 2013-01-31 Toyota Motor Corp Cooling device for internal combustion engine
JP2016217168A (en) * 2015-05-15 2016-12-22 いすゞ自動車株式会社 Engine cooling device and engine cooling method

Similar Documents

Publication Publication Date Title
JPS6121537Y2 (en)
JP4445676B2 (en) Diesel engine with turbocharger
JP2002227646A (en) Engine with egr cooler
JP6414194B2 (en) Control device for internal combustion engine
JP4145506B2 (en) Cooling water passage layout structure in the engine
US4513695A (en) Intercooler bypass return in an internal combustion engine
JP2007247409A (en) Internal combustion engine
JPH08158871A (en) Cooling device of internal combustion engine
JP4292883B2 (en) Engine cooling system
JPH03225015A (en) Cooling device for internal combustion engine
JPH10325368A (en) Egr gas cooling device
JPS63195314A (en) Cooling device for water-cooled engine
JP2993214B2 (en) Engine cooling system
JP5918474B2 (en) EGR device
JPH0347422A (en) Cooling method for internal combustion engine
JP2734695B2 (en) Internal combustion engine cooling system
JPH0625637Y2 (en) Supercharged engine with water cooling interface
WO2021095375A1 (en) Cooling water system for vehicle
JPS60224937A (en) Engine with supercharger
JP2004316601A (en) Intake device for marine engine
JP3608668B2 (en) Diesel engine with intercooler
JPS58150024A (en) Intake-air temperature control device in internal-combustion engine
JPH01117916A (en) Cooler of water cooling type engine
JPS6349547Y2 (en)
JPS6394065A (en) Intake air cooler for internal combustion engine