JP4746365B2 - Surface inspection method - Google Patents

Surface inspection method Download PDF

Info

Publication number
JP4746365B2
JP4746365B2 JP2005199469A JP2005199469A JP4746365B2 JP 4746365 B2 JP4746365 B2 JP 4746365B2 JP 2005199469 A JP2005199469 A JP 2005199469A JP 2005199469 A JP2005199469 A JP 2005199469A JP 4746365 B2 JP4746365 B2 JP 4746365B2
Authority
JP
Japan
Prior art keywords
defect
power spectrum
depth
calculating
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005199469A
Other languages
Japanese (ja)
Other versions
JP2007017300A (en
Inventor
誠 落合
崇広 三浦
英彦 黒田
智 山本
健太郎 土橋
昌弘 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005199469A priority Critical patent/JP4746365B2/en
Priority to EP09013802A priority patent/EP2148195A1/en
Priority to EP09013804A priority patent/EP2157426B1/en
Priority to DE602006010941T priority patent/DE602006010941D1/en
Priority to EP09013807A priority patent/EP2148196A1/en
Priority to EP10179269A priority patent/EP2278324B1/en
Priority to EP06014082A priority patent/EP1742049B1/en
Priority to EP09013808A priority patent/EP2148197B1/en
Priority to US11/480,959 priority patent/US7728967B2/en
Priority to EP09013803A priority patent/EP2159575B1/en
Priority to KR1020060063913A priority patent/KR100830107B1/en
Publication of JP2007017300A publication Critical patent/JP2007017300A/en
Priority to KR1020070119215A priority patent/KR101067704B1/en
Priority to KR1020070119216A priority patent/KR101067705B1/en
Priority to KR1020070119218A priority patent/KR101097814B1/en
Priority to KR1020070119217A priority patent/KR20070118214A/en
Priority to US12/766,475 priority patent/US8497986B2/en
Priority to US12/766,445 priority patent/US8094297B2/en
Priority to US12/766,517 priority patent/US8115936B2/en
Application granted granted Critical
Publication of JP4746365B2 publication Critical patent/JP4746365B2/en
Priority to KR1020110085782A priority patent/KR101150923B1/en
Priority to US13/236,322 priority patent/US8248595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ノイズの影響を受けず、かつ微小な欠陥深さでも高精度に計測可能な表面検査方法の改良に関する。 The present invention is not affected by noise, and an improvement in measurable front surface inspecting method with high accuracy even in minute defect depth.

材料表層部の欠陥検査や材料特性を計測する手法には、材料の表面に沿って伝播する弾性波である表面波を利用して計測することが多い。   In many cases, the method of inspecting material surface layer defects and measuring material properties are measured using surface waves, which are elastic waves propagating along the surface of the material.

この表面波を利用した欠陥検査を行う手法は、被検査体表面に超音波伝播媒質を介して表面波探触子を接触させて表面波を送信し、その探触子を用いて受信し、欠陥開口部からのエコーの有無で欠陥の有無を判定するものである。   The method of performing defect inspection using this surface wave is to send a surface wave by contacting the surface of the object to be inspected via an ultrasonic wave propagation medium and receive it using the probe, The presence or absence of a defect is determined by the presence or absence of an echo from the defect opening.

また、欠陥の開口部を通過する信号成分の遅れ時間や、欠陥の端部で反射または回折する超音波成分を検出し、欠陥の深さを計測する手法も、例えば非特許文献1に記載されている。   Further, for example, Non-Patent Document 1 also describes a method of detecting the delay time of a signal component passing through the opening of a defect and an ultrasonic component reflected or diffracted at the edge of the defect and measuring the depth of the defect. ing.

一方、表面波が存在する特性を利用し、送信用と受信用の探触子を、欠陥を挟む位置で個々に設置し、欠陥を透過する表面波の変動に基づいて欠陥の深さを推定する手法が、例えば特許文献1に開示されている。   On the other hand, using the characteristics of surface waves, transmitters and receivers are individually installed at the positions where the defects are sandwiched, and the depth of the defects is estimated based on fluctuations in the surface waves that pass through the defects. For example, Japanese Patent Application Laid-Open No. H10-228707 discloses a technique for performing this.

この技術は、図10に示すように、所定の周波数fを持つ信号を発信させる発振器1から信号を発信し、送信用超音波探触子2によって表面波に変換し、被検査体TPに発信する。   In this technique, as shown in FIG. 10, a signal is transmitted from an oscillator 1 that transmits a signal having a predetermined frequency f, is converted into a surface wave by a transmitting ultrasonic probe 2, and is transmitted to an inspected object TP. To do.

表面波SRは、被検査体TPの表面を伝播し、被検査体TPに欠陥Cがあると、この欠陥Cと相互作用し、透過波STとなり、受信用超音波探触子3で受信される。この受信信号は、受信器4によって受信され、データ解析装置5で処理され、欠陥Cの有無とその深さが算出される。   The surface wave SR propagates through the surface of the inspection object TP, and if there is a defect C in the inspection object TP, it interacts with the defect C and becomes a transmitted wave ST, which is received by the receiving ultrasonic probe 3. The This received signal is received by the receiver 4 and processed by the data analysis device 5 to calculate the presence / absence of the defect C and its depth.

なお、送・受信に用いられるものは、圧電効果を利用した接触式探触子である。この場合、被検査体TPと送・受信用探触子2,3の間には、超音波伝播媒質6が塗布されている。   Note that a contact probe using a piezoelectric effect is used for transmission / reception. In this case, the ultrasonic wave propagation medium 6 is applied between the inspection object TP and the transmission / reception probes 2 and 3.

この技術は、表面波の浸透(欠陥)深さが周波数fに依存して変わることを利用し、材料表層部の欠陥を透過した表面波の周波数毎の減衰率が欠陥深さを推定するものである。つまり、幾つかの異なる周波数f,f,…,fnを含む波形を送信波として使用し、健全部を伝播した受信波を基準として材料表層部の欠陥を透過した受信波の周波数毎の減衰率α(f)を求め、減衰率量の割合に応じて欠陥Cの深さを算出している。 This technology uses the fact that the penetration depth (defect) depth of surface waves changes depending on the frequency f, and the attenuation factor for each frequency of the surface wave that has passed through the defects in the surface layer of the material estimates the defect depth. It is. That is, a waveform including several different frequencies f 1 , f 2 ,..., Fn is used as a transmission wave, and for each frequency of the reception wave that has passed through a defect in the material surface layer with reference to the reception wave that has propagated through the healthy part. The attenuation rate α (f) is obtained, and the depth of the defect C is calculated according to the ratio of the attenuation rate amount.

このように、特許文献1では、透過法を用い、しかも周波数毎の表面波の減衰率を計算することによって欠陥の有無はもとより、その深さも求めることができるようになっている。   As described above, in Patent Document 1, by using the transmission method and calculating the attenuation factor of the surface wave for each frequency, the depth as well as the presence or absence of a defect can be obtained.

また、透過波の周波数成分から欠陥の深さを求める手法として、例えば特許文献2には、表面波の伝達特性を同定することが提案されている。   As a technique for obtaining the depth of a defect from a frequency component of a transmitted wave, for example, Patent Document 2 proposes identifying the transfer characteristic of a surface wave.

この手法は、受信用超音波探触子を2個設け、送信用探触子に近い受信用探触子で欠陥に入射する表面波SRを、送信用探触子から遠い受信用探触子で欠陥Cを透過した表面波STを検出し、これら2つの信号から表面波の欠陥部における伝達特性を求めるものである。   In this method, two reception ultrasonic probes are provided, and a surface wave SR incident on a defect by a reception probe close to the transmission probe is received by a reception probe far from the transmission probe. Then, the surface wave ST transmitted through the defect C is detected, and the transfer characteristic of the surface wave in the defective portion is obtained from these two signals.

例えば、欠陥に入射する表面波信号のパワースペクトルをR(f)、欠陥Cを透過した表面波信号のパワースペクトルをT(f)としたとき、欠陥による周波数成分の変化、つまり伝達関数H(f)を、
[数2]
H(f)=T(f)/R(f)
として求め、伝達関数H(f)の応答時間やカットオフ周波数から、理論的に、または予め求めておいた校正試験の結果を参照し、欠陥の深さを同定するものである。
For example, when the power spectrum of the surface wave signal incident on the defect is R (f) and the power spectrum of the surface wave signal transmitted through the defect C is T (f), the frequency component changes due to the defect, that is, the transfer function H ( f)
[Equation 2]
H (f) = T (f) / R (f)
The depth of the defect is identified theoretically or with reference to the calibration test result obtained in advance from the response time and cutoff frequency of the transfer function H (f).

また、この技術では、複数個の受信用超音波探触子を用い、欠陥の検出とその位置の同定、および欠陥深さの計測を同時に行うことも提案している。   This technology also proposes to use a plurality of receiving ultrasonic probes to simultaneously detect a defect, identify its position, and measure the depth of the defect.

