JPH0711509B2 - Turbine component deterioration detection device - Google Patents

Turbine component deterioration detection device

Info

Publication number
JPH0711509B2
JPH0711509B2 JP59259096A JP25909684A JPH0711509B2 JP H0711509 B2 JPH0711509 B2 JP H0711509B2 JP 59259096 A JP59259096 A JP 59259096A JP 25909684 A JP25909684 A JP 25909684A JP H0711509 B2 JPH0711509 B2 JP H0711509B2
Authority
JP
Japan
Prior art keywords
circuit
echo
turbine component
ultrasonic probe
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59259096A
Other languages
Japanese (ja)
Other versions
JPS61137060A (en
Inventor
好道 吉田
徹 後藤
宏治 榎並
眸 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59259096A priority Critical patent/JPH0711509B2/en
Publication of JPS61137060A publication Critical patent/JPS61137060A/en
Publication of JPH0711509B2 publication Critical patent/JPH0711509B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays
    • G01N29/0618Display arrangements, e.g. colour displays synchronised with scanning, e.g. in real-time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/025Change of phase or condition
    • G01N2291/0258Structural degradation, e.g. fatigue of composites, ageing of oils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2693Rotor or turbine parts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、タービン部品の劣化検出装置に関するもので
ある。
The present invention relates to a deterioration detecting device for a turbine component.

(従来の技術) 第2図に示すような高・中圧タービン翼(18)の溝肩
(2)には、長期間の使用によりクリープ損傷が発生
し、これが起点になって翼の飛散事故が発生するので、
タービン翼(18)の溝肩(2)のクリープ損傷を検査す
る必要がある。
(Prior Art) Creep damage occurs in the groove shoulder (2) of the high / intermediate pressure turbine blade (18) as shown in Fig. 2 due to long-term use, and this causes the creep damage to cause blade scattering accident. Occurs, so
It is necessary to inspect the groove shoulder (2) of the turbine blade (18) for creep damage.

(発明が解決しようとする課題) ところが従来は、タービン翼(18)の溝肩(2)のクリ
ープ損傷を検査するときに、タービン翼(18)を抜い
て、溝肩(2)の内面を肉眼により検査する方法しかな
かった。この場合、非破壊的なチエツクが可能である
が、その反面、タービン翼(18)を抜いても、溝肩
(2)の内面を見にくい。またタービン翼(18)を抜く
のが大作業で、定規検査に長い時間を要し、実際には、
タービン翼(18)の溝肩(2)のクリープ損傷の検査が
殆ど行われていなかった。
(Problems to be solved by the invention) However, conventionally, when inspecting the creep damage of the groove shoulder (2) of the turbine blade (18), the turbine blade (18) is pulled out to clean the inner surface of the groove shoulder (2). The only way to inspect was with the naked eye. In this case, a non-destructive check is possible, but on the other hand, it is difficult to see the inner surface of the groove shoulder (2) even if the turbine blade (18) is pulled out. Also, removing the turbine blade (18) is a large task, and it takes a long time to inspect the ruler.
Little inspection was done for creep damage on the groove shoulders (2) of the turbine blades (18).

本発明は前記の問題点に鑑み提案するものであり、その
目的とする処は、タービン部品のクリープ損傷を非破壊
的に、また肉眼検査によらずに、正確に検査できるター
ビン部品の劣化検査装置を提供しようとする点にある。
The present invention is proposed in view of the above problems, and an object of the present invention is to perform a deterioration inspection of a turbine component that can be accurately inspected for non-destructive creep damage of the turbine component and not by visual inspection. The point is to provide the device.

