JPH07115301B2 - Diamond grindstone manufacturing method - Google Patents

Diamond grindstone manufacturing method

Info

Publication number
JPH07115301B2
JPH07115301B2 JP1192392A JP19239289A JPH07115301B2 JP H07115301 B2 JPH07115301 B2 JP H07115301B2 JP 1192392 A JP1192392 A JP 1192392A JP 19239289 A JP19239289 A JP 19239289A JP H07115301 B2 JPH07115301 B2 JP H07115301B2
Authority
JP
Japan
Prior art keywords
diamond
resin
abrasive grains
stock solution
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1192392A
Other languages
Japanese (ja)
Other versions
JPH0360978A (en
Inventor
敢 佐藤
勝 中村
洋司 富田
Original Assignee
鐘紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鐘紡株式会社 filed Critical 鐘紡株式会社
Priority to JP1192392A priority Critical patent/JPH07115301B2/en
Publication of JPH0360978A publication Critical patent/JPH0360978A/en
Publication of JPH07115301B2 publication Critical patent/JPH07115301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ダイヤモンド砥粒を用いた合成砥石の製造方
法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a synthetic grindstone using diamond abrasive grains.

(従来の技術) ダイヤモンド砥粒は、極めて硬度が高く、研削力とその
持続性に優れており、特に粒度の細かいダイヤモンド砥
粒を用いたものは高精度仕上げ加工用として汎く活用さ
れている。
(Prior art) Diamond abrasive grains have extremely high hardness and excellent grinding power and durability. Especially, those using fine grained diamond abrasive grains are widely used for high precision finishing. .

一般にダイヤモンド砥粒を用いた研削材としては、例え
ばダイヤモンドポイントを具備した旋盤、金属表面にダ
イヤモンド砥粒を単層に電着せしめた砥石、あるいは合
成樹脂を結合材としたダイヤモンド樹脂砥石など各種研
削工具や砥石が挙げられる。
Generally, abrasives using diamond abrasives include, for example, lathes equipped with diamond points, grindstones in which diamond abrasives are electrodeposited in a single layer on a metal surface, or diamond resin abrasives using synthetic resin as a binder. Tools and whetstones are included.

硬質セラミックス等の硬脆材料の仕上げ研磨には、微細
なダイヤモンド砥粒を遊離砥粒として用いるラッピング
研磨があるが、この方法は高価なダイヤモンド砥粒を大
量に消費するといった問題点がある。そこで、ダイヤモ
ンドの微細砥粒を合成樹脂を結合材とした多孔質体より
なるダイヤモンド砥石を使用した研磨が考えられるが、
この場合ダイヤモンド砥粒と樹脂との接着性があまり良
くないので、従来の樹脂砥石を製造する方法で作ったも
のは、ダイヤモンド砥粒が極めて脱落し易く、製造工程
での無駄が多く、研磨作業に供した場合もすぐに脱落し
て正常な研磨が続けられないか又は砥石の減り方が大き
いといった問題点がある。この傾向はダイヤモンド砥粒
が細かい程、また砥石の気孔率が大きい程顕著である。
Finishing polishing of hard and brittle materials such as hard ceramics includes lapping polishing using fine diamond abrasive grains as free abrasive grains, but this method has a problem that a large amount of expensive diamond abrasive grains are consumed. Therefore, it is conceivable to use a diamond grindstone made of a porous body with a synthetic resin as a fine abrasive grain of diamond,
In this case, the adhesion between the diamond abrasive grains and the resin is not very good, so the diamond abrasive grains produced by the conventional method of manufacturing resin grindstones are extremely easy to fall off, and there is a lot of waste in the manufacturing process. Also, when it is used, there is a problem that it falls off immediately and normal polishing cannot be continued, or the grindstone is greatly reduced. This tendency is more remarkable as the diamond grains are finer and the porosity of the grindstone is larger.

一方、特開昭62-246474号公報には、鏡面仕上げ用超砥
粒砥石の製造方法が開示されている。この方法は砥粒に
砥粒保持体及び結合剤を混和して加圧成形し、該成形物
を固化させて砥石を製造するものである。ここで、砥粒
としてダイヤモンド砥粒が記載され、また砥粒保持体と
して銅粉及び錫粒が記載されている。しかしながら、こ
の製造方法は加圧成形で砥石を製造するため、気孔率の
高いものは強度的に弱く実用できないものとなり、気孔
率は20〜40%程度の低気孔率のものに限定される。ま
た、加圧成形により砥粒を保持させるため、砥粒に対す
る結合剤の保持力が弱く、これを補うために砥粒の粒径
を30μm以下の小さなものを用いると共に砥粒の割合を
高くしなければならない。すなわち、上記公報の製造方
法はダイヤモンド砥粒を極めて多量に必要とするため、
高価なダイヤモンド砥粒を有効に利用し得るものではな
く、また研磨加工においてスクラッチ(条痕)などの細
かな傷がつき易いという問題点がある。
On the other hand, Japanese Unexamined Patent Publication (Kokai) No. 62-246474 discloses a method for producing a superabrasive grindstone for mirror finishing. In this method, an abrasive grain holder and a binder are mixed with abrasive grains, pressure molding is performed, and the molded product is solidified to produce a grindstone. Here, diamond abrasive grains are described as the abrasive grains, and copper powder and tin grains are described as the abrasive grain holder. However, in this manufacturing method, since a grindstone is manufactured by pressure molding, a material having a high porosity is weak in strength and cannot be practically used, and the porosity is limited to a low porosity of about 20 to 40%. Further, since the abrasive grains are held by pressure molding, the holding force of the binder on the abrasive grains is weak. To compensate for this, a small abrasive grain size of 30 μm or less is used and the ratio of the abrasive grains is increased. There must be. That is, the manufacturing method of the above publication requires an extremely large amount of diamond abrasive grains,
There is a problem that expensive diamond abrasive grains cannot be effectively used, and that fine scratches such as scratches (scratches) are likely to occur during polishing.