さらに、複数個の受信用超音波探触子の代りに、複数個の送信用超音波探触子を用いても同じ動作が可能であること、表面波の送受信方法としてレーザ超音波法や電磁波法を使用することも開示している。   Furthermore, the same operation is possible even if a plurality of transmitting ultrasonic probes are used instead of a plurality of receiving ultrasonic probes, and a laser ultrasonic method or an electromagnetic wave is used as a surface wave transmitting / receiving method. It also discloses the use of the law.

さらに、透過波の周波数成分から欠陥Cの深さを求める別の手法には、例えば特許文献2が開示されている。この特許文献2は、上述の特許文献1を改良したものである。   Furthermore, for example, Patent Literature 2 is disclosed as another method for obtaining the depth of the defect C from the frequency component of the transmitted wave. This Patent Document 2 is an improvement of the above-mentioned Patent Document 1.

すなわち、特許文献1では、欠陥Cの長さがここを透過する表面波ビームの幅に較べて小さくなると、表面波の減衰量が欠陥の深さと長さの両方の影響を受ける(表面波ビームのうち、一部は欠陥を透過して減衰し、残りの欠陥を透過しない成分と混合して検出される)ため、両方を区別して検出することができず、このため、欠陥の深さの検出が不正確になっていた。   That is, in Patent Document 1, when the length of the defect C becomes smaller than the width of the surface wave beam passing through the defect C, the attenuation amount of the surface wave is affected by both the depth and the length of the defect (surface wave beam Part of the defect is transmitted through the defect and attenuated and mixed with the component that does not transmit the remaining defect), so both cannot be detected separately. Detection was inaccurate.

しかし、特許文献2では、健全部を透過する透過波(特許文献1の欠陥への入射波)のパワースペクトルR(f)および表面波ビームの幅に較べて充分な長さを有する種々の深さhの欠陥を透過した透過波のパワースペクトルTc(f,h)を予め校正試験で得ておく。その上で、未知の長さおよび深さの欠陥を透過した透過パワースペクトルT(f,h)を計測し、係数Kを用いて、
[数3]
T(f,h)=K×Tc(f,h)+(1−k)×R(f)
と表し、回帰計算によって欠陥長さに関するパラメータKおよび欠陥深さhを推定する。
However, in Patent Document 2, various depths having a sufficient length compared to the power spectrum R (f) of the transmitted wave (incident wave to the defect of Patent Document 1) transmitted through the healthy portion and the width of the surface wave beam. The power spectrum Tc (f, h) of the transmitted wave that has passed through the defect h is obtained in advance by a calibration test. Then, the transmission power spectrum T (f, h) that has passed through the defect of unknown length and depth is measured, and using the coefficient K,
[Equation 3]
T (f, h) = K × Tc (f, h) + (1−k) × R (f)
And the parameter K related to the defect length and the defect depth h are estimated by regression calculation.

また、透過波の周波数成分から欠陥の深さを求める別の手法として、特許文献3が開示されている。   Further, Patent Document 3 is disclosed as another method for obtaining the depth of the defect from the frequency component of the transmitted wave.

この技術は、複数の周波数成分を含む超音波を使用し、被検査体を透過する超音波の透過量で正規化し、正規化した透過量の周波数分布のパターンから、表面欠陥の種類と深さを検出するものである。
特開平10−213573号公報 特開2000−180418号公報 特開2001−4599号公報 特開2001−4600号公報 石井勇五郎編著「新版非破壊検査工学」産報出版、1993年、P242
This technology uses ultrasonic waves containing multiple frequency components, normalizes them with the amount of ultrasonic waves that pass through the object under test, and determines the type and depth of surface defects from the normalized frequency distribution pattern of the transmitted amount. Is detected.
JP-A-10-213573 JP 2000-180418 A Japanese Patent Laid-Open No. 2001-4599 Japanese Patent Laid-Open No. 2001-4600 Published by Yugoro Ishii, “New Edition of Nondestructive Inspection Engineering”, Sangyo Publishing, 1993, P242

特許文献1〜4に開示された技術は、欠陥を透過した表面波の周波数成分の減衰に着目し、欠陥の深さを計測するものであるが、欠陥の深さを正確に計画できる点で有効である。   The techniques disclosed in Patent Documents 1 to 4 focus on the attenuation of the frequency component of the surface wave that has passed through the defect and measure the depth of the defect. However, the defect depth can be accurately planned. It is valid.

しかし、特許文献1〜4に開示された技術でも、幾つかの問題点を抱えている。   However, even the techniques disclosed in Patent Documents 1 to 4 have some problems.

第1の問題点としてノイズがある。   There is noise as a first problem.

このノイズ問題は、図11に示すように、横軸に周波数fを採り、縦軸にパワーPを採ったとき、破線で示す真のパワースペクトルに対し、ノイズが加わると、実線で示すように、ギザギザ状の放物線になり、真のパワースペクトルとの間に比較的大きな計測誤差がでる。   As shown in FIG. 11, when the frequency f is taken on the horizontal axis and the power P is taken on the vertical axis, as shown in FIG. 11, when noise is added to the true power spectrum shown by the broken line, the noise problem is shown by the solid line. This results in a jagged parabola and a relatively large measurement error between the true power spectrum.

特に、特許文献1,3に開示された技術は、離散的かつ有効個数の周波数に着目し、個々の周波数における減衰率α(f)または透過パワーT(f,h)を基に欠陥深さを推定する手法を採っているだけにノイズの影響が大きく、計測に誤差が出、計測値に一抹の不安を抱えていた。   In particular, the techniques disclosed in Patent Documents 1 and 3 focus on a discrete and effective number of frequencies, and the defect depth based on the attenuation rate α (f) or transmission power T (f, h) at each frequency. The effect of noise was large just by adopting the method of estimating the error, the measurement was errored, and I was completely anxious about the measured value.

第2の問題点として計測精度がある。   The second problem is measurement accuracy.

深さ計測可能な欠陥深さは、探触子または送受信器の帯域、あるいは材料の周波数毎の減衰特性に依存し、比較的浅い欠陥、あるいは比較的深い欠陥に対し、計測精度が悪くなっている。   Defect depths that can be measured for depth depend on the band characteristics of the probe or transmitter / receiver, or the attenuation characteristics of each material frequency, and the accuracy of measurement becomes worse for relatively shallow or relatively deep defects. Yes.

このような問題点を今少し詳しく説明する。   Such problems will now be explained in detail.

一般に、表面波は、その1波長分の表層部に局在する性質を持つ。表面波の音速が2900m/sの材料、例えばステンレス鋼における各周波数の表面波の浸透(欠陥)深さは、図12に示すように、周波数0.1MHz〜100MHzまで著しく変化する浸透(欠陥)深さ線図になっている。   In general, a surface wave has the property of being localized in the surface layer portion for one wavelength. The penetration (defect) depth of the surface wave of each frequency in a material having a surface wave velocity of 2900 m / s, for example, stainless steel, varies significantly from 0.1 MHz to 100 MHz as shown in FIG. It is a depth diagram.

例えば、特許文献3,4中に開示された技術は、10MHzまでの帯域を有し、6MHzにピークのある超音波を用いている。このピーク周波数6MHzを図12にプロットすると、その浸透深さは約0.5mmになっている。このため、欠陥深さ0.5mm以下の微小な欠陥の深さを計測する場合、周波数帯域は6MHzよりも高い周波数領域となる。このため、0.5mm以上の欠陥深さ評価時と較べてより弱い信号パワーで評価することになる。これは、評価すべき信号の信号ノイズ比(SN比)の低下を意味し、ひいては、例えば10MHzの表面波成分を主として評価する0.3mm以下の欠陥深さと、6MHzの表面波成分を主として評価する0.5mmの欠陥深さとでは、その計測精度に違いが出る。つまり、微小欠陥ほど欠陥深さの推定精度が悪くなっている。   For example, the techniques disclosed in Patent Documents 3 and 4 use ultrasonic waves having a band up to 10 MHz and having a peak at 6 MHz. When this peak frequency of 6 MHz is plotted in FIG. 12, the penetration depth is about 0.5 mm. For this reason, when measuring the depth of a minute defect having a defect depth of 0.5 mm or less, the frequency band is a frequency region higher than 6 MHz. For this reason, the evaluation is performed with a weaker signal power as compared with a defect depth evaluation of 0.5 mm or more. This means a reduction in the signal-to-noise ratio (SN ratio) of the signal to be evaluated. As a result, for example, a defect depth of 0.3 mm or less that mainly evaluates a 10 MHz surface wave component and a 6 MHz surface wave component are mainly evaluated. The measurement accuracy is different from the defect depth of 0.5 mm. In other words, the accuracy of the estimation of the defect depth is worse for a minute defect.

送受信される超音波信号強度として、低周波から高周波帯域までブロードかつフラットなパワースペクトル分布を有する超音波信号を用いれば、このような問題は発生しない。   If an ultrasonic signal having a broad and flat power spectrum distribution from a low frequency to a high frequency band is used as the intensity of the transmitted / received ultrasonic signal, such a problem does not occur.

