JPH07118860A - Counter electrode type microwave plasma treating device and treating method therefor - Google Patents

Counter electrode type microwave plasma treating device and treating method therefor

Info

Publication number
JPH07118860A
JPH07118860A JP28756793A JP28756793A JPH07118860A JP H07118860 A JPH07118860 A JP H07118860A JP 28756793 A JP28756793 A JP 28756793A JP 28756793 A JP28756793 A JP 28756793A JP H07118860 A JPH07118860 A JP H07118860A
Authority
JP
Japan
Prior art keywords
substrate
counter electrode
microwave plasma
microwave
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28756793A
Other languages
Japanese (ja)
Other versions
JP2623475B2 (en
Inventor
Kibatsu Shinohara
己拔 篠原
Hiroyuki Kamiyama
寛幸 上山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Koshuha Co Ltd
Original Assignee
Nihon Koshuha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Koshuha Co Ltd filed Critical Nihon Koshuha Co Ltd
Priority to JP5287567A priority Critical patent/JP2623475B2/en
Publication of JPH07118860A publication Critical patent/JPH07118860A/en
Application granted granted Critical
Publication of JP2623475B2 publication Critical patent/JP2623475B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the microwave plasma treating device which lowers a substrate temp., decreases impurities, does not drop a formation speed, has high adhesion strength to the substrate and has a high nucleus formation density as well. CONSTITUTION:This microwave plasma treating device is.vertically installed with metallic circular pipes 2, 2' with hermetic caps orthogonally with the broad surface of a waveguide 1 and has a flat planar counter electrode 13 facing the substrate 7 and a terminal 14 for impressing a bias voltage to the lower circular pipe 2'. A microwave electric field is impressed perpendicularly to the substrate 7 by using this device, and further, a bias DC voltage is impressed between this counter electrode 13 and a sample stage 6, by which control of ions and electrons is executed. The rise of the temp. and forming speed are thus controlled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体分野を始め、光学
用部材、工具、医療用の他、広範囲の分野に利用される
高密度、高品質のダイヤモンドの合成を目的とする対向
電極型マイクロ波プラズマ処理装置およびこの装置を使
用する処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a counter electrode type microstructure for the purpose of synthesizing high density and high quality diamond which is used in a wide range of fields including the semiconductor field, optical members, tools and medical fields. TECHNICAL FIELD The present invention relates to a wave plasma processing apparatus and a processing method using the apparatus.

【0002】[0002]

【従来の技術】気相法によるダイヤモンドの合成方法は
従来種々試みられているが、未だ完成されたものはな
い。なかでもマイクロ波プラズマCVD法は、装置の構
造が簡単であり、不純物の混入も少なく、長時間の安定
な合成が可能であるという長所を有するが、一方核生成
密度が低いところが短所となっている。また、核生成に
影響を及ぼす試料台上の基板温度は、プラズマのガス温
度と、試料台に用いる絶縁体の高周波損失特性に依存す
るため、マイクロ波印加電力と基板温度とが連動してい
るという問題点がある。即ち、印加するマイクロ波電力
の増加につれて、基板温度が上昇するために、基板温度
を希望値に保持することが難しい。
2. Description of the Related Art Various methods for synthesizing diamond by a vapor phase method have been tried, but none have been completed yet. Among them, the microwave plasma CVD method has an advantage that the structure of the apparatus is simple, less impurities are mixed, and stable synthesis can be performed for a long time, but a point that the nucleation density is low is a disadvantage. There is. Further, since the substrate temperature on the sample stage that affects nucleation depends on the gas temperature of plasma and the high frequency loss characteristics of the insulator used for the sample stage, the microwave applied power and the substrate temperature are linked. There is a problem. That is, it is difficult to maintain the substrate temperature at a desired value because the substrate temperature rises as the applied microwave power increases.

【0003】また、マイクロ波プラズマCVD法におい
て、シリコン基板側にプラス電位を加えてプラズマ中の
電子を照射するとダイヤモンドの成長が促進され、逆に
マイナス電位を加え陽イオンを照射すると、β−SiC
が共析出される。
In the microwave plasma CVD method, when a positive potential is applied to the silicon substrate to irradiate electrons in the plasma, diamond growth is promoted. Conversely, when a negative potential is applied to irradiate cations, β-SiC is used.
Are co-deposited.