(発明が解決しようとする課題) 本発明者等は、上述の問題点に鑑み、鋭意研究を行った
結果、特定の熱硬化性樹脂からなる反応原液を反応硬化
させ銅又は錫の微粉末を分散固着せしめた合成砥石がダ
イヤモンド砥粒を均一且つ強固に固着することを見出し
本発明を完成したものであって、その目的とするところ
は研磨持続性に優れると共に、スクラッチの見られない
良好な面粗さを得るのに適し、且つ高価なダイヤモンド
砥粒を有効に使用し得る、多孔質構造をしたダイヤモン
ド砥石の製造方法を提供するにある。
(Problems to be Solved by the Invention) In view of the above-mentioned problems, the present inventors have conducted diligent research, and as a result, reaction-cured a reaction stock solution made of a specific thermosetting resin to produce fine powder of copper or tin. The present invention has been completed by finding that a synthetic whetstone that is dispersed and fixed uniformly and firmly fixes diamond abrasive grains, and the object thereof is excellent polishing durability and good scratch resistance. Another object of the present invention is to provide a method for producing a diamond grindstone having a porous structure, which is suitable for obtaining surface roughness and can effectively use expensive diamond abrasive grains.

(課題を解決するための手段) 本発明の目的は、レゾール型フェノール系樹脂,メラミ
ン系樹脂,メラミン系樹脂の硬化触媒,気孔形成材及び
銅又は錫の金属微粉末を混合した分散液中に、ダイヤモ
ンド砥粒を加えて均一に混合して反応原液となし、これ
を加熱硬化して得られた中間体を乾燥した後、更に加熱
硬化せしめて合成砥石を製造する方法であって、前記反
応原液に該反応原液の粘度を500〜5000cpsに調製するよ
うに増粘剤を添加したことを特徴とするダイヤモンド砥
石の製造方法によって達成される。
(Means for Solving the Problem) An object of the present invention is to provide a resol-type phenolic resin, a melamine-based resin, a curing catalyst for a melamine-based resin, a pore-forming material, and a dispersion liquid in which a fine metal powder of copper or tin is mixed. A method of producing a synthetic whetstone by adding diamond abrasive grains and uniformly mixing to form a reaction stock solution, drying the intermediate obtained by heating and curing this, and further curing by heating, It is achieved by a method for producing a diamond grindstone, which comprises adding a thickening agent to the stock solution so as to adjust the viscosity of the reaction stock solution to 500 to 5000 cps.

本発明に用いるダイヤモンド砥粒とは、ダイヤモンドの
微粉末であって、その粒径は目的に応じて適宜選定すれ
ばよいが、通常1〜100μmであり、粒径の大きいもの
程研削効果が大きく、粒径の小さいもの程研磨効果が大
きい。ダイヤモンド砥粒は、研削力,研削力が大きいの
で、あまりたくさん添加する必要はなく、本発明におい
て加えられるダイヤモンド砥粒の量は、得られる砥石全
体の25容量%以下、好ましくは10容量%以下に相当する
量である。
The diamond abrasive grain used in the present invention is a fine diamond powder, and its particle size may be appropriately selected according to the purpose, but is usually 1 to 100 μm, and the larger the particle size, the greater the grinding effect. The smaller the particle size, the greater the polishing effect. Since the diamond abrasive grains have a large grinding force and a large grinding force, it is not necessary to add a large amount thereof, and the amount of the diamond abrasive grains added in the present invention is 25% by volume or less, preferably 10% by volume or less of the entire grindstone obtained. Is an amount equivalent to.

本発明に用いるレゾール型フェノール樹脂(以下、レゾ
ール樹脂と記す)とは、フェノール類とアルデヒド類と
を塩基性触媒の存在下で縮合させた一般に粘稠な液状樹
脂で、水,アルコール,アセトン等水性溶剤によく溶け
るが、これを更に加熱すると樹脂化反応が進んで溶剤に
対し次第に難溶となり、粘着性のない脆い固体樹脂(レ
ジトール)を経て、最終的には不溶不融性の硬化樹脂
(レジット)になる。
The resol type phenolic resin used in the present invention (hereinafter referred to as “resole resin”) is a generally viscous liquid resin obtained by condensing phenols and aldehydes in the presence of a basic catalyst, such as water, alcohol, acetone and the like. It dissolves well in an aqueous solvent, but when it is further heated, the resinification reaction proceeds and it gradually becomes less soluble in the solvent, and it goes through a brittle solid resin (resitol) with no tackiness, and finally an insoluble and infusible cured resin. (Residue).