しかし、通常の圧電素子を利用した超音波探触子を用いて広帯域特性を実現するには、多くのコストを費やす。また、高周波数帯域に関して言えば、広帯域でフラットなパワースペクトル分布の超音波信号を発振できたとしても、材料中の伝播減衰は周波数毎に異なるため、信号受信時にはやはり高周波領域の信号強度は減少し、微小欠陥深さの計測精度は悪くなる。   However, it takes a lot of cost to realize a broadband characteristic using an ultrasonic probe using a normal piezoelectric element. As for the high frequency band, even if an ultrasonic signal with a wide and flat power spectrum distribution can be oscillated, the propagation attenuation in the material differs depending on the frequency, so the signal intensity in the high frequency region also decreases during signal reception. However, the measurement accuracy of the minute defect depth is deteriorated.

このため、特許文献2や特許文献4に開示された技術は、欠陥透過波のパワースペクトル分布全体を用いて評価する手法であるだけに、特許文献1や特許文献3と同様に計測精度が悪い。   For this reason, the techniques disclosed in Patent Document 2 and Patent Document 4 are a method of evaluating using the entire power spectrum distribution of the transmitted defect wave, and the measurement accuracy is poor as in Patent Document 1 and Patent Document 3. .

本発明は、このような事情に基づいてなされたもので、ノイズの影響を受けずに、かつ微小な深さの欠陥に対し、より高精度な深さ計測ができるようにする表面検査方法を提供することを目的とする。 The present invention has been made in view of such circumstances, the front surface inspection without being affected by noise, and to defects of small depth, you allow more accurate depth measurements It aims to provide a method.

また、本発明に係る表面検査方法は、上述の目的を達成するために、表面波を用いて被検査体の欠陥を透過させた周波数帯域の透過波の強度の減衰率から前記被検査体の欠陥の深さを推定する表面検査方法において、前記被検査体の欠陥を透過する透過波のパワースペクトルを計算するステップと、評価すべき周波数帯域における前記透過波のパワースペクトルを積分し、その積分値を計算するステップと、予め作成しておいた校正用の積分値−欠陥深さの換算手段に前記計算した積分値を照合して前記被検査体の欠陥深さを算出するステップと、算出した前記被検査体の欠陥深さを表示するステップとを備える方法である。 Further, in order to achieve the above object, the surface inspection method according to the present invention is based on the attenuation rate of the intensity of the transmitted wave in the frequency band in which the defect of the object to be inspected is transmitted using the surface wave. In a surface inspection method for estimating the depth of a defect, a step of calculating a power spectrum of a transmitted wave that passes through the defect of the object to be inspected, integrating a power spectrum of the transmitted wave in a frequency band to be evaluated, and integrating the integration A step of calculating a value, a step of calculating a defect depth of the object to be inspected by collating the calculated integrated value with a calibration integral value-defect depth conversion means prepared in advance, and calculating Displaying the defect depth of the object to be inspected.

本発明に係る表面検査方法は、被検査体の欠陥に表面波を発信する送信用超音波探触子と、欠陥を透過した透過波を受信する受信用超音波探触子と、この受信用超音波探触子からの透過波に基づいて欠陥の深さを演算処理する欠陥評価装置を備えるとともに、この欠陥評価装置に欠陥の深さを算出・推定するアルゴリズムを組み込み、このアルゴリズムのうち、算出したパワースペクトルを積分し、さらに周波数の重み付け計算を行うステップにしているので、ノイズの影響を受けることなく、正確に欠陥の深さを推定することができる。 Engaging Ru front surface inspection method according to the present invention, a transmitting ultrasonic transducer for transmitting a surface acoustic wave to the defect of the inspection object, an ultrasonic probe for receiving for receiving a transmitted wave transmitted through the defect, the It is equipped with a defect evaluation device that calculates the depth of the defect based on the transmitted wave from the receiving ultrasonic probe, and incorporates an algorithm for calculating and estimating the defect depth into this defect evaluation device. Of these steps, the calculated power spectrum is integrated, and the frequency weighting calculation is performed. Therefore, the depth of the defect can be accurately estimated without being affected by noise.

以下、本発明に係る表面検査方法の実施形態を図面および図面に付した符号を引用して説明する。 Hereinafter will be described a code of one embodiment of the fastening Ru front surface inspection method according to the present invention were subjected to drawings and by reference.

図1は、本発明に係る表面検査装置の第1実施形態を示す概念図である。   FIG. 1 is a conceptual diagram showing a first embodiment of a surface inspection apparatus according to the present invention.

本実施形態に係る表面検査装置は、被検査体10に超音波伝播層11a,11bを介装して当接させた送信用超音波探触子12と受信用超音波探触子13とを備えるとともに、送信用超音波探触子12に接続する発信器14を備える一方、受信用超音波探触子13に受信器15を介装して欠陥評価装置16aを設け、発信器14から所定の周波数fを持つ信号を発信させ、送信用超音波探触子12で表面波SRに変えて被検査体10に発信する。   The surface inspection apparatus according to the present embodiment includes a transmission ultrasonic probe 12 and a reception ultrasonic probe 13 which are brought into contact with an object to be inspected 10 via ultrasonic propagation layers 11a and 11b. And a transmitter 14 connected to the transmitting ultrasonic probe 12, and a defect evaluation device 16 a is provided on the receiving ultrasonic probe 13 with a receiver 15. A signal having the frequency f is transmitted to the inspected object 10 by the transmitting ultrasonic probe 12 instead of the surface wave SR.

被検査体10に発信された表面波SRは、被検査体10の表面を伝播し、その表面に欠陥Cがあると、その欠陥Cによって減衰を受けた透過波STになり、受信用超音波探触子13で受信させる。   The surface wave SR transmitted to the inspected object 10 propagates through the surface of the inspected object 10, and if there is a defect C on the surface, it becomes a transmitted wave ST attenuated by the defect C, and the receiving ultrasonic wave The probe 13 receives the signal.

この受信信号は、受信器15で受信され、欠陥評価装置16aで演算処理され、欠陥Cの有無とその深さが算出される。   This received signal is received by the receiver 15 and processed by the defect evaluation device 16a to calculate the presence / absence of the defect C and its depth.

すなわち、図8に示すように、送信用超音波探触子12および受信用超音波探触子13は、被検査体10の走査中、欠陥部C,C,Cを検出すると、検出された欠陥部C,C,Cの波形と健全部の波形とが図9に示すように表わされる。 That is, as shown in FIG. 8, when the transmitting ultrasonic probe 12 and the receiving ultrasonic probe 13 detect the defective portions C 1 , C 2 , and C 3 during scanning of the inspection object 10, The waveforms of the detected defective portions C 1 , C 2 , C 3 and the waveform of the healthy portion are represented as shown in FIG.

ここで、図9は、横軸に測定位置を示し、縦軸に欠陥深さを示すもので、健全部の欠陥ゼロとしたときの欠陥部の評価指標を示す図である。   Here, FIG. 9 shows the measurement position on the horizontal axis and the defect depth on the vertical axis, and is a diagram showing the evaluation index of the defective part when the defect of the healthy part is zero.

このように、本実施形態は、被検査体10における健全部の欠陥深さゼロ(0)を基準にして欠陥部C,C,Cの欠陥深さd,d,…が評価指標として算出される。 As described above, in the present embodiment, the defect depths d 1 , d 2 ,... Of the defect portions C 1 , C 2 , C 3 are determined based on the defect depth zero (0) of the healthy portion in the inspection object 10. Calculated as an evaluation index.

なお、本実施形態は、表面波SRの浸透(欠陥)深さが周波数fに依存して変わることを利用し、被検査体10の表層部の欠陥Cを透過した透過波STの周波数毎の減衰率から欠陥深さを推定するものであるが、この例に限らず、例えば図2に示すように、パルス状に変調させたレーザ光GLを被検査体10に照射する超音波送信用レーザ装置17と、レーザ光GLが被検査体10に照射したとき、表層部が気化または熱膨張し、そのひずみで超音波が発生し、発生した超音波としての表面波SRが欠陥Cを透過し、振動しながら透過波STとして受信位置に至ると、照射された受信レーザ光DLDがその振動によって周波数、位相、反射方向が変化し、この変化情報としての受信レーザ反射光DLIを受信する超音波受信用レーザ装置18と、この超音波受信用レーザ装置18からの情報を基に、被検査体10の欠陥Cの有無およびその深さを演算処理する欠陥評価装置16bを備える表面検査装置を使用してもよい。   Note that this embodiment uses the fact that the penetration (defect) depth of the surface wave SR changes depending on the frequency f, so that for each frequency of the transmitted wave ST transmitted through the defect C in the surface layer portion of the inspection object 10. The defect depth is estimated from the attenuation rate. However, the present invention is not limited to this example. For example, as shown in FIG. 2, an ultrasonic transmission laser that irradiates the inspection target 10 with laser light GL modulated in a pulse shape. When the device 17 and the laser beam GL are irradiated to the object 10 to be inspected, the surface layer portion is vaporized or thermally expanded, and an ultrasonic wave is generated by the distortion, and the generated surface wave SR passes through the defect C. When the transmitted laser beam ST reaches the reception position while vibrating, the frequency, phase, and reflection direction of the irradiated received laser beam DLD are changed by the vibration, and the received ultrasonic wave DLI as the change information is received by the ultrasonic wave. Receiving laser device 18 , Based on the information from the ultrasonic receiving laser apparatus 18 may be used surface inspection apparatus including the defect evaluation apparatus 16b for processing the presence and its depth of defect C of the device under test 10.