【0004】[0004]

【発明が解決しようとする課題】上述のように、従来の
マイクロ波プラズマCVD法によるダイヤモンド合成
は、基板温度が500℃より低くなると、生成速度が1
0倍以上遅くなり、核の生成密度も低く、基板温度の調
整が難しくなる。本発明の目的はこれらの問題を、基板
表面のプラズマ密度を上げることによって解決しようと
するものである。
As described above, in the conventional diamond synthesis by the microwave plasma CVD method, the production rate is 1 when the substrate temperature is lower than 500 ° C.
It becomes 0 or more times slower, the nucleus generation density is low, and it becomes difficult to adjust the substrate temperature. The object of the present invention is to solve these problems by increasing the plasma density on the substrate surface.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による対向電極型マイクロ波プラズマ処理装
置は、導波管の広面に直交して上下に密閉蓋付金属円管
を付設したマイクロ波プラズマ処理装置であって、試料
台上に搭載した基板に対向して平板状対向電極を設け、
下部電極にバイアス電圧印加端子を有することを特徴と
する。
A counter electrode type microwave plasma processing apparatus according to the present invention for attaining the above object has metal circular pipes with hermetically sealed lids provided vertically above and below a wide surface of a waveguide. A microwave plasma processing apparatus, wherein a flat plate-shaped counter electrode is provided to face a substrate mounted on a sample table,
The lower electrode has a bias voltage application terminal.

【0006】本発明はまた、上記のマイクロ波プラズマ
処理装置において、試料台上に搭載した基板に対向して
平板状対向電極を設け、基板に垂直にマイクロ波電界を
加えるようにし、さらに、上記の対向電極と試料台との
間にバイアス直流電圧を印加してイオンおよび電子の制
御を行い、基板温度の上昇と生成速度との調整を行うこ
とを特徴とするマイクロ波プラズマ処理方法である。
According to the present invention, in the above microwave plasma processing apparatus, a flat plate-shaped counter electrode is provided so as to face a substrate mounted on a sample table, and a microwave electric field is applied vertically to the substrate. In the microwave plasma processing method, a bias DC voltage is applied between the counter electrode and the sample stage to control ions and electrons to adjust the substrate temperature and the generation rate.

【0007】マイクロ波プラズマCVD法の一般的な特
徴は、マイクロ波を使用するために、プラズマの単位体
積当たりの電子密度が高く、局部的に強いプラズマを発
生することができ、高周波プラズマに較べてイオンの最
大運動エネルギーが著しく低いことである。しかし、マ
イクロ波電界が基板に平行であると、基板表面のプラズ
マ密度は高くならない。これに対して、マイクロ波電界
が基板に垂直になると、基板表面のプラズマ密度が高く
なり、上記マイクロ波プラズマCVD法の特徴が十分発
揮されることになる。本発明によるプラズマ処理装置
は、対向電極を設けたので、バイアス直流電圧とマイク
ロ波電界の作用が重畳する効果が得られると考えられ
る。
The general characteristics of the microwave plasma CVD method are that, since microwaves are used, the electron density per unit volume of the plasma is high and a strong plasma can be locally generated, which is higher than that of the high frequency plasma. That is, the maximum kinetic energy of ions is extremely low. However, when the microwave electric field is parallel to the substrate, the plasma density on the substrate surface does not increase. On the other hand, when the microwave electric field is perpendicular to the substrate, the plasma density on the surface of the substrate becomes high, and the characteristics of the microwave plasma CVD method are sufficiently exhibited. Since the plasma processing apparatus according to the present invention is provided with the counter electrode, it is considered that the effect of superimposing the action of the bias DC voltage and the microwave electric field is obtained.