本発明に用いるメラミン系樹脂とは、原料のメラミンと
ホルムアルデヒドとを塩基性触媒の存在下で反応して得
られた液状樹脂で、硬化触媒の存在下で縮合し硬化する
熱硬化性樹脂である。
The melamine-based resin used in the present invention is a liquid resin obtained by reacting raw material melamine and formaldehyde in the presence of a basic catalyst, which is a thermosetting resin that is condensed and cured in the presence of a curing catalyst. .

本発明の方法において、上記レゾール樹脂とメラミン系
樹脂との混合割合は、好ましくはレゾール樹脂/メラミ
ン系樹脂=1/9〜9/1(重量比)で、更に好ましくは2/8
〜8/2で用いられ、レゾール樹脂の割合が高い程靭性が
強く、メラミン系樹脂の割合が高い程脆性が強いものと
なる。
In the method of the present invention, the mixing ratio of the resole resin and the melamine resin is preferably resole resin / melamine resin = 1/9 to 9/1 (weight ratio), more preferably 2/8.
It is used in an amount of up to 8/2. The higher the proportion of the resole resin, the stronger the toughness, and the higher the proportion of the melamine resin, the stronger the brittleness.

本発明に用いるメラミン系樹脂の硬化触媒としては、硫
酸,塩酸等の無機酸類、蟻酸,酢酸,マレイン酸,ベン
ゼンスルホン酸等の有機酸類を用いることができるが、
好ましくは塩化第2鉄,硝酸亜鉛等の酸性塩あるいは有
機アミンの塩酸塩等が用いられる。硬化触媒として塩類
を用いた場合、メラミン系樹脂の硬化反応が緩慢にな
り、より均質な多孔質構造体を安定して得ることができ
る。
As the curing catalyst for the melamine-based resin used in the present invention, inorganic acids such as sulfuric acid and hydrochloric acid, and organic acids such as formic acid, acetic acid, maleic acid and benzenesulfonic acid can be used.
Preferably, an acid salt such as ferric chloride or zinc nitrate or a hydrochloride salt of an organic amine is used. When salts are used as the curing catalyst, the curing reaction of the melamine-based resin becomes slow, and a more homogeneous porous structure can be stably obtained.

本発明に用いられる銅又は錫の金属微粉末は、好ましく
は純度99%以上の高純度のもので、これらを単独あるい
は混合して用いることができる。鉄分等の不純物が多い
と、これらの不純物が熱硬化性樹脂の硬化触媒である酸
類等と反応して発泡し、均質な構造体を形成するのが難
しくなる。
The fine metal powder of copper or tin used in the present invention preferably has a high purity of 99% or more, and these can be used alone or in combination. If there are many impurities such as iron, these impurities react with acids or the like as a curing catalyst of the thermosetting resin to foam, and it becomes difficult to form a homogeneous structure.

上記微粉末の平均粒径は特に限定されるものではない
が、粒径が小さ過ぎると多孔質体から脱落し易く、粒径
が大き過ぎるとダイヤモンド砥粒の保持力が小さくなる
傾向にあり、好ましくは300μm以下で、より好ましく
は10〜150μmで、更に好ましくは50〜100μm程度であ
り、粒径分布の幅の小さなものが好適である。
The average particle size of the fine powder is not particularly limited, but if the particle size is too small, it tends to fall off from the porous body, and if the particle size is too large, the holding power of the diamond abrasive grains tends to decrease, It is preferably 300 μm or less, more preferably 10 to 150 μm, still more preferably about 50 to 100 μm, and those having a narrow particle size distribution are suitable.

尚、錫の微粉末を用いた方が銅の微粉末を用いたものに
比べ、より小さな粒径のダイヤモンド砥粒に対する保持
力に優れ、具体的には10μm以下のダイヤモンド砥粒を
用いた場合に、好ましく研磨作用が得られるのである。
本発明においては、上記の金属微粉末に鉛の微粉末を併
用することも有効である。
It should be noted that the use of tin fine powder is superior to the use of copper fine powder in holding force for diamond abrasive grains having a smaller particle size. Specifically, when diamond abrasive grains of 10 μm or less are used. In addition, the polishing action is preferably obtained.
In the present invention, it is also effective to use lead fine powder in combination with the above metal fine powder.

上記金属微粉末の混合量は、多過ぎると脆い構造の多孔
質体となり易く、その混合量は得られるダイヤモンド砥
石容積に対し好ましくは5〜25容量%、更に好ましくは
10〜20容量%に相当する量である。また、上記金属微粉
末は各微粉末がそれぞれ独立した分散状態ではなく、微
粉末同士が相連接し、実質的に連続状態で存在している
ことが極めて好ましいものである。この様にすることに
より、熱,水,溶剤等に対する寸法安定性が向上すると
共に、ダイヤモンド砥粒の保持効果が増大することにな
る。
The amount of the fine metal powder mixed is likely to be a porous body having a brittle structure if the amount is too large, and the amount is preferably 5 to 25% by volume, more preferably the volume of the obtained diamond grindstone.
The amount is equivalent to 10 to 20% by volume. Further, it is extremely preferable that the fine metal powders are not in a dispersed state in which the fine powders are independent of each other, but the fine powders are connected to each other and are present in a substantially continuous state. By doing so, the dimensional stability against heat, water, solvent, etc. is improved and the effect of holding the diamond abrasive grains is increased.