このように、レーザ超音波を用いると、広帯域の超音波を送受信できる点で有効である。   Thus, the use of laser ultrasonic waves is effective in that broadband ultrasonic waves can be transmitted and received.

ところで、図1および図2に示した欠陥評価装置16a,16bには、被検査体10に発生している欠陥Cの深さを推定する処理・手順が組み込まれている。   By the way, the defect evaluation apparatuses 16a and 16b shown in FIGS. 1 and 2 incorporate processing and procedures for estimating the depth of the defect C occurring in the inspection object 10.

図3は、被検査体10に発生している欠陥Cの深さを推定する処理手順である本発明に係る表面検査手法の第1実施形態を示すブロック図である。   FIG. 3 is a block diagram showing a first embodiment of the surface inspection method according to the present invention, which is a processing procedure for estimating the depth of the defect C occurring in the inspection object 10.

本実施形態に係る表面検査方法は、被検査体10に欠陥Cがあった場合、ここを透過し、減衰した透過信号を受信し(ステップ1)、この受信信号をアナログからデジタルに変換し(ステップ2)、デジタル信号に変換後、評価時間領域の切り出しを行う(ステップ3)。   In the surface inspection method according to the present embodiment, when the inspection object 10 has a defect C, the surface 10 is transmitted therethrough and an attenuated transmission signal is received (step 1), and the received signal is converted from analog to digital ( Step 2) After conversion into a digital signal, the evaluation time region is cut out (step 3).

この切り出しは、例えば図7に示すように、表面波のピーク値、あるいは予め定められた時間帯における振幅波形のうち、例えば縦波等を評価対象である。   For example, as shown in FIG. 7, this cut-out is performed by evaluating, for example, a longitudinal wave or the like of a peak value of a surface wave or an amplitude waveform in a predetermined time zone.

調査対象である特定領域が切り出される(ステップ3)と、その評価すべき時間領域におけるパワースペクトルT(f)、つまり周波数関数を算出し(ステップ4)、評価周波数領域におけるパワースペクトルの積分値Iを計算する(ステップ5)。   When the specific region to be investigated is cut out (step 3), the power spectrum T (f) in the time domain to be evaluated, that is, the frequency function is calculated (step 4), and the integrated value I of the power spectrum in the evaluation frequency domain is calculated. Is calculated (step 5).

この積分値Iは、離散的な周波数における欠陥を透過するパワースペクトルT(f)ではなく、評価すべき対象として特定した周波数帯域における積分値である。   This integral value I is not a power spectrum T (f) that passes through defects at discrete frequencies, but an integral value in a frequency band specified as an object to be evaluated.

この積分値Iは、特定した周波数帯域における最小周波数をf、最大周波数をfとするとき、

Figure 0004746365
The integral value I is expressed as follows: when the minimum frequency in the specified frequency band is f L and the maximum frequency is f H ,
Figure 0004746365

の式から求められる。 It can be obtained from the following formula.

また、デジタル値を考えた場合、周波数帯域全体でのデジタル積分値Jは、

Figure 0004746365
Also, when considering digital values, the digital integrated value J over the entire frequency band is
Figure 0004746365

を評価指標にする。 Is an evaluation index.

なお、上述のように特定した周波数帯域における積分値Iおよびそのデジタル積分値Jを健全部の表面波SRのパワースペクトルR(f)を用いて、規格化し、規格化された積分値Inormおよび規格化したそのデジタル積分値Jnormを、

Figure 0004746365
Note that the integral value I and its digital integral value J in the frequency band specified as described above are normalized using the power spectrum R (f) of the surface wave SR of the healthy part, and the normalized integral value I norm and The standardized digital integral value J norm is
Figure 0004746365

を評価指標にしてもよく、あるいは他の手法で規格化された特定周波数帯域における積分値Inorm−1および規格化されたデジタル積分値Jnorm−1を、

Figure 0004746365
May be used as an evaluation index, or an integrated value I norm−1 and a standardized digital integrated value J norm−1 in a specific frequency band standardized by another method are expressed as follows:
Figure 0004746365

を評価指標にしてもよい。 May be used as an evaluation index.

パワースペクトルの積分値Iが算出されると(ステップ5)、本実施形態は、試験片等で予め積分値・欠陥深さ換算関係線図を作成しておき(ステップ6)、この積分値・欠陥深さ換算関係線図に周波数の積分値Iをプロットして積分値・欠陥深さ換算値を算出する(ステップ7)。   When the integral value I of the power spectrum is calculated (step 5), in the present embodiment, an integral value / defect depth conversion relationship diagram is prepared in advance with a test piece or the like (step 6). The integrated value I of the frequency is plotted on the defect depth conversion relationship diagram to calculate the integrated value / defect depth converted value (step 7).

そして、被検査体10に発生する欠陥Cの深さは、ディスプレイ等で表示される(ステップ8)。   Then, the depth of the defect C occurring in the inspection object 10 is displayed on a display or the like (step 8).

このように、本実施形態は、評価すべき周波数領域におけるパワースペクトルを積分し、この積分値Iを予め作成しておいた積分値欠陥深さ換算関係線図に照合し、被検査体10の欠陥Cの深さを推定するので、ノイズの影響を受けることなく正確に欠陥の深さを推定することができる。   As described above, in the present embodiment, the power spectrum in the frequency region to be evaluated is integrated, and this integrated value I is collated with a previously prepared integrated value defect depth conversion relationship diagram, Since the depth of the defect C is estimated, the depth of the defect can be accurately estimated without being affected by noise.

図4は、図1および図2に示した欠陥評価装置16a,16bに組み込まれている被検査体10の欠陥Cの深さを推定する処理手順である本発明に係る表面検査方法の第2実施形態を示すブロック図である。   FIG. 4 shows a second surface inspection method according to the present invention, which is a processing procedure for estimating the depth of the defect C of the inspection object 10 incorporated in the defect evaluation apparatuses 16a and 16b shown in FIGS. It is a block diagram which shows embodiment.

本実施形態に係る表面検査方法は、評価対象領域の評価指標求める際、個々の周波数fにおける透過信号のパワースペクトル(f)に評価すべき対象領域における周波数帯域に重み(周波数変動分布をより鮮明に拡大)をつける重み関数W(f)を乗算し、規格化した透過パワースペクトルE(f)を
[数8]
E(f)=W(f)×T(f)
として評価指標に用いるとともに、この重み関数W(f)を被検査体10の健全部を通過する通過波のパワースペクトルR(f)と欠陥部を透過する透過波のパワースペクトルT(f)の両方に適用したものである。
In the surface inspection method according to the present embodiment, when an evaluation index of an evaluation target region is obtained, the frequency band in the target region to be evaluated is weighted (frequency variation distribution becomes clearer) in the power spectrum (f) of the transmission signal at each frequency f. The transmission power spectrum E (f) normalized by multiplying the weight function W (f) with
E (f) = W (f) × T (f)
And the weight function W (f) of the power spectrum R (f) of the passing wave that passes through the healthy part of the object 10 and the power spectrum T (f) of the transmitted wave that passes through the defect part. It applies to both.

ここで、重み関数W(f)の一つの例としては、被検査体10の健全部における通過波のパワースペクトルR(f)の逆関数が適用される。   Here, as one example of the weighting function W (f), an inverse function of the power spectrum R (f) of the passing wave in the healthy part of the device under test 10 is applied.

このときの規格化した通過パワースペクトルE(f)は、

Figure 0004746365
The normalized passing power spectrum E (f) at this time is
Figure 0004746365

として表わすことができる。 Can be expressed as

また、重み関数W(f)は、
[数10]
W(f)=f
と置き換えで適用することができる。
The weight function W (f) is
[Equation 10]
W (f) = f n
And can be applied by replacement.

このように重み関数W(f)を周波数fのfに置き換えると、評価すべき対象となる特定周波数の変化が著しく鮮明になり、評価指標がより明確になる。 Thus replacing the weighting function W (f) is the f n frequency f, the change of the specific frequency of interest to be evaluated becomes remarkably sharp, metrics become clearer.

ここで、nは任意に決めることができるが、例えば微小欠陥の検出感度を高める高周波数領域に着目したい場合、n≧1の数を採用すればよい。   Here, n can be determined arbitrarily. For example, when it is desired to pay attention to a high frequency region that enhances the detection sensitivity of a minute defect, a number of n ≧ 1 may be employed.