【0008】さらに、従来の方法では、試料台上の基板
温度が、プラズマのガス温度と絶縁体の高周波損失特性
とに依存するために、これを自由に調整することができ
なかった。然るに本発明の処理装置では、試料台に対向
する位置に平板状の対向電極を設け、両者の間にバイア
ス直流電圧を印加して、基板温度と生成速度との調整を
行うことができる。
Further, in the conventional method, the temperature of the substrate on the sample table depends on the gas temperature of the plasma and the high frequency loss characteristic of the insulator, so that it cannot be freely adjusted. However, in the processing apparatus of the present invention, a flat plate-shaped counter electrode is provided at a position facing the sample table, and a bias DC voltage is applied between the two to adjust the substrate temperature and the generation rate.

【0009】上記対向電極としては、溶融温度の高いモ
リブデン、タンタル、タングステン等が使用できる。ま
た、ダイヤモンド合成の場合、反応ガスとしては、メタ
ンおよびメチル基を含む化合物等を水素ガスで希釈した
混合ガスが多く使用されている。
As the counter electrode, molybdenum, tantalum, tungsten or the like having a high melting temperature can be used. In the case of diamond synthesis, a mixed gas obtained by diluting a compound containing methane and a methyl group with hydrogen gas is often used as a reaction gas.

【0010】[0010]

【作用】上記の構成により、本発明の対向電極型マイク
ロ波プラズマ処理装置およびそれを使用する処理方法に
おいては、マイクロ波電界が基板に垂直になるため、基
板表面のプラズマ密度が従来のものより高くなり、対向
電極に、正の直流電圧を、基板に負電圧を印加すると、
プラズマ中の電子が対向電極に、水素イオンが基板に集
中するため、黒鉛状炭素が水素と反応して炭化水素とな
り、再ガス化して、その析出が抑制されるので不純物の
混入を少なくすることが可能となる。また、カーボンイ
オンの打ち込み効果によって、基板表面にSiCの中間
層が形成され、核の生成密度を高くすることが可能とな
る。
With the above structure, in the counter electrode type microwave plasma processing apparatus of the present invention and the processing method using the same, since the microwave electric field is perpendicular to the substrate, the plasma density on the substrate surface is higher than that of the conventional one. When a positive DC voltage is applied to the counter electrode and a negative voltage is applied to the substrate,
Electrons in the plasma are concentrated on the counter electrode and hydrogen ions are concentrated on the substrate. Graphitic carbon reacts with hydrogen to become hydrocarbons, which are regasified and their precipitation is suppressed, so that contamination of impurities is reduced. Is possible. Further, due to the carbon ion implantation effect, an intermediate layer of SiC is formed on the substrate surface, and it becomes possible to increase the nucleus generation density.

【0011】[0011]

【実施例】以下、本発明による対向電極型マイクロ波プ
ラズマ処理装置の一例について図面を参照して具体的に
説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of a counter electrode type microwave plasma processing apparatus according to the present invention will be specifically described below with reference to the drawings.

【0012】図1は本発明のプラズマ処理装置の一例を
示す断面図である。実験は2.45GHzのマイクロ波
電力を使用して、マイクロ波プラズマCVD法によるダ
イヤモンドの合成を試みた。図1において、2.45G
Hz用の方形導波管1の広面に直交して上下に金属円管
2、2’を付け、この内部に石英管5を設けて、その上
下に蓋3と4を嵌め、内部を気密構造とする。蓋4に
は、水冷式試料台6が植え込まれており、その上部に基
板7を取りつける。
FIG. 1 is a sectional view showing an example of the plasma processing apparatus of the present invention. In the experiment, a microwave power of 2.45 GHz was used, and an attempt was made to synthesize diamond by a microwave plasma CVD method. In FIG. 1, 2.45G
Metal circular tubes 2 and 2 ′ are attached vertically to the wide surface of the rectangular waveguide 1 for Hz, and a quartz tube 5 is provided inside this, and lids 3 and 4 are fitted on the top and bottom thereof, and the inside is hermetically sealed. And A water-cooled sample table 6 is embedded in the lid 4, and a substrate 7 is attached to the upper part thereof.