本発明に用いる気孔形成材は、比較的粒径の揃った粉末
を用いるのが好ましく、例えば馬鈴薯澱粉等の植物から
抽出された澱粉粒が好適である。用いる澱粉の種類は、
所望する気孔径により適宜選定すればよい。連続気孔を
有する多孔質体とするためには、気孔形成材の各粒子が
互いに相隣接するのがよく、澱粉を用いた場合には反応
原液に対し0.5〜5重量/容量%が好ましい。気孔形成
材としては、澱粉粒の他に例えば界面活性剤,ポリエチ
レンオキサイド,ポリプロピレングリコールあるいはそ
の誘導体等の水溶性高分子が挙げられ、これらはより微
細な気孔を形成するのに好適である。
As the pore-forming material used in the present invention, it is preferable to use a powder having a relatively uniform particle size, for example, starch granules extracted from a plant such as potato starch are suitable. The type of starch used is
It may be appropriately selected depending on the desired pore diameter. In order to form a porous body having continuous pores, the particles of the pore-forming material are preferably adjacent to each other, and when starch is used, it is preferably 0.5 to 5% by weight / volume based on the reaction stock solution. Examples of the pore-forming material include starch granules and water-soluble polymers such as surfactants, polyethylene oxide, polypropylene glycol or derivatives thereof, and these are suitable for forming finer pores.

前記のレゾール樹脂,メラミン系樹脂,硬化触媒,気孔
形成材,銅又は錫の金属微粉末及びダイヤモンド砥粒等
を用いてダイヤモンド砥石を製造するには、先ず所定量
のレゾール樹脂とメラミン樹脂との水性溶媒溶液に気孔
形成材と硬化触媒とを加え攪拌混合した後、金属微粉末
を加え均一に攪拌混合する。次に、ダイヤモンド砥粒を
加えて更に攪拌し、均一に分散せしめた混合液とする。
In order to manufacture a diamond grindstone using the above-mentioned resole resin, melamine-based resin, curing catalyst, pore-forming material, copper or tin metal fine powder, diamond abrasive grains, etc., first, a predetermined amount of resole resin and melamine resin is mixed. After adding the pore-forming material and the curing catalyst to the aqueous solvent solution and stirring and mixing, the fine metal powder is added and uniformly mixed and stirred. Next, diamond abrasive grains are added and further stirred to obtain a mixed solution in which the particles are uniformly dispersed.

上記混合液において、金属微粉末は比重が高く、特に粒
径の大きいものを用いた場合には、金属微粉末が沈降し
易いので、これを防止するために本発明の方法において
は増粘効果を有する物質(増粘剤)を加える。かかる増
粘剤としては、比較的嵩密度の高い微粒子があり、本発
明の方法においては、特に砥石としての特性に影響を与
えることのない軟質の物質が好ましく、例えばブチルセ
ロソルブ粉末,パルプ粉末,微細ガラス粉末,シリカ粉
末あるいは微細繊維粉末等が挙げられる。その添加量
は、上記混合液の分散状態が安定したものとなるように
適宜設定すればよく、混合液の粘度を500〜5000cps、好
ましくは700〜3000cpsに調製するような量である。
In the above mixed solution, the metal fine powder has a high specific gravity, and particularly when a metal fine powder having a large particle size is used, the metal fine powder easily precipitates. Add a substance with (thickener). As such a thickener, there are fine particles having a relatively high bulk density, and in the method of the present invention, a soft substance that does not particularly affect the characteristics as a grindstone is preferable, and examples thereof include butyl cellosolve powder, pulp powder, and fine powder. Examples thereof include glass powder, silica powder, and fine fiber powder. The amount of addition may be appropriately set so that the dispersed state of the mixed solution is stable, and is such an amount that the viscosity of the mixed solution is adjusted to 500 to 5000 cps, preferably 700 to 3000 cps.

次に、上述のようにして得られた反応原液を型枠に注型
し、例えば40〜80℃に加熱して反応させ、脆い固化物で
ある中間体を得る。得られた中間体を型枠より取り出し
脱落した後、通風乾燥機により例えば80℃程度でゆっく
りと乾燥し、引き続き好ましくは100〜200℃で、更に好
ましくは120〜170℃で加熱処理(キュアリング)するこ
とにより、多孔質構造の硬化体となり、本発明の方法に
かかる、ダイヤモンド砥石が得られる。
Next, the reaction stock solution obtained as described above is cast into a mold and heated to, for example, 40 to 80 ° C. to cause a reaction to obtain an intermediate which is a brittle solidified product. After removing the obtained intermediate from the mold and dropping it off, it is slowly dried by, for example, a ventilation dryer at about 80 ° C., and subsequently preferably heat-treated at 100-200 ° C., more preferably 120-170 ° C. (curing). By doing so, a hardened body having a porous structure can be obtained, and a diamond grindstone according to the method of the present invention can be obtained.

