JPH07115129B2 - Continuous casting method for composite steel with excellent internal quality - Google Patents
Continuous casting method for composite steel with excellent internal qualityInfo
- Publication number
- JPH07115129B2 JPH07115129B2 JP10659691A JP10659691A JPH07115129B2 JP H07115129 B2 JPH07115129 B2 JP H07115129B2 JP 10659691 A JP10659691 A JP 10659691A JP 10659691 A JP10659691 A JP 10659691A JP H07115129 B2 JPH07115129 B2 JP H07115129B2
- Authority
- JP
- Japan
- Prior art keywords
- continuous casting
- interface
- casting method
- composite steel
- steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Continuous Casting (AREA)
- Laminated Bodies (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、連続鋳造で直接複合鋼
材を製造し、それを圧延して複層鋼板とする際に、連続
鋳造段階での内部欠陥の発生を防止する方法に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for directly producing a composite steel material by continuous casting and rolling the composite steel material into a multi-layer steel sheet, which prevents the occurrence of internal defects in the continuous casting step. is there.
【0002】[0002]
【従来の技術】すでに、連鋳鋳型内に鋳片の厚みを横切
る方向の直流磁束を全幅に亙って付与し、該直流磁束に
よって鋳型上下方向に形成される静磁場帯を境界として
その上下に組成の異なる溶融金属を供給する複合金属材
の連続鋳造方法が特開昭63―108947号公報に開示されて
いる。2. Description of the Related Art Already, a direct current magnetic flux in the direction transverse to the thickness of a slab is applied to a continuous casting mold over its entire width, and the static magnetic field band formed by the direct current magnetic flux in the vertical direction of the mold is used as a boundary above and below that. Japanese Patent Application Laid-Open No. 63-108947 discloses a method for continuously casting a composite metal material in which molten metals having different compositions are supplied.
【0003】このように鋳型内に異なる組成の溶融金属
を供給する方法において、注湯量制御バランスの乱れ等
が生じた場合、静磁場帯内で両溶融金属が混合した領域
が形成され、鋳片凝固組織において内外層界面近傍に異
層を形成する(これを以下遷移層と呼ぶ)。In the method of supplying molten metal having different compositions into the mold as described above, when the pouring amount control balance is disturbed or the like, a region where both molten metals are mixed is formed in the static magnetic field band, and a cast piece is produced. A different layer is formed in the solidified structure near the interface between the inner and outer layers (hereinafter referred to as the transition layer).
【0004】ステンレス普通鋼クラッドを鋳造する場
合、鋳造条件によっては遷移層に多数の割れが発生して
圧延特性を著しく悪化させ、場合によっては圧延中に界
面から裂断するなどの問題が生じる。[0004] When casting a stainless ordinary steel clad, depending on the casting conditions, a large number of cracks are generated in the transition layer, which significantly deteriorates rolling characteristics, and in some cases, problems such as tearing from the interface during rolling occur.
【0005】[0005]
【発明が解決しようとする課題】本発明は、上に述べた
ような従来技術の問題点を解決し、内部品質に優れた複
合鋼材を製造する方法を提示することを目的としてなさ
れた。SUMMARY OF THE INVENTION The present invention has been made for the purpose of solving the problems of the prior art as described above and providing a method for producing a composite steel material having excellent internal quality.
【0006】[0006]
【課題を解決するための手段】本発明は、前記目的を達
成するために、特開昭63―108947号公報に開示された複
合金属材の連続鋳造方法において、鋳型内でステンレス
鋼と普通鋼からなる複合鋼材を製造する際に、内外層界
面の冷却速度を1200℃から 500℃までの範囲で10℃/分
以下とすることを特徴とする、内外層界面近傍での割れ
の無い、内部品質に優れた複合鋼材の連続鋳造方法であ
る。In order to achieve the above-mentioned object, the present invention provides a method for continuously casting a composite metal material disclosed in Japanese Patent Laid-Open No. 63-108947, wherein stainless steel and ordinary steel are placed in a mold. When manufacturing a composite steel material consisting of, the cooling rate of the interface between the inner and outer layers is set to 10 ° C / min or less in the range of 1200 ° C to 500 ° C, and there is no crack near the interface of the inner and outer layers. It is a continuous casting method for high-quality composite steel.