(課題を解決するための手段) 上記の目的を達成するために、本発明は、タービン部品
に接触する超音波探触子と、同超音波探触子に接続した
信号処理回路とを有し、前記超音波探触子に、タービン
の損傷領域を直接の対象とする固定のカツプリングチエ
ツク用振動子、異方向からタービン部品の損傷領域へ入
りそこから反射して帰る異方向の超音波エコーを受ける
角度可変の振動子とを設け、前記信号処理装置に、超音
波探触子とタービン部品とのカツプリング不同に基づく
エコーレベルの変動要因を基準エコーと比較して損傷領
域エコーを補正するレベル補正回路と、電気ノイズ等の
混入を防止する平均化回路と、損傷領域エコーのレベル
調整器と、相関回路と、エコーの周波数分析回路と、こ
れらのレベル調整器と相関回路と周波数分析回路とに接
続したクリープ損傷の程度を判定する判定回路とを設け
ている。
(Means for Solving the Problems) In order to achieve the above object, the present invention has an ultrasonic probe that contacts a turbine component, and a signal processing circuit connected to the ultrasonic probe. , A fixed coupling transducer for directly targeting the damaged region of the turbine to the ultrasonic probe, ultrasonic echoes in different directions that enter the damaged region of the turbine component from different directions and return from there And a variable angle transducer for receiving the signal processing device, and the signal processing device has a level for correcting a damaged region echo by comparing a variation factor of an echo level based on a coupling disparity between an ultrasonic probe and a turbine component with a reference echo. A correction circuit, an averaging circuit that prevents the entry of electrical noise, a level controller for damaged area echoes, a correlation circuit, an echo frequency analysis circuit, and these level adjusters, correlation circuits, and frequency components. A determination circuit for determining the degree of creep damage connected to the analysis circuit is provided.

(作用) 本発明のタービン部品の劣化検出装置は前記のように構
成されており、タービンの損傷領域から帰る損傷領域エ
コーを超音波探触子に設けた固定のカツプリングチエツ
ク用振動子及び角度可変の振動子により受けて、信号処
理回路のレベル補正回路へ送り、ここで超音波探触子と
タービン部品とのカツプリング不同に基づくエコーレベ
ルの変動要因を基準エコーと比較して補正し、この補正
した損傷領域エコーを平均化回路へ送って、電気ノイズ
等の混入を防止し、次いでこの平均化回路から損傷領域
エコーのレベル調整器、相関回路、エコーの周波数分析
回路へ送って、クリープ損傷の程度を判定し、さらにこ
れらのレベル調整器、相関回路、周波数分析回路から判
定回路へ送って、クリープ損傷の程度を判定する。そし
て損傷変化とこれら情報との「損傷関係のデータ」を事
前に実験で求めておき、判定回路では、このデータに基
づき重みずけを行って、判定精度を上げる。
(Operation) The deterioration detecting device for a turbine component of the present invention is configured as described above, and a fixed coupling oscillator and an angle for providing a damage region echo returning from a damage region of the turbine on the ultrasonic probe are provided. It is received by the variable transducer and sent to the level correction circuit of the signal processing circuit, where the factor of echo level variation based on the coupling disparity between the ultrasonic probe and the turbine component is corrected and compared with the reference echo. The corrected damage area echo is sent to the averaging circuit to prevent the inclusion of electrical noise, etc., and then this averaging circuit is sent to the damage area echo level adjuster, correlation circuit and echo frequency analysis circuit for creep damage. The degree of creep damage is determined from the level adjuster, the correlation circuit, and the frequency analysis circuit to the determination circuit. Then, "damage relation data" between the damage change and these pieces of information is obtained in advance by an experiment, and the judgment circuit performs weighting based on this data to improve the judgment accuracy.

(実施例) 次に本発明のタービン部品の劣化検出装置の一実施例を
第1図により説明すると、(1)が超音波探触子で、同
超音波探触子(1)は、タービン翼の溝肩(2)のクリ
ープ損傷(3)を直接の対象とするカツプリングチエツ
ク用振動子、(位置固定、フラット振動子または焦点探
触子)(4)と、振動子(回転方向(6)の可変角焦点
探触子)(5)とを有している。
(Embodiment) Next, an embodiment of the deterioration detecting device for a turbine component of the present invention will be described with reference to FIG. 1. (1) is an ultrasonic probe, and the ultrasonic probe (1) is a turbine A transducer for a coupling check, which directly targets the creep damage (3) of the blade groove shoulder (2) (fixed position, flat transducer or focus probe) (4), and a transducer (rotation direction ( 6) variable angle focus probe) and (5).