また、伝播経路における支配的な減衰因子が材料中の転移、あるいは結晶粒による散乱であると特定できる場合、転移による減衰は、一般に周波数fに比例し、さらに粒界散乱による減衰は周波数fに比例する物理モデルからn=2あるいはn=4を採用するとよい。   When the dominant attenuation factor in the propagation path can be specified as the transition in the material or the scattering by the crystal grains, the attenuation due to the transition is generally proportional to the frequency f, and the attenuation due to the grain boundary scattering is the frequency f. It is preferable to adopt n = 2 or n = 4 from the proportional physical model.

このような重み関数W(f)を適用するとき、本実施形態は、まず、被検査体10の健全部19における調査特定対象で、評価すべき時間領域のパワースペクトルR(f)を算出し(ステップ4a)、算出したパワースペクトルR(f)のうち、評価周波数f,f,…,fに重み関数を乗算し、各評価すべき周波数f,f,…,fの重み付け計算を行い(ステップ4a,4a,…,4a)、各評価すべき周波数f,f,…,fの減衰量α(f),α(f),…,α(f)の計算を行う(ステップ4b,4b,…,4b)。 When applying such a weighting function W (f), the present embodiment first calculates a power spectrum R (f) in the time domain to be evaluated on the investigation specific object in the healthy part 19 of the object 10 to be inspected. (Step 4a) Of the calculated power spectrum R (f), the evaluation frequencies f 1 , f 2 ,..., F n are multiplied by a weight function, and the frequencies f 1 , f 2 ,. It performs weighting calculation (step 4a 1, 4a 2, ..., 4a n), the frequency f 1, f 2 to be the evaluation, ..., attenuation of f n α (f 1), α (f 2), ... , Α (f n ) is calculated (steps 4b 1 , 4b 2 ,..., 4b n ).

各評価すべき周波数f,f,…,fの減衰量α(f),α(f),…,α(f)が算出されると(ステップ4b,4b,…,4b)、本実施形態は、試験片等で予め減衰量欠陥深さのデータベースを作成しておき(ステップ6a)、このデータベースに上述各評価すべき周波数f,f,…,fの減衰量α(f),α(f),…,α(f)を照合し、欠陥深さ換算値を算出する(ステップ7a)。 When the attenuation amounts α (f 1 ), α (f 2 ),..., Α (f n ) of the frequencies f 1 , f 2 ,..., F n to be evaluated are calculated (steps 4 b 1 , 4 b 2 ,. , 4b n ), in this embodiment, a database of attenuation defect depths is created in advance using a test piece or the like (step 6a), and the frequencies f 1 , f 2 ,. attenuation of f n α (f 1), α (f 2), ..., checks the alpha (f n), calculates the defect depth conversion value (step 7a).

そして、被検査体10に発生する欠陥Cの深さは、ディスプレイ等で表示される(ステップ8a)。   Then, the depth of the defect C occurring in the inspection object 10 is displayed on a display or the like (step 8a).

また、本実施形態は、被検査体10の欠陥部20に対しても上述と同様にパワースペクトルT(f)を算出し(ステップ4b)、各評価すべき周波数f,f,…,fの重み付け計算を行い(ステップ4c,4c,…,4c)、さらに各評価すべき周波数f,f,…,fの減衰量α(f),α(f),…,α(f)の計算を行い(ステップ4d,4d,…,4d)、上述、予め作成しておいたデータベース(ステップ6b)に減衰量α(f),α(f),…,α(f)を照合させ、欠陥深さ換算値を算出し、このデータ情報をディスプレイする(ステップ7b,ステップ8b)。 Further, in the present embodiment, the power spectrum T (f) is calculated for the defective portion 20 of the inspection object 10 in the same manner as described above (step 4b), and the frequencies f 1 , f 2 ,. It performs weighting calculation of f n (step 4c 1, 4c 2, ..., 4c n), the frequency f 1, f 2 to be evaluated and each, ..., attenuation of f n α (f 1), α (f 2 ,..., Α (f n ) are calculated (steps 4d 1 , 4d 2 ,..., 4d n ), and the attenuation amount α (f 1 ), α is added to the previously created database (step 6b). (F 2 ),..., Α (f n ) are collated, a defect depth converted value is calculated, and this data information is displayed (step 7b, step 8b).

なお、他のステップは、第1実施形態におけるステップと同一なので、同一符号または同一符号の添字a,bを付すだけにとどめ、重複説明を省略する。   Since other steps are the same as those in the first embodiment, the same reference numerals or subscripts “a” and “b” are only added, and redundant description is omitted.

このように、本実施形態は、被検査体10の健全部19および欠陥部20ともに、評価周波数f,f,…,fの重み付け計算を行い(ステップ4a,4a,…,4a)、各評価すべき周波数f,f,…,fの減衰量α(f),α(f),…,α(f)を算出し(ステップ4b,4b,…,4b)、算出した減衰量α(f),α(f),…,α(f)を予め作成しておいたデータベース(ステップ6a,6b)に照合し、欠陥深さ換算値を算出する(ステップ7a,7b)ので、被検査体10の欠陥Cが微小であっても、精度高く検出することができる。 As described above, in the present embodiment, the weighting calculation of the evaluation frequencies f 1 , f 2 ,..., F n is performed on both the healthy part 19 and the defective part 20 of the inspection object 10 (steps 4 a 1 , 4 a 2 ,. 4a n ), attenuation amounts α (f 1 ), α (f 2 ),..., Α (f n ) of the frequencies f 1 , f 2 ,..., F n to be evaluated are calculated (steps 4 b 1 , 4 b). 2 ,..., 4 b n ) and the calculated attenuation amounts α (f 1 ), α (f 2 ),..., Α (f n ) are collated with a database (steps 6 a and 6 b) created in advance, and defects are detected. Since the depth converted value is calculated (steps 7a and 7b), even if the defect C of the inspection object 10 is very small, it can be detected with high accuracy.

図5は、図1および図2に示した欠陥評価装置16a,16bに組み込まれている被検査体10の欠陥Cの深さを推定する処理手順である本発明に係る表面検査方法の第3実施形態を示すブロック図である。   FIG. 5 shows a third example of the surface inspection method according to the present invention, which is a processing procedure for estimating the depth of the defect C of the inspection object 10 incorporated in the defect evaluation apparatuses 16a and 16b shown in FIGS. It is a block diagram which shows embodiment.

本実施形態に係る表面検査方法は、評価すべき時間領域のパワースペクトルT(f)を算出した後(ステップ4)、算出したパワースペクトルT(f)と重み付け関数W(f)の積を計算し(ステップ5a)、さらに評価すべき周波数領域における重み付けパワースペクトルW(f)×T(f)の積分値を計算し(ステップ5b)、予め作成しておいた重み付けパワースペクトルの積分値−欠陥深さの関係を示す換算関数(ステップ6c)に上述の重み付けパワースペクトルW(f)×T(f)の積分値を照合し、積分値−欠陥深さ換算値を求め(ステップ7c)、求めた積分値−欠陥深さ換算値からの欠陥深さをディスプレイしたものである(ステップ8c)。   The surface inspection method according to the present embodiment calculates the power spectrum T (f) in the time domain to be evaluated (step 4), and then calculates the product of the calculated power spectrum T (f) and the weighting function W (f). (Step 5a), and further, the integrated value of the weighted power spectrum W (f) × T (f) in the frequency domain to be evaluated is calculated (Step 5b), and the integrated value of the weighted power spectrum prepared in advance-defects The integral value of the above-mentioned weighted power spectrum W (f) × T (f) is collated with the conversion function (step 6c) indicating the depth relationship, and the integral value-defect depth conversion value is obtained (step 7c). The defect depth from the integrated value-defect depth conversion value is displayed (step 8c).

ここで、ステップ5bにおける重み付けパワースペクトルW(f)×T(f)の積分値Iは、評価指標として次式で求めることができる。

Figure 0004746365
Here, the integrated value I of the weighted power spectrum W (f) × T (f) in step 5b can be obtained as the evaluation index by the following equation.
Figure 0004746365

また、デジタル値を考えた場合、周波数帯域全体でのデジタル積分値Jは、

Figure 0004746365
Also, when considering digital values, the digital integrated value J over the entire frequency band is
Figure 0004746365

を評価指標として求めることができる。 Can be obtained as an evaluation index.

なお、上述特定した周波数帯域における積分値およびデジタル積分値Jを被検査体10の健全部19の表面波SRのパワースペクトルR(f)を用いて規格化し、規格化された積分値Inormおよび規格化されたデジタル積分値Jnormを、

Figure 0004746365
The integrated value and digital integrated value J in the frequency band specified above are normalized using the power spectrum R (f) of the surface wave SR of the healthy part 19 of the device under test 10, and the normalized integrated value I norm and Standardized digital integral value J norm
Figure 0004746365

として評価指標にしてもよく、あるいは他の手法で規格された特定周波数帯域における積分値Inorm−1および規格化されたデジタル積分値Jnorm−1を、

Figure 0004746365
As an evaluation index, or an integrated value I norm−1 and a standardized digital integrated value J norm−1 in a specific frequency band standardized by other methods,
Figure 0004746365

として評価指標にしてもよい。 As an evaluation index.