【0013】この試料台の内部は冷却水で冷却される。
図において、8は冷却水入り口、9は出口である。蓋4
にはさらに、真空ポンプに連結する接続孔10が設けら
れ、石英管の内部を真空にする。もしこの基板が熱伝導
性のよい材料であれば、薄い絶縁体を介して基板を取り
付ける。
The inside of the sample table is cooled with cooling water.
In the figure, 8 is a cooling water inlet and 9 is an outlet. Lid 4
Is further provided with a connection hole 10 for connecting to a vacuum pump, and the inside of the quartz tube is evacuated. If this substrate is a material with good thermal conductivity, it is attached via a thin insulator.

【0014】一方、上の蓋3には、本発明の眼目である
平板状の対向電極13が軸12によって、絶縁層(図示
を略す)を介して取り付けられ、この対向電極13と試
料台6との間にバイアス直流電圧を印加する。下部に付
設した端子14はこのための端子である。本実施例では
対向電極13として、網状のモリブデン電極を使用し
た。かかる構造とすることによって、導波管1中のマイ
クロ波電界は、基板7に垂直に印加され、さらに、バイ
アス直流電圧を印加することにより、イオンおよび電子
の制御が行われる。
On the other hand, a flat plate-shaped counter electrode 13 which is the feature of the present invention is attached to the upper lid 3 by a shaft 12 via an insulating layer (not shown), and the counter electrode 13 and the sample table 6 are attached. A bias DC voltage is applied between The terminal 14 attached to the lower part is a terminal for this purpose. In this embodiment, a reticulated molybdenum electrode is used as the counter electrode 13. With such a structure, the microwave electric field in the waveguide 1 is applied vertically to the substrate 7, and by applying a bias DC voltage, ions and electrons are controlled.

【0015】上の蓋3にはまた、反応ガス注入孔11が
設けられており、ここから反応ガスが注入される。
The upper lid 3 is also provided with a reaction gas injection hole 11 from which a reaction gas is injected.

【0016】方形導波管1はフランジ15によって、外
部から2.45GHzのマイクロ波16が印加され、他
端の可動短絡器17によって、試料台付近でプラズマ1
8が励起されるように調整される。このプラズマの発生
によって、反応室内が高温になるので、冷却のために金
属円管2、2’の外側に水冷管19が巻き付けられてい
る。
A microwave 16 of 2.45 GHz is externally applied to the rectangular waveguide 1 by a flange 15 and a plasma 1 near the sample stage is set by a movable short-circuiter 17 at the other end.
8 is adjusted to be excited. Since the inside of the reaction chamber becomes hot due to the generation of this plasma, the water cooling pipe 19 is wound around the outside of the metal circular pipes 2 and 2'for cooling.

【0017】比較例 ダイヤモンドの気相合成において、ダイヤモンドを析出
する上限温度は1200℃以下に限定されており、それ
以上では、析出したダイヤモンドが、安定な黒鉛に転移
する。そこで、図1の装置を用いて、バイアス電圧を印
加しない通常の方法で比較実験を試みたが、基板温度8
30℃で析出させて製膜したものは、カーボン等を含む
不純物混入の多いものであった。
Comparative Example In vapor phase synthesis of diamond, the upper limit temperature for depositing diamond is limited to 1200 ° C. or lower, and above that temperature, the deposited diamond transforms into stable graphite. Therefore, a comparative experiment was attempted using the apparatus of FIG. 1 by a normal method without applying a bias voltage.
The film deposited by precipitation at 30 ° C. contained a large amount of impurities including carbon and the like.

【0018】実施例 本発明において、マイクロ波電界を基板7に垂直に加
え、さらに対向電極13と基板7との間にバイアス直流
電圧を印加した場合は、基板温度369℃で不純物の少
ない立方晶ダイヤモンド(ASTM6−675)が析出
した。そのときのデータは次の通りであった。
EXAMPLE In the present invention, when a microwave electric field is applied perpendicularly to the substrate 7 and a bias DC voltage is applied between the counter electrode 13 and the substrate 7, a cubic crystal having a low impurity content at a substrate temperature of 369 ° C. Diamond (ASTM6-675) was deposited. The data at that time were as follows.