同振動子(5)の回転は、ステッピングモータ等の駆動
装置(図示せず)の軸(7)を中心として所望の角度だ
け行われる。また同振動子(5)の回転角度は、軸
(7)に取付けたエンコーダなどの手段(図示せず)に
よりチエツクされる。これらの振動子(4)(5)は、
2台の探傷器(8)(9)との間で超音波の送受が行わ
れる。
The oscillator (5) is rotated by a desired angle about an axis (7) of a driving device (not shown) such as a stepping motor. The rotation angle of the vibrator (5) is checked by means (not shown) such as an encoder attached to the shaft (7). These oscillators (4) (5)
Ultrasonic waves are transmitted and received between the two flaw detectors (8) and (9).

(10)が信号処理回路で、同信号処理回路(10)のレベ
ル補正回路(11)は、超音波探触子(1)とロータ面
(12)とのカツプリング不同に基づくエコーレベルの変
動要因を基準エコー信号と比較して補正する機能を有し
ている。
Reference numeral (10) is a signal processing circuit, and the level correction circuit (11) of the signal processing circuit (10) is a factor for varying the echo level based on the coupling difference between the ultrasonic probe (1) and the rotor surface (12). Is compared with the reference echo signal and corrected.

(13)が電気ノイズ等の混入を防止するための平均化回
路であり、レベル補正されたエコーのS/Nの改善を行う
ようになっている。
(13) is an averaging circuit for preventing mixing of electrical noise and the like, and is designed to improve the S / N of the level-corrected echo.

(14)が損傷領域エコーのレベル調整器、(15)が相関
回路、(16)がエコーの周波数分析回路、(17)が判定
回路で、平均化回路(13)がレベル調整器(14)と相関
回路(15)とエコーの周波数分析回路(16)とに接続
し、レベル調整器(14)と相関回路(15)とエコーの周
波数分析回路(16)とが判定回路(17)に接続してい
る。
(14) is a damaged area echo level adjuster, (15) is a correlation circuit, (16) is an echo frequency analysis circuit, (17) is a judgment circuit, and an averaging circuit (13) is a level adjuster (14). And the correlation circuit (15) and the echo frequency analysis circuit (16) are connected, and the level adjuster (14), the correlation circuit (15) and the echo frequency analysis circuit (16) are connected to the determination circuit (17). is doing.

本発明は、タービン部品の微細なクリープ損傷(劣化)
を検出するものであって、単純に一つの情報だけでは判
定困難であり、レベル調整器(14)と相関回路(15)と
エコーの周波数分析回路(16)とからの情報(複数の情
報)を判定回路(17)へ送る一方、判定回路(17)で
は、データに基づき重みづけを行って、判定精度を上げ
るようにしている。
The present invention is applicable to fine creep damage (deterioration) of turbine parts.
It is difficult to make a decision with only one piece of information, and information (plural pieces of information) from the level adjuster (14), the correlation circuit (15) and the echo frequency analysis circuit (16) is detected. Is sent to the decision circuit (17), while the decision circuit (17) weights the data to improve the decision accuracy.

次に前記第1図に示すタービン部品の劣化検出装置の作
用を具体的に説明する。タービン翼の溝肩(2)のクリ
ープ損傷は、応力的に考えて溝肩(2)から(3)のよ
うに発生して、その方向に進むと考えられる。従って振
動子(探触子)(5)は、これを検出し易く、振動子
(探触子)(4)は、これの検出をそれ程期待できな
い。しかしどちらにしても上記クリープ損傷(3)は、
微細であるため、その検出は容易ではなく、高感度で検
出する必要がある。
Next, the operation of the deterioration detecting device for a turbine component shown in FIG. 1 will be specifically described. It is considered that creep damage of the groove shoulder (2) of the turbine blade occurs from the groove shoulders (2) to (3) in view of stress and progresses in that direction. Therefore, the transducer (probe) (5) is easy to detect this, and the transducer (probe) (4) cannot expect that much detection. However, in any case, the creep damage (3) is
Since it is minute, its detection is not easy, and it is necessary to detect it with high sensitivity.