また、被検査体10の欠陥部20を透過する透過信号のパワースペクトルT(f)で規格すると、欠陥部20を透過する透過波の積分値Imomentumおよび規格化されたデジタル積分値Jmomentumを、

Figure 0004746365
Further, when the power spectrum T (f) of the transmission signal transmitted through the defect portion 20 of the inspection object 10 is standardized, the integral value I momentum of the transmitted wave transmitted through the defect portion 20 and the standardized digital integration value J momentum are obtained. ,
Figure 0004746365

あるいは、これらをさらにR(f)またはその積分値で規格化した値を評価指標にしてもよい。   Alternatively, a value obtained by further normalizing these with R (f) or an integral value thereof may be used as the evaluation index.

また、他のステップは、第1実施形態におけるステップと同一なので、同一符号または同一符号の添字a,b,cを付し、重複説明を省略する。   Further, since the other steps are the same as those in the first embodiment, the same reference numerals or subscripts a, b, and c are attached, and redundant description is omitted.

このように、本実施形態は、評価すべき時間領域のパワースペクトルT(f)を算出し(ステップ4)、算出したパワースペクトルT(f)と重み付け関数W(f)の積を計算し(ステップ5a)、評価周波数領域における重み付けパワースペクトルW(f)×T(f)の積分値を計算し(ステップ5b)、被検査体10の欠陥深さ換算して推定する(ステップ6c,ステップ7c)ので、ノイズの影響を受けることなく、正確に欠陥の深さを推定することができる。   Thus, the present embodiment calculates the power spectrum T (f) in the time domain to be evaluated (step 4), and calculates the product of the calculated power spectrum T (f) and the weighting function W (f) ( Step 5a), the integral value of the weighted power spectrum W (f) × T (f) in the evaluation frequency region is calculated (Step 5b), and the defect depth of the inspection object 10 is converted and estimated (Step 6c, Step 7c). Therefore, the depth of the defect can be accurately estimated without being affected by noise.

図6は、図1および図2に示した欠陥評価装置16a,16bに組み込まれている被検査体10の欠陥Cの深さを推定する処理手順である本発明に係る表面検査方法の第4実施形態を示すブロック図である。   FIG. 6 shows a fourth of the surface inspection method according to the present invention, which is a processing procedure for estimating the depth of the defect C of the inspection object 10 incorporated in the defect evaluation apparatuses 16a and 16b shown in FIGS. It is a block diagram which shows embodiment.

本実施形態に係る表面検査方法は、校正試験片欠陥深さ算出部21、実機健全部データ情報収集部22および実機欠陥深さ算出部23との3つの工程に区分けするとともに、校正試験片欠陥深さ算出部21で評価指標−欠陥深さ換算関数g−1(I)を導出し、この導出された評価指標−欠陥深さ換算関数g−1(I)と実機健全部データ情報収集部22で導出した補正された重み付けパワースペクトルの積分値−欠陥深さの関係を示す換算関数と実機欠陥深さ算出部23の評価周波数領域における重み付けパワースペクトルW(f)×T(f)の積分値Iとから積分値−欠陥深さ換算値を求め、実機欠陥の深さを推定したものである。 The surface inspection method according to the present embodiment is divided into three steps of a calibration test piece defect depth calculation unit 21, an actual machine sound part data information collection unit 22, and an actual machine defect depth calculation unit 23, and a calibration test piece defect. The depth calculation unit 21 derives the evaluation index-defect depth conversion function g -1 (I), and the derived evaluation index-defect depth conversion function g -1 (I) and the actual machine healthy part data information collection unit. The integration function of the weighted power spectrum W (f) × T (f) in the evaluation frequency region of the actual machine defect depth calculation unit 23 and the conversion function indicating the relationship between the integrated value of the corrected weighted power spectrum derived in 22 and the defect depth. The integral value-defect depth conversion value is obtained from the value I, and the depth of the actual machine defect is estimated.

なお、校正試験片欠陥深さ算出部21、実機健全部データ情報収集部22および実機欠陥深さ算出部23での処理手順は、第1実施形態から第3実施形態で示したステップ1〜ステップ8cのうち、いずれかのステップと同一なので、ここでは重複説明を省略する。   The processing procedures in the calibration specimen defect depth calculation unit 21, the actual machine sound part data information collection unit 22, and the actual machine defect depth calculation unit 23 are the steps 1 to 3 shown in the first to third embodiments. Since 8c is the same as one of the steps, a duplicate description is omitted here.

但し、校正試験片欠陥深さ算出部21は、以下の処理手順で評価指標−欠陥深さ換算関数g−1(I)を導出する。 However, the calibration specimen defect depth calculation unit 21 derives the evaluation index-defect depth conversion function g −1 (I) by the following processing procedure.

まず、健全部(欠陥深さd=0)を含み、少なくとも2つ以上の異なる既知の深さd,d,…,dの欠陥を有する校正試験片を準備する。ここで、欠陥長さは、用いる表面波ビームの幅と比べて十分長い欠陥長さを有し、かつ最大深さdは、実際の検査作業で検査すべき最大深さよりも深いものになっている。 First, comprises normal area (defect depth d 0 = 0), at least two different known depths d 1, d 2, ..., to prepare the calibration test piece having a defect d n. Here, the defect length has a sufficiently long defect length compared to the width of the surface wave beam to be used, and the maximum depth dn is deeper than the maximum depth to be inspected in an actual inspection operation. ing.

また、校正試験片は、上述の欠陥を有するだけでなく、実際に検査する被検査体10と、表面状態および超音波特性(音速、減衰特性など)ができるだけ同等なものが望ましい。被検査体10の現在の状態が特定できない場合には、製造時のデータに基づき表面状態および超音波特性(音速、減衰特性など)を可能な限り模擬するのでもよい。   Further, it is desirable that the calibration test piece not only has the above-described defects, but also has a surface condition and ultrasonic characteristics (such as sound speed and attenuation characteristics) that are as equal as possible to the object 10 to be actually inspected. If the current state of the object to be inspected 10 cannot be specified, the surface state and ultrasonic characteristics (sound speed, attenuation characteristics, etc.) may be simulated as much as possible based on manufacturing data.

この校正試験片において、各欠陥深さd,d,…,dに対して透過表面波を計測し、その結果に第1実施形態から第3実施形態における算出値を適用し、校正用の評価指標としての積分値I(d)またはデジタル積分値J(d)(以降の説明では、簡単に説明するためI(d)で代表する)を算出する。求めた積分値I(d)と既知の欠陥深さdの関係を関数形でフィッティングし、その結果g(d)から評価指標−欠陥深さの換算関数g−1(I)を求める。 In this calibration test pieces, each defect depth d 1, d 2, ..., the transmitted surface wave measured with respect to d n, by applying the first embodiment to the result calculated value in the third embodiment, calibration An integrated value I c (d) or a digital integrated value J c (d) (represented by I c (d) in the following description for the sake of simplicity) is calculated as an evaluation index. The relationship between the obtained integrated value I c (d) and the known defect depth d is fitted in a function form, and an evaluation index-defect depth conversion function g −1 (I) is obtained from the result g (d).

また、実際の検査時には、感度などの計測条件は校正試験時と可能な限り一定とする必要があるが、やむを得ず変更する場合を考えて以下の手順を採る。   In actual inspections, the measurement conditions such as sensitivity must be as constant as possible as in the calibration test, but the following procedure is taken in consideration of unavoidable changes.

まず、実際の検査時には、欠陥がないことを保障できる部分に、健全部の透過表面波を計測し、その結果に第1実施形態から第3実施形態における算出値を適用して、ゼロ(0)の評価指標I(0)を算出する。これを、校正試験体でのゼロ(0)データI(0)と比較して、評価指標−欠陥深さの換算関数g−1(I)の再校正を行う。 First, at the time of actual inspection, a transmitted surface wave of a healthy part is measured at a part where it can be guaranteed that there is no defect, and the calculated value in the first to third embodiments is applied to the result, and zero (0 ) Evaluation index I (0). This is compared with zero (0) data I c (0) in the calibration specimen, and the evaluation index-defect depth conversion function g −1 (I) is recalibrated.

再校正の方法は、校正条件と実際の計測条件との違いに応じて
[数16]
I=g(d)−(I(0)−I(0))
あるいは、β=I(0)/I(0)を導入して、
[数17]
I=β・g(d)
とし、その逆関数g−1(I)またはJ−1(I)として求める。
The recalibration method depends on the difference between the calibration condition and the actual measurement condition.
I = g (d) − (I c (0) −I (0))
Alternatively, β = I (0) / I c (0) is introduced,
[Equation 17]
I = β · g (d)
And its inverse function g −1 (I) or J −1 (I).