【0019】反応ガスの種類 : CH4 + H2 反応ガス流量 : 2CCM (CH4) +198CC
M (H2) 真空度 : 0.13 torr バイアス電圧 : 500 V, 0.88 A バイアス電圧極性 : 基板側負極性、対向電極正特
性 マイクロ波電力 : 700 W 析出成長速度 : 0.78 μ/時 基板温度 : 369℃ 基板材料 : シリコン 対向電極 : 網状モリブデン
Kind of reaction gas: CH 4 + H 2 Reaction gas flow rate: 2 CCM (CH 4 ) + 198 CC
M (H 2 ) Degree of vacuum: 0.13 torr Bias voltage: 500 V, 0.88 A Bias voltage polarity: Negative polarity on substrate side, counter electrode positive characteristic Microwave power: 700 W Precipitation growth rate: 0.78 μ / When Substrate temperature: 369 ° C Substrate material: Silicon Counter electrode: Reticulated molybdenum

【0020】上記の比較例と実施例とで得られたダイヤ
モンドをX線回折およびラマン分光スペクトルによって
比較したところ、析出成長速度と不純物含有量に明らか
な差が見られた。
When the diamonds obtained in the above comparative example and the example were compared by X-ray diffraction and Raman spectroscopy, a clear difference was observed in the precipitation growth rate and the impurity content.

【0021】すなわち、比較例(従来法、830℃)で
得られた膜のラマン分光スペクトルは、1332 cm -1
にダイヤモンドの先鋭なピークが認められるが、150
0cm-1付近に幅広い不純物のアモルファスカーボンのピ
ークも存在する。またX線回折の結果も同一で、立方晶
ダイヤモンド(ASTM6−675)のピークが認めら
れると共に、アモルファスカーボン(ASTM26−1
081、ASTM26−1082)のピークも存在す
る。
That is, the Raman spectrum of the film obtained in the comparative example (conventional method, 830 ° C.) is 1332 cm −1.
A sharp diamond peak is observed at
There is also a wide range of impurity amorphous carbon peaks near 0 cm -1 . The results of X-ray diffraction were also the same, and the peak of cubic crystal diamond (ASTM6-675) was recognized and the amorphous carbon (ASTM26-1
081, ASTM 26-1082) is also present.

【0022】一方本発明の実施例で得られた膜のラマン
分光スペクトルは、1332cm-1にダイヤモンドの先鋭
なピークが認められ、アモルファスカーボンのピークは
認められなかった。また、X線回折の結果も、立方晶ダ
イヤモンド(ASTM6−675)と、六方晶ダイヤモ
ンド(ASTM19−268)しか認められず、アモル
ファスカーボンのピークは認められなかった。
On the other hand, in the Raman spectroscopic spectra of the films obtained in the examples of the present invention, a sharp peak of diamond was observed at 1332 cm -1, and no peak of amorphous carbon was observed. Also, as a result of X-ray diffraction, only cubic diamond (ASTM6-675) and hexagonal diamond (ASTM19-268) were observed, and no peak of amorphous carbon was observed.

【0023】[0023]

【発明の効果】以上説明したように本発明による対向電
極型マイクロ波プラズマ処理装置およびそれを使用する
処理方法は、2.45GHzのマイクロ波プラズマ処理
装置に対向電極を設けて、マイクロ波電界を基板に垂直
に加え、さらに対向電極と試料台との間にバイアス直流
電圧を印加することによって、良質なダイヤモンドを得
ることができ、従来の技術的課題であった生成速度の向
上、生成面積の拡大、基板との密着強度の改善、合成基
板温度の低下等を改善することができた。。その効果を
列挙すれば次のとうりである。
As described above, the counter electrode type microwave plasma processing apparatus and the processing method using the same according to the present invention are provided with a counter electrode in a microwave plasma processing apparatus of 2.45 GHz to generate a microwave electric field. By applying a bias DC voltage between the counter electrode and the sample stage in addition to the vertical direction to the substrate, high-quality diamond can be obtained. It was possible to improve the enlargement, the improvement of the adhesion strength with the substrate, and the decrease of the temperature of the synthetic substrate. . The effects are listed below.