このとき、超音波探触子(1)のカツプリングで信号レ
ベルの変化が発生する。従ってカツプリングチエツク用
振動子(4)で2つのエコーを検出し、このエコーレベ
ルが以前と同じになるように振動子(探触子)(5)で
得られた信号を補正すれば、クリープ損傷の程度をより
正確に把握できることになる。
At this time, a change in signal level occurs due to the coupling of the ultrasonic probe (1). Therefore, if two echoes are detected by the coupling check transducer (4) and the signal obtained by the transducer (probe) (5) is corrected so that the echo levels are the same as before, creep will occur. The degree of damage can be grasped more accurately.

上記クリープ損傷(3)が進めば、微細なエコーが多
数、ランダムに発生する。このように信号の発生状態が
変換すると、相関関数(関数としては振動子(4)
(5)の各信号の自己相関、振動子(4)または振動子
(5)の送信信号と受信信号と相互相関、振動子(4)
または振動子(5)の受信信号の相互関係などが考えら
れる)が変化する。この相関関数の変化を相関回路(1
5)により検出すれば、微細な損傷変化が検出される。
また同様に周波数成分も変化するため、これら周波数成
分変化も周波数分析回路(16)により検出すれば、損傷
変化検出の情報が抽出される。また損傷変化とこれら情
報との〔損傷関係のデータ〕を事前に実験で求めてお
き、判定回路(17)でこのデータに基づき重みずけを行
って、判定精度を上げる。
As the creep damage (3) progresses, many fine echoes are randomly generated. When the signal generation state is converted in this way, the correlation function (as a function, the oscillator (4)
(5) Autocorrelation of each signal, cross-correlation between the transmission signal and reception signal of the oscillator (4) or the oscillator (5), oscillator (4)
Or the mutual relation of the received signals of the vibrator (5) is considered). Correlation circuit (1
If it is detected by 5), a minute damage change can be detected.
Similarly, since the frequency components also change, if the frequency analysis circuit (16) also detects these frequency component changes, the damage change detection information is extracted. Also, [damage relation data] between the damage change and these pieces of information is obtained in advance by an experiment, and a judgment circuit (17) performs weighting based on this data to improve judgment accuracy.

次に前記の点を補足説明する。Next, the above point will be supplementarily described.

(1)先ずタービン部品の劣化現象(クリープ損傷)に
ついて補足説明する。
(1) First, a supplementary explanation will be given on the deterioration phenomenon (creep damage) of turbine components.

タービン部品の劣化現象(クリープ損傷)としては、第
3図(b)に例示するようにマイクロボイド(微小な空
孔)がある。このようなマイクロボイドが発生すると、
超音波の散乱、減衰等が発生して、次の現象が起こる。
As a deterioration phenomenon (creep damage) of a turbine component, there is a micro void (a minute void) as illustrated in FIG. 3 (b). When such micro voids occur,
The following phenomena occur due to scattering and attenuation of ultrasonic waves.

反射信号変化:散乱のため、B部(材料中)からの
エコーが増大する。またA部(底部)のエコーが低下す
る。
Reflection signal change: Due to scattering, the echo from part B (in the material) increases. Further, the echo at the A portion (bottom portion) is reduced.

周波数成分変化:散乱等のため、超音波が減衰する
が、周波数により減衰の状態が変わる。通常、エコーに
含まれる高周波数成分の方が減衰が大きい。
Frequency component change: The ultrasonic wave is attenuated due to scattering etc., but the attenuation state changes depending on the frequency. Usually, the high frequency component contained in the echo is attenuated more.