【0007】また、上記方法において普通鋼中の水素濃
度を5ppm 以下とするか、もしくは内外層界面の冷却速
度を 500℃以下で10℃/分以上とすることで遷移層の割
れの発生をさらに抑えることも可能である。Further, in the above method, the hydrogen concentration in the ordinary steel is set to 5 ppm or less, or the cooling rate of the interface between the inner and outer layers is set to 10 ° C./min or more at 500 ° C. or less to further prevent cracking in the transition layer. It is possible to suppress it.
【0008】[0008]
【作用】以下に、本発明を作用とともに詳細に説明す
る。The operation of the present invention will be described in detail below.
【0009】本発明者らは従来の技術における前記問題
点を解決すべく詳細な研究を重ねた結果、遷移層での割
れ発生原因が次の2点によるものであることを明らかに
した。すなわち、 1) 冷却中にステンレス鋼と普通鋼の熱収縮量の差に伴
って発生する応力が遷移層に集中する。The present inventors have made detailed studies to solve the above-mentioned problems in the prior art, and as a result, have clarified that the cause of cracking in the transition layer is due to the following two points. That is, 1) During cooling, the stress generated due to the difference in heat shrinkage between stainless steel and ordinary steel concentrates in the transition layer.
【0010】2) 冷却中に内層側から外層側への水素の
拡散が起こり、特に表層にオーステナイト系ステンレス
鋼を用いた場合に水素の拡散速度の差によって水素が界
面に集積し、遷移層を脆化させる。2) During cooling, diffusion of hydrogen from the inner layer side to the outer layer side occurs, and particularly when austenitic stainless steel is used for the surface layer, hydrogen accumulates at the interface due to the difference in hydrogen diffusion rate and the transition layer is formed. Embrittle.
【0011】応力集中については、線膨張係数の差で評
価できる。すなわち、炭素鋼が8.8〜14.4×10-6/℃で
あるのに対して、代表的なステンレス鋼である18Cr8Ni
鋼では16.4×10-6/℃となっており (鉄鋼便覧第3版;
日本鉄鋼協会編、丸善、p.302)、表層にステンレス鋼を
用いる場合、その熱収縮量が内層の炭素鋼のそれに比べ
て大きいため界面には圧縮応力が働く。The stress concentration can be evaluated by the difference in linear expansion coefficient. That is, while carbon steel has 8.8 to 14.4 × 10 -6 / ° C, 18Cr8Ni which is a typical stainless steel.
For steel, it is 16.4 × 10 -6 / ° C (Steel Manual, 3rd edition;
When using stainless steel for the surface layer, the amount of heat shrinkage is larger than that of the carbon steel in the inner layer, and compressive stress acts on the interface.
【0012】さらに、遷移層は表層と内層の成分が混合
しているため、冷却中にマルテンサイト変態することを
凝固組織写真の解析より明らかにした。従って、冷却中
に遷移層に応力が集中し、そこがマルテンサイト組織の
ように脆い場合割れが生成しやすい。Further, it was clarified from the analysis of the solidification structure photograph that the transition layer is a martensite transformation during cooling because the components of the surface layer and the inner layer are mixed. Therefore, stress concentrates on the transition layer during cooling, and if it is brittle like a martensite structure, cracking is likely to occur.
【0013】以上の知見をもとに、凝固後の冷却速度を
下げることで急激な応力の集中が防止でき、割れが減少
すること、その条件は10℃/分以下の冷却速度で冷却す
ることを確認した。On the basis of the above findings, a rapid concentration of stress can be prevented by reducing the cooling rate after solidification and cracking can be reduced. The condition is to cool at a cooling rate of 10 ° C./min or less. It was confirmed.
【0014】水素の界面への集積に関しては、以下の機
構で発生することを明らかにした。水素溶解度はγ鉄中
に比べてα鉄中の方が小さいことが知られている。Regarding the accumulation of hydrogen at the interface, it has been clarified that it occurs by the following mechanism. It is known that the solubility of hydrogen in α iron is smaller than that in γ iron.
【0015】従って、内層がα鉄、表層がγ鉄の場合、
固相内で水素が内層から外層に向かって拡散する。Therefore, when the inner layer is α iron and the surface layer is γ iron,
Hydrogen diffuses from the inner layer to the outer layer in the solid phase.