【0024】1.核生成密度が上がる。 2.基板との密着性が良い。 3.核生成粒子の直径が小さいので、非常に薄い膜が析
出する。 4.100℃以上というような低い基板温度でもダイヤ
モンド合成が可能となる。 5.熱伝導度が良い。 6.不純物含有量が非常に少ない。 7.熱膨張の異なる材質への製膜が可能であり、密着性
も良い。
1. Nucleation density increases. 2. Good adhesion to the substrate. 3. Due to the small diameter of the nucleation particles, a very thin film is deposited. 4. Diamond synthesis is possible even at a substrate temperature as low as 100 ° C. or higher. 5. Good thermal conductivity. 6. Very low impurity content. 7. Films can be formed on materials with different thermal expansion, and adhesion is good.

【0025】以上のように、本発明の処理装置を使用す
れば、比較的安価に良質のダイヤモンド粒子や薄膜を合
成することができる。その応用面としては、高硬度を利
用した工具、高い熱伝導度の利用、生体用メス等多くの
方面に利用することができる。
As described above, by using the processing apparatus of the present invention, it is possible to synthesize good quality diamond particles and thin films at a relatively low cost. As its application, it can be used in many fields such as tools utilizing high hardness, high thermal conductivity, and scalpels for living bodies.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の対向電極型マイクロ波プラズマ処理装
置の一例を示す断面図。
FIG. 1 is a sectional view showing an example of a counter electrode type microwave plasma processing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

1 方形導波管 2、2’金属円管 3 上部蓋 4 下部蓋 5 石英管 6 水冷式試料台 7 基板 8 冷却水入口 9 同上出口 10 真空ポンプ接続口 11 反応ガス注入口 12 軸 13 対向電極 14 バイアス電圧印加端子 15 導波管フランジ 16 マイクロ波電力入射 17 可動短絡器 18 プラズマ 19 水冷管 1 rectangular waveguide 2, 2'metal circular tube 3 upper lid 4 lower lid 5 quartz tube 6 water-cooled sample stage 7 substrate 8 cooling water inlet 9 same outlet 10 vacuum pump connection port 11 reaction gas injection port 12 shaft 13 counter electrode 14 Bias voltage application terminal 15 Waveguide flange 16 Microwave power injection 17 Mobile short circuit 18 Plasma 19 Water cooling tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】導波管の広面に直交して上下に密閉蓋付金
属円管を付設したマイクロ波プラズマ処理装置であっ
て、試料台上に搭載した基板に対向して平板状対向電極
を設け、下部電極にバイアス電圧印加端子を有すること
を特徴とする対向電極型マイクロ波プラズマ処理装置。
1. A microwave plasma processing apparatus in which metal circular tubes with hermetically-sealed lids are provided vertically above and below a wide surface of a waveguide, wherein a flat plate-shaped counter electrode is provided facing a substrate mounted on a sample table. A counter electrode type microwave plasma processing apparatus provided with a bias voltage application terminal on a lower electrode.
【請求項2】マイクロ波プラズマ処理装置において、試
料台上に搭載した基板に対向して平板状対向電極を設け
て基板に垂直にマイクロ波電界を加えるようにし、さら
に該対向電極と該試料台との間にバイアス直流電圧を印
加してイオンおよび電子の制御を行い、基板温度の上昇
と生成速度との調整を行うことを特徴とするマイクロ波
プラズマ処理方法。
2. In a microwave plasma processing apparatus, a flat plate-shaped counter electrode is provided so as to face a substrate mounted on a sample table so that a microwave electric field is applied perpendicularly to the substrate, and the counter electrode and the sample table are further provided. A microwave plasma processing method, characterized in that a bias DC voltage is applied between the electrodes to control ions and electrons to increase the substrate temperature and adjust the generation rate.
JP5287567A 1993-10-22 1993-10-22 Counter electrode type microwave plasma processing apparatus and processing method Expired - Lifetime JP2623475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5287567A JP2623475B2 (en) 1993-10-22 1993-10-22 Counter electrode type microwave plasma processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5287567A JP2623475B2 (en) 1993-10-22 1993-10-22 Counter electrode type microwave plasma processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JPH07118860A true JPH07118860A (en) 1995-05-09
JP2623475B2 JP2623475B2 (en) 1997-06-25