上記方法において、中間体の乾燥は比較的ゆっくりと行
うのが好ましく、乾燥が早過ぎると割れやヒビが入り易
い。キュアリングの温度も低温から徐々に行うのが均質
な硬化体を得るのに好適である。キュアリングの時間
は、通常5〜50時間であるが、中間体の大きさや樹脂の
性質を考慮して適宜設定すればよい。特に、レゾール樹
脂の熱硬化反応においては、局部的な昇温による劣化や
焼けが起こることがあるので、微量の酸化防止剤を添加
したり、キュアリングを非酸化性雰囲気で行うことも有
効である。
In the above method, it is preferable that the intermediate is dried relatively slowly, and if it is dried too quickly, cracks and cracks easily occur. It is suitable to obtain a uniform cured product by gradually performing curing at a low temperature. The curing time is usually 5 to 50 hours, but it may be appropriately set in consideration of the size of the intermediate and the properties of the resin. In particular, in the thermosetting reaction of the resol resin, deterioration or burning may occur due to local temperature rise, so it is also effective to add a small amount of an antioxidant or to perform curing in a non-oxidizing atmosphere. is there.

上述の方法で得られたダイヤモンド砥石は連続気孔を有
する多孔質体であって、通常その気孔率は30〜70容量
%、好ましくは40〜70容量%で、平均気孔径は500μm
以下、好ましくは30〜200μmであり、ダイヤモンド砥
粒が金属微粉末と共に砥石全体に均質に分散している。
The diamond grindstone obtained by the above method is a porous body having continuous pores, and its porosity is usually 30 to 70% by volume, preferably 40 to 70% by volume, and the average pore diameter is 500 μm.
Hereafter, it is preferably 30 to 200 μm, and the diamond abrasive grains are uniformly dispersed throughout the grindstone together with the fine metal powder.

本発明の方法で得られたダイヤモンド砥石の連続気孔
は、研磨屑による目詰まり防止や研磨熱の蓄積による昇
温を効果的に低減するものである。気孔率が30容量%よ
り小さい場合には、上記効果が十分に発揮されず、スク
ラッチが発生し易く、研磨速度も小さくなる。一方、気
孔率が70容量%より大きい場合には、多孔質体が脆い構
造体となる。
The continuous pores of the diamond grindstone obtained by the method of the present invention prevent clogging due to polishing debris and effectively reduce temperature rise due to accumulation of polishing heat. When the porosity is less than 30% by volume, the above effects are not sufficiently exhibited, scratches are likely to occur, and the polishing rate is also reduced. On the other hand, when the porosity is larger than 70% by volume, the porous body becomes a brittle structure.

(発明の効果) 本発明の方法によれば、結合材としての樹脂が反応原液
を反応硬化させてえられるものであるため、ダイヤモン
ド砥粒を結合材中に強固に固着させることができる。ま
た、反応原液が特定の粘度に調製されているため、砥石
を構成する各材料が反応原液中に均一に分散させること
ができ、極めて均質な構造のダイヤモンド砥石を容易に
製造することができる。更に気孔形成材により連続気孔
を形成したため、気孔率の高い連続気孔構造を有するダ
イヤモンド砥石を安定且つ効率よく製造することができ
る。
(Effect of the Invention) According to the method of the present invention, since the resin as the binder is obtained by reacting and hardening the reaction stock solution, the diamond abrasive grains can be firmly fixed in the binder. Further, since the reaction stock solution is adjusted to have a specific viscosity, each material constituting the grindstone can be uniformly dispersed in the reaction stock solution, and the diamond grindstone having an extremely homogeneous structure can be easily manufactured. Further, since the continuous pores are formed by the pore forming material, it is possible to stably and efficiently manufacture a diamond grindstone having a continuous pore structure with a high porosity.

本発明の方法で得られたダイヤモンド砥石は、気孔率の
高い微細連続気孔を有する多孔質体であるため、研削,
研磨作業において発生する研磨屑の砥石作用面への滞積
や目詰まり現象を効果的に防止すると共に、研磨作用に
伴う発熱を効率よく放散せしめる。また、水や熱に対す
る寸法安定性に優れ、高い精度での研磨ができる。
Since the diamond grindstone obtained by the method of the present invention is a porous body having fine continuous pores with high porosity,
It effectively prevents the accumulation of polishing debris on the working surface of the grindstone and the clogging phenomenon generated in the polishing work, and efficiently dissipates the heat generated by the polishing operation. Further, it is excellent in dimensional stability against water and heat and can be polished with high accuracy.

また、ダイヤモンド砥粒が金属微粉末の作用により強固
に固着されるため、ダイヤモンド砥粒が脱落し難い。更
に、金属微粉末と高い気孔率との相乗作用によりダイヤ
モンド砥石に起こり易い欠点である深いスクラッチの発
生を未然に防止することができ、仕上り面粗度は良好
で、長時間に渡り良好な研磨作用を維持することができ
る。従って、本発明の方法で得られたダイヤモンド砥石
は、セラミックスやシリコンウェーハ等の硬脆材料の研
磨用途に好適に用い得るものである。
Moreover, since the diamond abrasive grains are firmly fixed by the action of the fine metal powder, the diamond abrasive grains are unlikely to fall off. Furthermore, the synergistic effect of the fine metal powder and high porosity can prevent the occurrence of deep scratches, which is a defect that easily occurs in diamond grinding stones, and has a good finished surface roughness and good polishing for a long time. The action can be maintained. Therefore, the diamond grindstone obtained by the method of the present invention can be suitably used for polishing hard and brittle materials such as ceramics and silicon wafers.