その他(相関について):増感のとり方には、種々
あるが、例えばB部からのエコーの自己相関をとると、
劣化により相関値が変化することが考えられる。即ち、
健全な波長超音波エコーは、第4図(a)のようにな
る。マイクロボイドが発生すると、ここからも反射が起
こるので、第4図(b)のようにB部からのエコーが発
生し、A部のエコーが低下する。またB部のエコーのみ
で自己相関をとると、第5図(a)のように相関値はす
ぐに0になるが、劣化時には、B部に電気ノイズのみで
なく、超音波エコー信号があるため、第5図(b)のよ
うにエコーが変化する。
Others (with respect to correlation): There are various methods of sensitization. For example, if the autocorrelation of the echo from the B section is taken,
It is considered that the correlation value changes due to deterioration. That is,
A sound wavelength ultrasonic echo is as shown in FIG. When microvoids are generated, reflection also occurs from here, so that an echo from the B portion is generated and an echo at the A portion is reduced as shown in FIG. 4 (b). Further, when the autocorrelation is taken only by the echo of the B section, the correlation value immediately becomes 0 as shown in FIG. 5 (a), but at the time of deterioration, the B section has not only electrical noise but also an ultrasonic echo signal. Therefore, the echo changes as shown in FIG.

なお実際のB部エコーは、微小な信号であり、さらに第
4図にも示したように電気ノイズがのっている。また劣
化とは関係ないが、超音波探触子(1)とロータ(被検
体)(12)との押え付け方で超音波的カップリング状態
が変化する。これは、第6図のようにカプラント(水や
油)中で超音波が多重反射し、干渉を起こすためで、信
号レベル変化を厳密に測定する場合には、補正が必要に
なる。
It should be noted that the actual B section echo is a minute signal, and further has electrical noise as shown in FIG. Although not related to deterioration, the ultrasonic coupling state changes depending on how the ultrasonic probe (1) and rotor (subject) (12) are pressed. This is because ultrasonic waves are multiple-reflected in couplant (water or oil) as shown in FIG. 6 and cause interference, and therefore correction is necessary when the signal level change is strictly measured.

(2)次に前記作用を補足説明する。(2) Next, the above-mentioned operation will be supplementarily described.

先ず超音波信号を平均化し、ランダムな電気ノイズを低
減して、できるだけ純粋な超音波信号のみを得る。次い
でカップリングでエコー変化が発生するのを防止するた
め、例えば第7図に示す補正を行う。即ち、第7図
(a)のカップリング良→第7図(b)のカップリング
不良に信号が変化した場合、カップリング不良により、
超音波探触子(1)〜ロータ(被検体)(12)間の通り
が悪くなっただけであるから、A部、B部共、同じよう
に信号が低下する。このため、A部の信号が常に一定に
なるように感度補正を行って、B部の信号をチェックす
れば、B部の信号からカップリングの影響を除去でき
る。
First, the ultrasonic signals are averaged and random electrical noise is reduced to obtain only the purest ultrasonic signal. Next, for example, the correction shown in FIG. 7 is performed in order to prevent the echo from changing due to the coupling. That is, when the signal changes from the good coupling shown in FIG. 7 (a) to the poor coupling shown in FIG. 7 (b), due to the poor coupling,
Since the passage between the ultrasonic probe (1) and the rotor (subject) (12) is only bad, the signals are similarly reduced in both the A section and the B section. For this reason, if the sensitivity correction is performed so that the signal of the section A is always constant and the signal of the section B is checked, the influence of coupling can be removed from the signal of the section B.

次にこのような信号(例えばB部の信号)から、次の3
つで劣化度を調べる。
Next, from such a signal (for example, the signal of the part B),
Check the degree of deterioration.

信号レベル:劣化が大なら、B部の信号も大きくな
る。
Signal level: If the deterioration is large, the signal in the B section also becomes large.