【0016】また、神戸製鋼技報、Vol.32、No.3、p61
に示されているように、γ鉄中の水素の拡散速度はα鉄
中に比べて、数オーダー小さいためγ/α界面に水素が
集積し、界面を脆化させる。この現象は例えば表層にオ
ーステナイト系ステンレス鋼、内層に炭素鋼を用いた場
合に顕著に起こる。Also, Kobe Steel Technical Report, Vol.32, No.3, p61
As shown in (1), the diffusion rate of hydrogen in γ-iron is several orders of magnitude lower than that in α-iron, so that hydrogen accumulates at the γ / α interface, and the interface becomes brittle. This phenomenon remarkably occurs, for example, when austenitic stainless steel is used for the surface layer and carbon steel is used for the inner layer.
【0017】水素が界面に集積する結果、界面は脆化し
冷却時の応力集中によって割れが容易に発生する。従っ
て、割れを防止する方法としては、水素の界面への集積
を防止することが重要で、内層の炭素鋼溶鋼の初期水素
濃度を精錬段階で下げておくことが効果的である。その
限界成分値は集積度を考慮して5ppm である。As a result of the accumulation of hydrogen at the interface, the interface becomes brittle and cracks easily occur due to stress concentration during cooling. Therefore, as a method of preventing cracking, it is important to prevent the accumulation of hydrogen at the interface, and it is effective to lower the initial hydrogen concentration of the molten carbon steel in the inner layer at the refining stage. The limit component value is 5ppm considering the degree of integration.
【0018】また、内層が炭素鋼の場合、Ac3変態温度
でα相からγ相に変態するため水素の拡散速度の差は大
きくなり、水素集積が顕著になる。従って、Ac3変態温
度以下での冷却速度を大きくすることで水素の拡散を阻
害し、水素の集積量を減らすことができる。Further, when the inner layer is carbon steel, since the α phase is transformed to the γ phase at the A c3 transformation temperature, the difference in the diffusion rate of hydrogen becomes large and the hydrogen accumulation becomes remarkable. Therefore, by increasing the cooling rate below the A c3 transformation temperature, the diffusion of hydrogen can be hindered and the amount of hydrogen accumulated can be reduced.
【0019】前述した収縮による応力集中を考慮して、
Ac3変態温度以下の領域である 500℃以下で冷却速度を
10℃/分以上とすれば水素集積防止の効果は増大し、割
れを減少させることができる。Considering the above-mentioned stress concentration due to shrinkage,
Cooling rate below 500 ° C, which is below the A c3 transformation temperature
If it is 10 ° C./minute or more, the effect of preventing hydrogen accumulation is increased and cracking can be reduced.
【0020】[0020]
【0021】[0021]
【実施例1】表1に示す組成の溶鋼を用いてステンレス
クラッド鋼を前述の特開昭63―108947号公報による連続
鋳造方法にて鋳造した。鋳片は厚み250 mm×幅1200mmで
ある。Example 1 A stainless clad steel was cast by using a molten steel having the composition shown in Table 1 by the continuous casting method according to the above-mentioned JP-A-63-108947. The slab is 250 mm thick and 1200 mm wide.
【0022】二次冷却スプレー水量を変え、鋳片の冷却
速度を変化させた。鋳片の表面温度を放射温度計で測定
し、伝熱計算をもとに界面の冷却速度を求めた。The cooling rate of the slab was changed by changing the secondary cooling spray water amount. The surface temperature of the slab was measured with a radiation thermometer, and the cooling rate of the interface was obtained based on heat transfer calculation.
【0023】得られた鋳片の鋳造方向の垂直断面を観察
し、界面における長さ1mm以上の割れ個数を測定した。
図1はそのときの界面での冷却速度と単位面積あたりの
割れ個数の関係を示した図である。The vertical cross section of the obtained cast piece in the casting direction was observed, and the number of cracks having a length of 1 mm or more at the interface was measured.
FIG. 1 is a diagram showing the relationship between the cooling rate at the interface and the number of cracks per unit area at that time.
【0024】この結果から、本発明の条件である1200℃
から 500℃までの冷却速度を10℃/分以下とすることで
界面での割れ個数を問題ないレベルにまで抑えることが
できた。From these results, the condition of the present invention is 1200 ° C.