以下、実施例により本発明を詳述する。尚、その前に本
明細書における研磨試験の方法について記述する。
Hereinafter, the present invention will be described in detail with reference to examples. Before that, the method of the polishing test in this specification will be described.

〈研磨試験の方法〉 得られたダイヤモンド砥石を円盤状に成形して、両面研
磨機5B型(スピードファム社製)の上下盤に取り付け、
水を研磨液に用い高純度アルミナ系セラミックス板を5
分間研磨した。
<Method of polishing test> The obtained diamond grindstone was formed into a disk shape and mounted on the upper and lower plates of a double-sided polishing machine type 5B (manufactured by Speedfam),
Use high-purity alumina ceramics plate with water as polishing liquid.
Polished for minutes.

研磨後、研磨面を粗さについて中心線平均粗さRa及び最
大粗さRmaxの測定をした。
After polishing, the polished surface was measured for centerline average roughness Ra and maximum roughness Rmax.

(実施例1) レゾール樹脂PR961A(66%水溶液、住友デュレズ製)を
360mlと、メラミン系樹脂スミテックスレジンM−3(7
0%水溶液、住友化学工業製)を180ml混合した後、触媒
として塩化第2鉄4gを水20mlに溶解した液と、硝酸亜鉛
2gを水10mlに溶解した液とを加え、更に馬鈴薯澱粉100g
を200mlの水に分散した液を投入し均一に拡散して混合
液を得た。該混合液に金属微粉末として平均粒径80μm
の銅の微粉末1000gを加え攪拌混合した後、平均粒径54
μmのダイヤモンド砥粒を63g投入し更に攪拌した。続
いて、増粘剤としてアエロジル微粉末(シリカと酸化ア
ルミニウムの混合物、日本アエロジル社製)30gを添加
し、十分に攪拌混合して粘稠スラリー状の反応原液を得
た。この反応原液の20℃での粘度は約1000cpsであっ
た。
(Example 1) Resol resin PR961A (66% aqueous solution, manufactured by Sumitomo Dures)
360 ml and melamine resin Sumitex resin M-3 (7
180 ml of 0% aqueous solution, manufactured by Sumitomo Chemical Co., Ltd., and then a solution of 4 g of ferric chloride dissolved in 20 ml of water as a catalyst and zinc nitrate.
Add 2g of water dissolved in 10ml of water, and add 100g of potato starch.
Was added to 200 ml of water and uniformly dispersed to obtain a mixed solution. Fine metal powder in the mixture has an average particle size of 80 μm.
After adding 1000 g of fine copper powder and stirring and mixing, the average particle size was 54
63 g of diamond abrasive grains having a diameter of μm was added and further stirred. Subsequently, 30 g of Aerosil fine powder (a mixture of silica and aluminum oxide, manufactured by Nippon Aerosil Co., Ltd.) was added as a thickener and sufficiently mixed with stirring to obtain a reaction stock solution in the form of a viscous slurry. The viscosity of this reaction stock solution at 20 ° C. was about 1000 cps.

次に、得られた反応原液を硬質塩化ビニル製の円筒状型
枠に注型し、該型枠を60℃の温水浴中に24時間静置して
内容物を固化せしめ中間体を得た。この中間体は若干柔
軟性を有する固形物であった。該中間体を型枠より取り
出し通風乾燥機により80℃で10日間乾燥し、引き続きこ
れを熱処理炉に入れ室温からゆっくり140℃まで昇温
し、この温度で更に10時間熱処理を行い、硬化せしめで
ダイヤモンド砥石とした。
Next, the obtained reaction stock solution was cast into a rigid vinyl chloride cylindrical mold, and the mold was allowed to stand in a warm water bath at 60 ° C. for 24 hours to solidify the contents to obtain an intermediate. . This intermediate was a solid with some flexibility. The intermediate is taken out of the mold and dried at 80 ° C. for 10 days by a ventilation drier, subsequently placed in a heat treatment furnace and slowly heated from room temperature to 140 ° C., and further heat-treated at this temperature for 10 hours to be cured. It was a diamond grindstone.

得られたダイヤモンド砥石は、気孔率44容量%、平均気
孔径約80μmの連続気孔を有する多孔質構造体で、ダイ
ヤモンド砥粒の占める割合は第1表に示す通りであっ
た。また、ダイヤモンド砥粒および銅の微粉末は砥石全
体に均質に分散し、且つ結合材樹脂に強固に固着してい
た。砥石としての硬度はロックウェルHR−Rスケール
(1/2″鋼球、60kg圧で測定)で45の値であった。ま
た、熱膨張係数は3.5×10-5/℃で、水での膨潤率は0.1
%以下を示し、寸法安定性に優れたものであった。得ら
れたダイヤモンド砥石の研磨試験の結果は、第2表に示
す通りであった。
The obtained diamond grindstone was a porous structure having continuous pores having a porosity of 44% by volume and an average pore diameter of about 80 μm, and the proportion of diamond abrasive grains was as shown in Table 1. Further, the diamond abrasive grains and the fine copper powder were uniformly dispersed throughout the grindstone and firmly fixed to the binder resin. The hardness as a grindstone was 45 on the Rockwell HR-R scale (1/2 ″ steel ball, measured at 60 kg pressure). Also, the coefficient of thermal expansion was 3.5 × 10 −5 / ° C. Swelling rate is 0.1
%, Which was excellent in dimensional stability. The results of the polishing test of the obtained diamond whetstone are as shown in Table 2.