周波数成分:周波数分析をして、例えば高周波成分
を調べる。劣化が大きい場合、高周波成分と低周波成分
とを比べると、高周波成分が少なくなる(通常の例)。
Frequency component: Frequency analysis is performed to check, for example, a high frequency component. When the deterioration is large, the high frequency component is small when comparing the high frequency component and the low frequency component (normal example).

相関:例えば自己相関をとると、劣化がないときと
比べて相関関数の値が変わる。
Correlation: For example, when an autocorrelation is taken, the value of the correlation function changes as compared to when there is no deterioration.

これら各々の出力ででも、劣化度の判定は可能である
が、さらに精度を上げるために判定回路(17)で判定す
る。
Although the degree of deterioration can be determined by each of these outputs, the determination circuit (17) makes a determination to further improve the accuracy.

例えば各々の回路出力を次のようにとる。For example, each circuit output is taken as follows.

レベル判定出力 L・・・B部の信号振幅 周波数分析 相関 S・・・第8図のように相関値が0.5になる
幅。
Level judgment output L ... Signal amplitude of B part Frequency analysis Correlation S ... A width where the correlation value becomes 0.5 as shown in FIG.

そして劣化度Rの異なるサンプルとしてR1〜Rnにつき、
各々の値を測る。これを例えば、 のように表し、最もerrorが少なくなるようにA、B、
Cを決める。このA、B、Cを用い、次に未知のサンプ
ルがきたとき、劣化度Rを R=AL+BF+CS により求めて、判定回路(17)から出力する。
And for R 1 to R n as samples with different deterioration degrees R,
Measure each value. For example, , A, B, so that the error is minimized
Decide on C. When an unknown sample comes next using these A, B, and C, the deterioration degree R is obtained by R = AL + BF + CS, and is output from the judgment circuit (17).