Family

ID=17719014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5287567A Expired - Lifetime JP2623475B2 (en) 1993-10-22 1993-10-22 Counter electrode type microwave plasma processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP2623475B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2300425A (en) * 1995-05-01 1996-11-06 Kobe Steel Europ Ltd Nucleation of diamond films using an electrode
US6092486A (en) * 1996-05-27 2000-07-25 Sumimoto Metal Indsutries, Ltd. Plasma processing apparatus and plasma processing method
WO2008155087A2 (en) * 2007-06-20 2008-12-24 Universität Augsburg Plasma reactor, and method for the production of monocrystalline diamond layers
JP2010111889A (en) * 2008-11-04 2010-05-20 Tokyo Electron Ltd Film deposition method, film deposition system and storage medium
US20130192760A1 (en) * 2012-01-31 2013-08-01 Tokyo Electron Limited Microwave emitting device and surface wave plasma processing apparatus
JP2021522415A (en) * 2018-04-27 2021-08-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Plasma chemical vapor deposition with periodic high voltage bias

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789793A (en) * 1993-09-24 1995-04-04 Kobe Steel Ltd Formation of highly-oriented diamond thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789793A (en) * 1993-09-24 1995-04-04 Kobe Steel Ltd Formation of highly-oriented diamond thin film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2300425A (en) * 1995-05-01 1996-11-06 Kobe Steel Europ Ltd Nucleation of diamond films using an electrode
US6092486A (en) * 1996-05-27 2000-07-25 Sumimoto Metal Indsutries, Ltd. Plasma processing apparatus and plasma processing method
WO2008155087A2 (en) * 2007-06-20 2008-12-24 Universität Augsburg Plasma reactor, and method for the production of monocrystalline diamond layers
WO2008155087A3 (en) * 2007-06-20 2009-03-19 Univ Augsburg Plasma reactor, and method for the production of monocrystalline diamond layers
JP2010111889A (en) * 2008-11-04 2010-05-20 Tokyo Electron Ltd Film deposition method, film deposition system and storage medium
US20130192760A1 (en) * 2012-01-31 2013-08-01 Tokyo Electron Limited Microwave emitting device and surface wave plasma processing apparatus
JP2021522415A (en) * 2018-04-27 2021-08-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Plasma chemical vapor deposition with periodic high voltage bias

Also Published As

Publication number Publication date
JP2623475B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
US5607560A (en) Diamond crystal forming method
US4576829A (en) Low temperature growth of silicon dioxide on silicon
US5479875A (en) Formation of highly oriented diamond film
JP3194820B2 (en) Method for forming oriented diamond film
JP2623475B2 (en) Counter electrode type microwave plasma processing apparatus and processing method
US5614258A (en) Process of diamond growth from C70
JPH10265212A (en) Production of microcrystal and polycrystal silicon thin films
JPS63121667A (en) Device and method for forming thin film
US5824368A (en) Process of diamond growth from C70
JPH06345592A (en) Formation of thin diamond film
JPS63145782A (en) Formation of thin film
JPS6395200A (en) Production of hard boron nitride film
JPH04362017A (en) Formation of oriented ta2o5 thin film
JP2660244B2 (en) Surface treatment method
JP4480192B2 (en) Method for synthesizing high purity diamond
JPS63265890A (en) Production of thin diamond film or thin diamond-like film
JP6944699B2 (en) Method for manufacturing hexagonal boron nitride film
JPS63185894A (en) Production of diamond thin film or diamond-like thin film
JPS5910254B2 (en) Plasma position method
JP2634264B2 (en) Diamond-like carbon film and method for producing the same
JPH0372620A (en) Formation of polycrystalline semiconductor film by microwave plasma cvd method
JPS60127292A (en) Production of diamond
JPH01298093A (en) Production of diamond film
Hiramatsu et al. Preparation Methods
JPS63176399A (en) Production of diamond film

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970107

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 17

EXPY Cancellation because of completion of term