(実施例2) 金属微粉末として平均粒径80μmの錫の微粉末を1000g
用い、ダイヤモンド砥粒として平均粒径2〜3μmのも
のを63g用いた他は実施例1と同様の方法でダイヤモン
ド砥石を製造した。
(Example 2) 1000 g of tin fine powder having an average particle size of 80 μm was used as the metal fine powder.
A diamond grindstone was manufactured in the same manner as in Example 1 except that 63 g of diamond abrasive having an average particle diameter of 2 to 3 μm was used.

得られたダイヤモンド砥石は、気孔率が約41容量%で、
平均気孔径が約80μmの連続気孔を有する多孔質構造体
で、ダイヤモンド砥粒の占める割合は第1表に示す通り
であった、また、ダイヤモンド砥粒及び錫の微粉末は砥
石全体に均質に分散し、且つ結合材樹脂に強固に固着し
ていた。砥石としてのロックウェル硬度は約48であり、
また熱膨張係数は4.3×10-5/℃で、水での膨潤率は0.1
%以下を示し、寸法安定性に優れ、研磨試験の結果は第
2表に示す通りであった。
The obtained diamond grindstone has a porosity of about 41% by volume,
The proportion of diamond abrasive grains in the porous structure having continuous pores with an average pore diameter of about 80 μm was as shown in Table 1. Further, the diamond abrasive grains and the fine tin powder were evenly distributed throughout the grindstone. It was dispersed and firmly fixed to the binder resin. Rockwell hardness as a grindstone is about 48,
The coefficient of thermal expansion is 4.3 × 10 -5 / ° C, and the swelling ratio in water is 0.1.
%, The dimensional stability was excellent, and the results of the polishing test were as shown in Table 2.

(実施例3) 金属微粉末として平均粒径80μmの錫の微粉末を1000g
用い、ダイヤモンド砥粒として平均粒径2〜3μmのも
のを125g用いた他は実施例1と同様の方法でダイヤモン
ド砥石を製造した。
(Example 3) 1000 g of fine tin powder having an average particle size of 80 μm as fine metal powder
A diamond grindstone was produced in the same manner as in Example 1 except that 125 g of diamond abrasive having an average particle diameter of 2 to 3 μm was used.

得られたダイヤモンド砥石は、気孔率が約41容量%で、
平均気孔径が約80μmの連続気孔を有する多孔質構造体
で、ダイヤモンド砥粒の占める割合は第1表に示す通り
であった。また、ダイヤモンド砥粒及び錫の微粉末は砥
石全体に均質に分散し、且つ結合材樹脂に強固に固着し
ていた。砥石としてのロックウェル硬度は約48であり、
また熱膨張係数は4.3×10-5/℃で、水での膨潤率は0.1
%以下を示し、寸法安定性に優れ、研磨試験の結果は第
2表に示す通りであった。
The obtained diamond grindstone has a porosity of about 41% by volume,
The proportion of diamond abrasive grains in the porous structure having continuous pores with an average pore diameter of about 80 μm was as shown in Table 1. Further, the diamond abrasive grains and the fine powder of tin were uniformly dispersed in the whole grindstone and firmly fixed to the binder resin. Rockwell hardness as a grindstone is about 48,
The coefficient of thermal expansion is 4.3 × 10 -5 / ° C, and the swelling ratio in water is 0.1.
%, The dimensional stability was excellent, and the results of the polishing test were as shown in Table 2.

(比較例) 実施例1において、金属微粉末を用いない他は実施例1
と同様の方法でダイヤモンド砥石を製造した。この方法
では、ダイヤモンド砥粒の分散が悪く、混合攪拌する工
程において、砥粒の凝集による団塊状のものが見られ
た。また、砥粒の一部は反応原液の表面に浮く現象が認
められた。
(Comparative Example) Example 1 is the same as Example 1 except that fine metal powder is not used.
A diamond grindstone was manufactured in the same manner as in. In this method, the diamond abrasive grains were poorly dispersed, and nodules were observed due to the agglomeration of the abrasive grains in the step of mixing and stirring. Further, a phenomenon was observed in which some of the abrasive grains float on the surface of the reaction stock solution.