(発明の効果) 本発明のタービン部品の劣化検出装置は前記のようにタ
ービンの損傷領域から帰る損傷領域エコーを超音波探触
子に設けた固定のカツプリングチエツク用振動子及び角
度可変の振動子により受けて、信号処理回路のレベル補
正回路へ送り、ここで超音波探触子とタービン部品との
カツプリング不同に基づくエコーレベルの変動要因を基
準エコーと比較して補正し、この補正した損傷領域エコ
ーを平均化回路へ送って、電気ノイズ等の混入を防止
し、次いでこの平均化回路から損傷領域エコーのレベル
調整器、相関回路、エコーの周波数分析回路へ送って、
クリープ損傷の程度を判定し、さらにこれらのレベル調
整器、相関回路、周波数分析回路から判定回路へ送っ
て、クリープ損傷の程度を判定する。そして損傷変化と
これら情報との「損傷関係のデータ」を事前に実験で求
めておき、判定回路では、このデータに基づき重みずけ
を行って、判定精度を上げるので、タービン部品のクリ
ープ損傷を被破壊的に、また肉眼検査によらずに、性格
に検査できる。
(Effects of the Invention) As described above, the deterioration detecting device for a turbine component according to the present invention has a fixed coupling check vibrator and a variable angle vibration in which an ultrasonic probe is provided with a damaged region echo returning from the damaged region of the turbine. Received by the child and sent to the level correction circuit of the signal processing circuit, where the factors of echo level variation due to the coupling disparity between the ultrasonic probe and the turbine component are corrected by comparison with the reference echo, and this corrected damage is corrected. Sending the area echo to the averaging circuit to prevent mixing of electrical noise etc., then sending from the averaging circuit to the level adjuster of the damaged area echo, the correlation circuit, the frequency analysis circuit of the echo,
The degree of creep damage is determined, and further sent from the level adjuster, correlation circuit and frequency analysis circuit to the determination circuit to determine the degree of creep damage. Then, "damage relation data" between the damage change and these information is obtained in advance by an experiment, and the judgment circuit performs weighting based on this data to improve the judgment accuracy. Personality can be inspected destructively and without relying on the naked eye inspection.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明のタービン部品の劣化検出装置の一実施
例を示す系統図、第2図はタービン部品の損傷領域を示
す説明図、第3図は超音波の散乱、減衰を示す説明図、
第4図は超音波エコーの変化を示す説明図、第5図は相
関値と遅れ時間との関係を示す説明図、第6図はカプラ
ント間で多重反射する超音波の状態を示す説明図、第7
図はカップリングによる信号変化を示す説明図、第8図
は相関値の幅を示す説明図である。 (1)……超音波探触子、(2)……タービン翼の溝
肩、(3)……クリープ損傷領域、(4)……カツプリ
ングチエツク用振動子、(5)……可変角の振動子、
(6)……回転方向、(7)……軸、(8)(9)……
探傷器、(10)……信号処理回路、(11)……レベル補
正回路、(12)……ローラ面、(13)……平均化回路、
(14)……損傷領域エコーのレベル調整器、(15)……
相関回路、(16)……エコーの周波数分析回路、(17)
……判定回路。
FIG. 1 is a system diagram showing an embodiment of a deterioration detecting device for a turbine component of the present invention, FIG. 2 is an explanatory diagram showing a damaged region of the turbine component, and FIG. 3 is an explanatory diagram showing scattering and attenuation of ultrasonic waves. ,
FIG. 4 is an explanatory view showing changes in ultrasonic echoes, FIG. 5 is an explanatory view showing a relationship between a correlation value and delay time, and FIG. 6 is an explanatory view showing a state of ultrasonic waves reflected multiple times between couplants, 7th
FIG. 8 is an explanatory diagram showing a signal change due to coupling, and FIG. 8 is an explanatory diagram showing a correlation value width. (1) ... ultrasonic probe, (2) ... turbine blade groove shoulder, (3) ... creep damage region, (4) ... coupling for vibrators for coupling, (5) ... variable angle Oscillator,
(6) …… Rotation direction, (7) …… Axis, (8) (9) ……
Flaw detector, (10) …… Signal processing circuit, (11) …… Level correction circuit, (12) …… Roller surface, (13) …… Averaging circuit,
(14) …… Level controller for damaged area echo, (15) ……
Correlation circuit, (16) …… Echo frequency analysis circuit, (17)
...... Judgment circuit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 榎並 宏治 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 伊東 眸 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (56)参考文献 特開 昭54−153691(JP,A) 特開 昭59−17154(JP,A) 特開 昭58−99748(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Enami 2-1-1 Niihama, Arai-cho, Takasago-shi, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Takasago Research Institute (72) Inventor Ito 2--1 Niihama, Arai-cho, Takasago-shi, Hyogo Prefecture No. 1 Mitsubishi Heavy Industries, Ltd., Takasago Laboratory (56) Reference JP 54-153691 (JP, A) JP 59-17154 (JP, A) JP 58-99748 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】タービン部品に接触する超音波探触子と、
同超音波探触子に接続した信号処理回路とを有し、前記
超音波探触子に、タービンの損傷領域を直接の対象とす
る固定のカツプリングチエツク用振動子と、異方向から
タービン部品の損傷領域へ入りそこから反射して帰る異
方向の超音波エコーを受ける角度可変の振動子とを設
け、前記信号処理装置に、超音波探触子とタービン部品
とのカツプリング不同に基づくエコーレベルの変動要因
を基準エコーと比較して損傷領域エコーを補正するレベ
ル補正回路と、電気ノイズ等の混入を防止する平均化回
路と、損傷領域エコーのレベル調整器と、相関回路と、
エコーの周波数分析回路と、これらのレベル調整器と相
関回路と周波数分析回路とに接続したクリープ損傷の程
度を判定する判定回路とを設けたことを特徴とするター
ビン部品の劣化検出装置。
1. An ultrasonic probe for contacting a turbine component,
A signal processing circuit connected to the same ultrasonic probe, and a fixed coupling check vibrator for directly targeting a damaged region of the turbine to the ultrasonic probe, and a turbine component from a different direction. A variable angle transducer that receives ultrasonic echoes in different directions that enter and return from the damaged region of the ultrasonic wave, and the echo level based on the coupling difference between the ultrasonic probe and the turbine component is provided in the signal processing device. A level correction circuit that corrects the damaged area echo by comparing the fluctuation factor of the reference echo with the reference echo, an averaging circuit that prevents the mixing of electrical noise, a level controller for the damaged area echo, and a correlation circuit,
A deterioration detecting device for a turbine component, comprising: an echo frequency analysis circuit; and a determination circuit for determining the degree of creep damage connected to the level adjuster, the correlation circuit, and the frequency analysis circuit.
JP59259096A 1984-12-10 1984-12-10 Turbine component deterioration detection device Expired - Lifetime JPH0711509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59259096A JPH0711509B2 (en) 1984-12-10 1984-12-10 Turbine component deterioration detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59259096A JPH0711509B2 (en) 1984-12-10 1984-12-10 Turbine component deterioration detection device