By setting the cooling rate from 10 to 500 ° C to 10 ° C / min or less, the number of cracks at the interface could be suppressed to a level without problems.
【0025】[0025]
【実施例2】表2に示す組成の溶鋼を用いて6種類のス
テンレスクラッド鋼を前述の特開昭63―108947号公報に
よる連続鋳造方法にて鋳造した。鋳片は厚み250 mm×幅
1200mmである。Example 2 Six kinds of stainless clad steels were cast by using the molten steel having the composition shown in Table 2 by the continuous casting method according to the above-mentioned JP-A-63-108947. The slab has a thickness of 250 mm × width
It is 1200 mm.
【0026】得られた鋳片の鋳造方向の垂直断面を観察
し、界面における長さ1mm以上の割れ個数を測定した。
一方、鋳片の表面温度を放射温度計で測定し、伝熱計算
をもとに界面の冷却速度を求めた。500 ℃になった時点
で二次冷却スプレー水量を調整し、冷却速度を変化させ
た。The vertical cross section of the obtained cast piece in the casting direction was observed, and the number of cracks having a length of 1 mm or more at the interface was measured.
On the other hand, the surface temperature of the slab was measured with a radiation thermometer, and the cooling rate of the interface was obtained based on heat transfer calculation. When the temperature reached 500 ° C, the amount of secondary cooling spray water was adjusted to change the cooling rate.
【0027】なお、いずれの鋼材も1200℃から 500℃ま
での冷却速度は10℃/分以下である。鋼材Aおよび鋼材
Bは脱ガス処理を行ない、内層の炭素鋼溶鋼の水素濃度
を5ppm 以下にした。The cooling rate from 1200 ° C. to 500 ° C. is 10 ° C./min or less for all the steel materials. The steel materials A and B were subjected to degassing treatment so that the hydrogen concentration of the molten carbon steel in the inner layer was 5 ppm or less.
【0028】鋼材Bから鋼材Dは二次冷却スプレー水量
を調整し、 500℃以下の冷却速度を10℃/分以上とし
た。For steel materials B to D, the amount of secondary cooling spray water was adjusted so that the cooling rate at 500 ° C. or lower was 10 ° C./minute or more.
【0029】表2からわかるように本発明材である鋼材
Aから鋼材Dは界面での割れ個数は問題のないレベルで
あるのに対し、比較材である鋼材E、Fは多数の割れが
発生した。As can be seen from Table 2, the number of cracks at the interface of steel materials A to D, which are materials of the present invention, is at a level without any problem, whereas the steel materials E and F, which are comparative materials, have many cracks. did.
【0030】[0030]
【表1】 [Table 1]
【0031】[0031]
【表2】 [Table 2]
【0032】 [0032]
【0033】[0033]
【発明の効果】以上の実施例からも明らかなごとく本発
明によれば表層と内層の界面に割れのない複合鋼材を得
ることが可能になる。As is apparent from the above examples, according to the present invention, it is possible to obtain a composite steel material having no cracks at the interface between the surface layer and the inner layer.
【図1】1200℃から 500℃までの内外層界面の冷却速度
と割れ個数の関係を示した図である。FIG. 1 is a diagram showing the relationship between the cooling rate and the number of cracks at the interface between the inner and outer layers from 1200 ° C. to 500 ° C.
Claims (3)
直流磁束を全幅に亙って付与し、該直流磁束によって鋳
型上下方向に形成される静磁場帯を境界としてその上下
に組成の異なる溶鋼を供給する複合鋼材の連続鋳造方法
において、ステンレス鋼と普通鋼からなる複合鋼材を製
造する際に、内外層界面の冷却速度を1200℃から 500℃
までの範囲で10℃/分以下とすることを特徴とする、内
部品質に優れた複合鋼材の連続鋳造方法。1. A continuous flow casting mold is provided with a DC magnetic flux in a direction transverse to the thickness of a slab over its entire width, and a composition is formed above and below a static magnetic field band formed by the DC magnetic flux in the vertical direction of the mold. In the continuous casting method of composite steel materials that supply different molten steels, the cooling rate at the interface between the inner and outer layers is 1200 ℃ to 500 ℃ when manufacturing the composite steel material consisting of stainless steel and ordinary steel.