得られたダイヤモンド砥石は、砥粒の団塊が認められる
と共に、砥石の上層と下層とでは砥粒の分散状態に微妙
な差が認められた。また、砥粒と結合材樹脂との固着性
が悪く、研磨試験を行ったところ、砥石の磨耗が激しく
研磨用砥石として実用出来ないものであった。
In the obtained diamond grindstone, an agglomerate of abrasive grains was observed, and a slight difference in the dispersed state of the abrasive grains was observed between the upper layer and the lower layer of the stone. Further, the adhesion between the abrasive grains and the binder resin was poor, and when a polishing test was performed, the grindstone was heavily worn and could not be put to practical use as a grindstone for polishing.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】レゾール型フェノール系樹脂,メラミン系
樹脂,メラミン系樹脂の硬化触媒,気孔形成材及び銅又
は錫の金属微粉末を混合した分散液中に、ダイヤモンド
砥粒を加えて均一に混合して反応原液となし、これを加
熱硬化して得られた中間体を乾燥した後、更に加熱硬化
せしめて合成砥石を製造する方法であって、前記反応原
液に該反応原液の粘度を500〜5000cpsに調製するように
増粘剤を添加したことを特徴とするダイヤモンド砥石の
製造方法。
1. Diamond abrasive grains are added to a dispersion obtained by mixing a resol-type phenolic resin, a melamine-based resin, a curing catalyst for a melamine-based resin, a pore-forming material and a fine metal powder of copper or tin, and uniformly mixed. And a reaction stock solution, after drying the intermediate obtained by heat curing it, a method for producing a synthetic whetstone by further heat curing, the reaction stock solution viscosity of the reaction stock solution 500 ~ A method for producing a diamond whetstone, wherein a thickening agent is added so as to adjust to 5000 cps.
【請求項2】レゾール型フェノール系樹脂,メラミン系
樹脂,メラミン系樹脂の硬化触媒,気孔形成材及び銅又
は錫の金属微粉末を混合した分散液中に、ダイヤモンド
砥粒を加えて均一に混合して反応原液となし、これを加
熱硬化して得られた中間体を乾燥した後、更に加熱硬化
せしめて合成砥石を製造する方法であって、前記メラミ
ン系樹脂の硬化触媒として塩類を用い、前記反応原液に
該反応原液の粘度を500〜5000cpsに調製するように増粘
剤を添加したことを特徴とするダイヤモンド砥石の製造
方法。
2. A diamond abrasive grain is added to a dispersion obtained by mixing a resol-type phenolic resin, a melamine-based resin, a curing catalyst for a melamine-based resin, a pore-forming material, and copper or tin metal fine powder, and uniformly mixed. And then the reaction stock solution, after drying the intermediate obtained by heating and curing this, a method for producing a synthetic whetstone by further heating and curing, using a salt as a curing catalyst of the melamine resin, A method for producing a diamond grindstone, wherein a thickener is added to the reaction stock solution so as to adjust the viscosity of the reaction stock solution to 500 to 5000 cps.
JP1192392A 1989-07-25 1989-07-25 Diamond grindstone manufacturing method Expired - Lifetime JPH07115301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192392A JPH07115301B2 (en) 1989-07-25 1989-07-25 Diamond grindstone manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192392A JPH07115301B2 (en) 1989-07-25 1989-07-25 Diamond grindstone manufacturing method

Publications (2)

Publication Number Publication Date
JPH0360978A JPH0360978A (en) 1991-03-15
JPH07115301B2 true JPH07115301B2 (en) 1995-12-13

Family

ID=16290541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192392A Expired - Lifetime JPH07115301B2 (en) 1989-07-25 1989-07-25 Diamond grindstone manufacturing method

Country Status (1)

Country Link
JP (1) JPH07115301B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009039386A1 (en) * 2007-09-21 2009-03-26 Saint-Gobain Abrasives, Inc. Melamine methylol for abrasive products

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54550A (en) * 1977-06-03 1979-01-05 Hitachi Denshi Ltd Boltage comparison circuit
JPS62246474A (en) * 1986-04-16 1987-10-27 Goei Seisakusho:Kk Manufacture of super abrasive grain grindstone for mirror-like surface finishing
JPS62251078A (en) * 1986-04-21 1987-10-31 Kanebo Ltd Grinding material

Also Published As

Publication number Publication date
JPH0360978A (en) 1991-03-15

Similar Documents

Publication Publication Date Title
JP4965071B2 (en) Abrasive tools for grinding electronic components
TWI227183B (en) Porous abrasive tool and method for making the same
JP4854269B2 (en) Resinoid grinding wheel manufacturing method
EP1393859B1 (en) Microabrasive tool with a vitreous binder
JPS61192480A (en) Synthetic grinding stone for soft metal
JP3779329B2 (en) Vitreous grinding tool containing metal coated abrasive
JP2000343438A (en) Vitrified grinding wheel
JP2694705B2 (en) Synthetic grindstone for high-purity aluminum substrate polishing
JP7264663B2 (en) Whetstone and method for manufacturing whetstone
JP2002355763A (en) Synthetic grinding wheel
JPH07115301B2 (en) Diamond grindstone manufacturing method
JPH0671708B2 (en) Semiconductor wafer-Whetstone for polishing
JP2687241B2 (en) Diamond grindstone manufacturing method
JPH0360970A (en) Polishing surface plate
JP2593829B2 (en) Synthetic whetstone
JPH09254041A (en) Synthetic grinding wheel and manufacture thereof
JP2696776B2 (en) Synthetic whetstone and method of manufacturing the same
JP2004261942A (en) Polishing grinding wheel
JPH0583343B2 (en)
JP2555000B2 (en) Polishing method for hard and brittle materials
JPS62246474A (en) Manufacture of super abrasive grain grindstone for mirror-like surface finishing
JP2520474B2 (en) Porous grindstone for magnetic disk substrate
JPH09248768A (en) Super abrasive particle metal bond grinding wheel excellent in grinding accuracy and manufacture thereof
JPH02185374A (en) Synthetic grindstone
JP2684607B2 (en) Synthetic whetstone