このように、本実施形態は、実機欠陥深さを推定するとき、3つに区分けした校正試験片欠陥深さ算出部21、実機健全部データ情報収集部22および実機欠陥深さ算出部23のそれぞれで導出した換算関数と重み付けパワースペクトルW(f)×T(f)の積分値とから欠陥深さを算出し、欠陥深さを推定するので、ノイズに影響を受けることなく、正確に欠陥の深さを推定することができる。   As described above, according to the present embodiment, when the actual machine defect depth is estimated, the calibration test piece defect depth calculation unit 21, the actual machine sound part data information collection unit 22, and the actual machine defect depth calculation unit 23 divided into three are divided. The defect depth is calculated from the conversion function derived by each and the integral value of the weighted power spectrum W (f) × T (f) and the defect depth is estimated, so that the defect is accurately detected without being affected by noise. Can be estimated.

本発明に係る表面検査装置の第1実施形態を示す概念図。The conceptual diagram which shows 1st Embodiment of the surface inspection apparatus which concerns on this invention. 本発明に係る表面検査装置の第2実施形態を示す概念図。The conceptual diagram which shows 2nd Embodiment of the surface inspection apparatus which concerns on this invention. 本発明に係る表面検査方法の第1実施形態を示すブロック図。The block diagram which shows 1st Embodiment of the surface inspection method which concerns on this invention. 本発明に係る表面検査方法の第2実施形態を示すブロック図。The block diagram which shows 2nd Embodiment of the surface inspection method which concerns on this invention. 本発明に係る表面検査方法の第3実施形態を示すブロック図。The block diagram which shows 3rd Embodiment of the surface inspection method which concerns on this invention. 本発明に係る表面検査方法の第4実施形態を示すブロック図。The block diagram which shows 4th Embodiment of the surface inspection method which concerns on this invention. 本発明に係る表面検査方法に適用する表面波の波形のうち、評価対象領域としての切り出しを示す図。The figure which shows the cut-out as an evaluation object area | region among the waveforms of the surface wave applied to the surface inspection method which concerns on this invention. 本発明に係る表面検査装置において、送信用超音波探触子および受信用超音波探触子の被検査体走査中に検出する欠陥の位置を示す図。The figure which shows the position of the defect detected during the to-be-inspected object scan of the ultrasonic probe for transmission, and the ultrasonic probe for reception in the surface inspection apparatus which concerns on this invention. 本発明に係る表面検査装置において、表面波が被検査体の健全部および欠陥を伝播するときの波形で、健全部をゼロとしたときの欠陥部の評価指標を示す図。The surface inspection apparatus which concerns on this invention WHEREIN: The figure which shows the evaluation parameter | index of a defective part when a healthy part is made into the waveform when a surface wave propagates the healthy part and defect of a to-be-inspected object. 従来の表面検査装置を示す概念図。The conceptual diagram which shows the conventional surface inspection apparatus. 理想的な表面波のパワースペクトル分布と実際に計測されるパワースペクトル分布とを比較するパワースペクトル比較線図。The power spectrum comparison diagram which compares the power spectrum distribution of an ideal surface wave with the power spectrum distribution actually measured. 周波数と被検査体の欠陥深さとの関係を示す浸透深さ線図。The penetration depth diagram which shows the relationship between a frequency and the defect depth of a to-be-inspected object.

符号の説明Explanation of symbols

1 発信器
2 送信用超音波探触子
3 受信用超音波探触子
4 受信器
5 データ解析装置
10 被検査体
11a,11b 超音波伝播層
12 送信用超音波探触子
13 受信用超音波探触子
14 発信器
15 受信器
16a,16b 欠陥評価装置
17 超音波送信用レーザ装置
18 超音波受信用レーザ装置
19 健全部
20 欠陥部
21 校正試験片欠陥深さ算出部
22 実機健全部データ情報収集部
23 実機欠陥深さ算出部
DESCRIPTION OF SYMBOLS 1 Transmitter 2 Transmission ultrasonic probe 3 Reception ultrasonic probe 4 Receiver 5 Data analysis apparatus 10 Inspected object 11a, 11b Ultrasonic propagation layer 12 Transmission ultrasonic probe 13 Reception ultrasonic wave Probe 14 Transmitter 15 Receiver 16a, 16b Defect evaluation device 17 Ultrasonic transmission laser device 18 Ultrasonic reception laser device 19 Sound portion 20 Defect portion 21 Calibration test piece defect depth calculation portion 22 Actual device sound portion data information Collection unit 23 Actual machine defect depth calculation unit

Claims (6)

表面波を用いて被検査体の欠陥を透過させた周波数帯域の透過波の強度の減衰率から前記被検査体の欠陥の深さを推定する表面検査方法において、前記被検査体の欠陥を透過する透過波のパワースペクトルを計算するステップと、評価すべき周波数帯域における前記透過波のパワースペクトルを積分し、その積分値を計算するステップと、予め作成しておいた校正用の積分値−欠陥深さの換算手段に前記計算した積分値を照合して前記被検査体の欠陥深さを算出するステップと、算出した前記被検査体の欠陥深さを表示するステップとを備えることを特徴とする表面検査方法。 In a surface inspection method for estimating a defect depth of an object to be inspected from an attenuation rate of intensity of a transmitted wave in a frequency band in which the defect of the object to be inspected is transmitted using a surface wave, the defect of the object to be inspected is transmitted. Calculating the power spectrum of the transmitted wave to be integrated, integrating the power spectrum of the transmitted wave in the frequency band to be evaluated, calculating the integrated value thereof, and a previously prepared integral value for calibration-defect Comparing the calculated integral value with a depth conversion means to calculate the defect depth of the object to be inspected, and displaying the calculated defect depth of the object to be inspected. Surface inspection method. 表面波を用いて被検査体の欠陥を透過させた周波数帯域の透過波の強度の減衰率から前記被検査体の欠陥の深さを推定する表面検査方法において、前記被検査体の欠陥の深さの推定に際し、前記被検査体の領域を健全部と欠陥部とに区分けし、区分けした健全部を透過する透過波のパワースペクトルを計算するステップと、前記健全部における評価すべき周波数成分毎に重み付けを与える重み付け関数を計算するステップと、前記区分けした欠陥部を透過する透過波のパワースペクトルを計算するステップと、前記欠陥部における評価すべき周波数成分毎に重み付けを与える重み付け関数を計算するステップと、前記区分けした健全部における評価すべき周波数成分毎の重み付けパワースペクトルの値と前記区分けした欠陥部における評価すべき周波数成分毎の重み付けパワースペクトルの値とから評価すべき周波数成分毎の減衰量を計算するステップと、予め作成しておいた校正用の減衰量−欠陥深さのデータベースに前記計算した減衰量を照合して前記被検査体の欠陥深さを算出するステップと、算出した前記被検査体の欠陥深さを表示するステップとを備えることを特徴とする表面検査方法。 In the surface inspection method for estimating the defect depth of the inspection object from the attenuation rate of the intensity of the transmitted wave in the frequency band that has transmitted the defect of the inspection object using the surface wave, the depth of the defect of the inspection object In estimating the length, the step of dividing the region of the object to be inspected into a healthy part and a defective part, calculating a power spectrum of a transmitted wave that passes through the separated healthy part, and for each frequency component to be evaluated in the healthy part A step of calculating a weighting function that gives a weight to the component, a step of calculating a power spectrum of a transmitted wave that passes through the classified defect portion, and a weighting function that gives a weight to each frequency component to be evaluated in the defect portion and steps to evaluate the value and the division defect portion weighting the power spectrum of each frequency component to be evaluated in the normal area that the division Steps and attenuation for calibrating prepared in advance to calculate the attenuation of each frequency component to be voted to the value of weighting the power spectrum of each can frequency components - the calculated attenuation in the database of defect depth A surface inspection method comprising: a step of calculating the defect depth of the inspection object by comparing the above and a step of displaying the calculated defect depth of the inspection object. 表面波を用いて被検査体の欠陥を透過させた周波数帯域の透過波の強度の減衰率から前記被検査体の欠陥の深さを推定する表面検査方法において、前記被検査体の欠陥を透過する透過波のパワースペクトルを計算するステップと、前記透過波のパワースペクトル重み付け関数の積を計算するステップと、評価すべき周波数領域における前記重み付けパワースペクトルの積分値を計算するステップと、予め作成しておいた校正用の重み付けパワースペクトルの積分値−欠陥深さの換算手段に前記計算した重み付けパワースペクトルの積分値を照合して前記被検査体の欠陥深さを算出するステップと、算出した前記被検査体の欠陥深さを表示するステップとを備えることを特徴とする表面検査方法。 In a surface inspection method for estimating a defect depth of an object to be inspected from an attenuation rate of intensity of a transmitted wave in a frequency band in which the defect of the object to be inspected is transmitted using a surface wave, the defect of the object to be inspected is transmitted. A power spectrum of the transmitted wave to be calculated; a step of calculating a product of the power spectrum of the transmitted wave and a weighting function; a step of calculating an integral value of the weighted power spectrum in a frequency domain to be evaluated; The step of calculating the defect depth of the object to be inspected by comparing the calculated integral value of the weighted power spectrum with the weighted power spectrum integral value for calibration-defect depth conversion means previously calculated, and And a step of displaying a defect depth of the object to be inspected. 表面波を用いて被検査体の欠陥を透過させた周波数帯域の透過波の強度の減衰率から前記被検査体の欠陥の深さを推定する表面検査方法において、前記被検査体の欠陥の深さの推定する工程を、校正試験片欠陥深さ算出工程、実機健全部データ情報収集工程および実機欠陥深さ算出工程とに区分けし、区分けした校正試験片欠陥深さ算出工程において、評価すべき時間領域におけるパワースペクトルを算出するステップと、このパワースペクトルと重み付け関数の積を計算するステップと、評価すべき周波数領域における重み付けパワースペクトルの積分値を計算するステップと、欠陥の深さから換算関数を導出するステップと、区分けした前記実機健全部データ情報収集工程において、評価すべき時間領域のパワースペクトルを算出するステップと、このパワースペクトルと重み付け関数の積を計算するステップと、評価すべき周波数領域における重み付けパワースペクトルの積分値を計算するステップと、前記校正試験片欠陥深さ算出工程における健全な試験片のデータを基にして補正した重み付けパワースペクトルの積分値−欠陥深さの換算関数を導出するステップと、区分けした前記実機欠陥深さ算出工程において、評価すべき時間領域のパワースペクトルを算出するステップと、このパワースペクトルと重み付け関数の積を計算するステップと、評価すべき周波数領域における重み付けパワースペクトルの積分値を計算するステップと、前記実機健全部データ情報収集工程で導出された重み付けパワースペクトルの積分値−欠陥深さの換算関数に前記計算した重み付けパワースペクトルの積分値を照合して前記被検査体の欠陥深さを算出するステップと、算出した前記被検査体の欠陥深さを表示するステップとを備えることを特徴とする表面検査方法。 In the surface inspection method for estimating the defect depth of the inspection object from the attenuation rate of the intensity of the transmitted wave in the frequency band that has transmitted the defect of the inspection object using the surface wave, the depth of the defect of the inspection object is the estimation to step calibration test strip defect depth calculating step, is divided into a actual healthy section data information acquisition process and the actual defect depth calculating step, the calibration test strip defect depth calculating steps sectioned, to be evaluated A step of calculating a power spectrum in the time domain, a step of calculating a product of the power spectrum and a weighting function, a step of calculating an integrated value of the weighted power spectrum in the frequency domain to be evaluated, and a conversion function from the depth of the defect deriving, in the actual sound unit data information collection step that is divided, scan to calculate the power spectrum of the time to be evaluated area And-up, calculating a product of the weighting function the power spectrum, and calculating the integral value of the weighted power spectrum in the frequency domain to be evaluated, healthy specimens in the calibration test strip defect depth calculating step integral value of weighting the power spectrum data corrected based on the - calculating deriving the conversion function of the defect depth, in the actual defect depth calculating step was divided, the power spectrum of the time domain to be evaluated A step of calculating a product of the power spectrum and a weighting function, a step of calculating an integrated value of the weighted power spectrum in the frequency domain to be evaluated, and the weighted power spectrum derived in the actual machine healthy part data information collecting step The calculated weighting parameter is used as the integral value-defect depth conversion function. Step a, surface inspection method characterized by comprising the steps of calculating by said displaying the defect depth of the device under test to calculate the defect depth of the object to be inspected by matching an integral value of over spectrum. 重み付け関数は、周波数をfとし、自然数をnとするとき、
[数1]
W(f)=f
の関数形であることを特徴とする請求項2,3,4のいずれか1項に記載の表面検査方法。
When the frequency is f and the natural number is n,
[Equation 1]
W (f) = f n
The surface inspection method according to claim 2 , wherein the surface inspection method is a function form of
透過波の周波数は、その波形のうち、表面波ピーク値および縦波のいずれか一方を選択することを特徴とする請求項1,2,3,4のいずれか1項に記載の表面検査方法。 Frequency of the transmission wave table Mencken described Of waveform, any one of claims 1, 2, 3, 4, characterized in that selects either one surface wave peak value and the longitudinal Survey method.
JP2005199469A 2005-07-07 2005-07-07 Surface inspection method Active JP4746365B2 (en)