Publications (2)

Publication Number Publication Date
JPS61137060A JPS61137060A (en) 1986-06-24
JPH0711509B2 true JPH0711509B2 (en) 1995-02-08

Family

ID=17329260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59259096A Expired - Lifetime JPH0711509B2 (en) 1984-12-10 1984-12-10 Turbine component deterioration detection device

Country Status (1)

Country Link
JP (1) JPH0711509B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822616B2 (en) * 2011-09-20 2015-11-24 三菱重工業株式会社 Flaw detection apparatus for blade groove part of rotor disk and flaw detection method using flaw detection apparatus for blade groove part of rotor disk

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54153691A (en) * 1978-05-24 1979-12-04 Hitachi Ltd Method and apparatus for ultrasonic flaw detection of nozzles
JPS5917154A (en) * 1982-07-20 1984-01-28 Kobe Steel Ltd Method and device for detecting defect by ultrasonic wave method

Also Published As

Publication number Publication date
JPS61137060A (en) 1986-06-24

Similar Documents

Publication Publication Date Title
EP2053392A1 (en) Ultrasonic scanning device and method
JP2008501109A (en) Turbine blade flaw detection method and apparatus
EP0212899B1 (en) Ultrasonic testing of materials
CA1188403A (en) Determination of plastic anisotropy in sheet material
JP4746365B2 (en) Surface inspection method
JP4673686B2 (en) Surface inspection method and surface inspection apparatus
JPH0711509B2 (en) Turbine component deterioration detection device
JP4405821B2 (en) Ultrasonic signal detection method and apparatus
Broberg et al. Improved corner detection by ultrasonic testing using phase analysis
WO2019150952A1 (en) Defect detecting method
KR100542651B1 (en) Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses
JPH11118771A (en) Ultrasonic flaw-detecting method and device of thin plate with plate-thickness change
EP3622285A1 (en) Ultrasonic inspection methods and systems
RU2714868C1 (en) Method of detecting pitting corrosion
RU2246724C1 (en) Method of ultrasonic testing of material quality
Mihara et al. Three-dimensional sound pressure field measurement using photoelastic computer tomography method
JP2009156834A (en) Method for measuring depth of crack-like defect
RU2596242C1 (en) Method for ultrasonic inspection
JPH11211699A (en) Measuring sensor for diagnosing various material and various solution, diagnosing device, and diagnosing method
JP2001343370A (en) Ultrasonic inspection method
US6393917B1 (en) System and method for ultrasonic image reconstruction using mode-converted Rayleigh wave
JPH07325070A (en) Ultrasonic method for measuring depth of defect
JPH1151909A (en) Ultrasonic wave flaw detecting method
JPH0545346A (en) Ultrasonic probe
JPS61210947A (en) Ultrasonic defectscope