The continuous casting method of the composite steel material with excellent internal quality, which is characterized in that the temperature is up to 10 ° C / min.
る、請求項1記載の内部品質に優れた複合鋼材の連続鋳
造方法。2. The continuous casting method for a composite steel material having excellent internal quality according to claim 1, wherein the hydrogen concentration in the ordinary steel is 5 ppm or less.
℃/分以上とする、請求項1記載の内部品質に優れた複
合鋼材の連続鋳造方法。3. The cooling rate at the interface between the inner and outer layers is 10 at 500 ° C. or less.
The continuous casting method for a composite steel material having excellent internal quality according to claim 1, wherein the temperature is not less than ° C / min.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10659691A JPH07115129B2 (en) | 1991-04-12 | 1991-04-12 | Continuous casting method for composite steel with excellent internal quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10659691A JPH07115129B2 (en) | 1991-04-12 | 1991-04-12 | Continuous casting method for composite steel with excellent internal quality |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04313449A JPH04313449A (en) | 1992-11-05 |
JPH07115129B2 true JPH07115129B2 (en) | 1995-12-13 |
Family
ID=14437546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10659691A Expired - Lifetime JPH07115129B2 (en) | 1991-04-12 | 1991-04-12 | Continuous casting method for composite steel with excellent internal quality |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07115129B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06235050A (en) * | 1993-02-10 | 1994-08-23 | Nippon Steel Corp | Stainless clad steel high in joining strength |
KR102525415B1 (en) * | 2018-10-01 | 2023-04-25 | 닛테츠 스테인레스 가부시키가이샤 | Manufacturing method of austenitic stainless clad steel sheet, base steel sheet and clad steel sheet |
-
1991
- 1991-04-12 JP JP10659691A patent/JPH07115129B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04313449A (en) | 1992-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0320820B1 (en) | Process for preparation of austenitic stainless steel having excellent seawater resistance | |
EP0306578B2 (en) | Ferritic stainless steel and process for producing | |
KR20120016369A (en) | A method of manufacturing duplex stainless steel by twin roll strip caster | |
JP2018503741A (en) | Lean duplex stainless steel and manufacturing method thereof | |
JP4582916B2 (en) | Method for twin-roll continuous casting of ferritic stainless steel without microcracks | |
JPH07115129B2 (en) | Continuous casting method for composite steel with excellent internal quality | |
JP2903927B2 (en) | Continuous casting method | |
KR100963021B1 (en) | Method for manufacturing continuous casting of martensite stainless steel having with excellent surface quality | |
KR101376328B1 (en) | Roll for use in continuous casting | |
JP2838468B2 (en) | Method for producing Cr-Ni stainless steel alloy for preventing cracking in hot rolling | |
JP2838467B2 (en) | Method for producing Cr-Ni stainless steel alloy free from surface flaws | |
JPH1058093A (en) | Method for continuously casting steel | |
KR100897143B1 (en) | Method of manufacturing high Ni alloy steel with good surface quality | |
JPH07268455A (en) | Production of cr-ni stainless alloy free from microracking in hot rolling | |
KR100450612B1 (en) | A continuous casting method of austenitic stainless steel containing high si content | |
JP3283746B2 (en) | Continuous casting mold | |
KR100544430B1 (en) | A method for manufacturing continuous casting slab of high nickel containing alloy | |
JPH09184013A (en) | Production of hot rolled molybdenum-containing austenitic stainless steel plate excellent in nitric acid corrosion resistance | |
JPS61193757A (en) | Production of continuously cast slab having good surface characteristic | |
KR20020040435A (en) | continuous casting method of stainless steel for decresing surface defect | |
KR102031424B1 (en) | Austenitic stainless having excellent surface quality and mathod for manufacturing thereof | |
JP3388933B2 (en) | Continuous casting method of titanium-added ultra low carbon steel | |
WO2024209834A1 (en) | Nickel-containing steel slab and method for producing nickel-containing steel slab | |
JPH0760408A (en) | Production of steel plate for thin sheet | |
KR101758476B1 (en) | Mathod for manufacturing high copper stainless steel with twin roll strip casting apparatus and high copper stainless steel manufactured thereby |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19960604 |