Priority Applications (20)

Application Number Priority Date Filing Date Title
JP2005199469A JP4746365B2 (en) 2005-07-07 2005-07-07 Surface inspection method
EP09013804A EP2157426B1 (en) 2005-07-07 2006-07-06 Laser-based apparatus for ultrasonic detection
DE602006010941T DE602006010941D1 (en) 2005-07-07 2006-07-06 Laser-based maintenance device
EP09013807A EP2148196A1 (en) 2005-07-07 2006-07-06 Laser-based apparatus for ultrasonic flaw detection
EP10179269A EP2278324B1 (en) 2005-07-07 2006-07-06 Surface inspecting method using a surface wave
EP06014082A EP1742049B1 (en) 2005-07-07 2006-07-06 Laser-based maintenance apparatus
EP09013808A EP2148197B1 (en) 2005-07-07 2006-07-06 Ultrasonic laser-based maintenance apparatus
US11/480,959 US7728967B2 (en) 2005-07-07 2006-07-06 Laser-based maintenance apparatus
EP09013803A EP2159575B1 (en) 2005-07-07 2006-07-06 Laser-based apparatus for ultrasonic flaw detection
EP09013802A EP2148195A1 (en) 2005-07-07 2006-07-06 Laser-based apparatus for ultrasonic flaw detection
KR1020060063913A KR100830107B1 (en) 2005-07-07 2006-07-07 Laser-based maintenance apparatus
KR1020070119215A KR101067704B1 (en) 2005-07-07 2007-11-21 Laser ultrasonic detection device
KR1020070119216A KR101067705B1 (en) 2005-07-07 2007-11-21 Laser ultrasonic inspecting device and laser ultrasonic inspecting system
KR1020070119218A KR101097814B1 (en) 2005-07-07 2007-11-21 Surface inspecting method and surface inspecting device
KR1020070119217A KR20070118214A (en) 2005-07-07 2007-11-21 Ultrasonic inspecting device and ultrasonic inspecting method
US12/766,517 US8115936B2 (en) 2005-07-07 2010-04-23 Laser ultrasonic detection device including a laser oscillating device which includes a seed laser oscillating element
US12/766,475 US8497986B2 (en) 2005-07-07 2010-04-23 Laser-based maintenance apparatus using ultrasonic wave detection for flaw analysis and repair
US12/766,445 US8094297B2 (en) 2005-07-07 2010-04-23 Laser-based maintenance apparatus for inspecting flaws
KR1020110085782A KR101150923B1 (en) 2005-07-07 2011-08-26 Surface inspecting method and surface inspecting device
US13/236,322 US8248595B2 (en) 2005-07-07 2011-09-19 Laser-based maintenance apparatus for inspecting flaws based on a generated surface wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199469A JP4746365B2 (en) 2005-07-07 2005-07-07 Surface inspection method

Publications (2)

Publication Number Publication Date
JP2007017300A JP2007017300A (en) 2007-01-25
JP4746365B2 true JP4746365B2 (en) 2011-08-10

Family

ID=37754589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199469A Active JP4746365B2 (en) 2005-07-07 2005-07-07 Surface inspection method

Country Status (1)

Country Link
JP (1) JP4746365B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5078952B2 (en) * 2009-07-27 2012-11-21 飛島建設株式会社 Crack depth measurement method
JP5325697B2 (en) * 2009-08-05 2013-10-23 オリンパス株式会社 Observation method and observation apparatus
CN103119433B (en) 2010-09-15 2015-07-22 西门子奥钢联冶金技术有限公司 Device for inspecting a moving metal strip
JP5856753B2 (en) * 2011-04-27 2016-02-10 公益財団法人レーザー技術総合研究所 Crack depth measuring device and measuring method
JP6351551B2 (en) * 2015-07-14 2018-07-04 三菱電機株式会社 Semiconductor device, degradation evaluation method for semiconductor device, and system including semiconductor device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156966A (en) * 1984-08-28 1986-03-22 Furukawa Mining Co Ltd Slack detection system for drilling rod
JPH0454447A (en) * 1990-06-25 1992-02-21 Ishikawajima Harima Heavy Ind Co Ltd Fatigue damage measuring method
JPH10213573A (en) * 1997-01-28 1998-08-11 Nkk Corp Estimating method for surface layer damage
JPH11142375A (en) * 1997-11-10 1999-05-28 Ishikawajima Harima Heavy Ind Co Ltd Method for detecting minute defect of butt welded joint
JPH11295179A (en) * 1998-04-09 1999-10-29 Mitsubishi Electric Corp Abnormal place detecting device
JP2000180418A (en) * 1998-12-10 2000-06-30 Toshiba Corp Surface inspecting apparatus
JP2001004600A (en) * 1999-06-17 2001-01-12 Nkk Corp Method for detecting surface damage and surface damage detector

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156966A (en) * 1984-08-28 1986-03-22 Furukawa Mining Co Ltd Slack detection system for drilling rod
JPH0454447A (en) * 1990-06-25 1992-02-21 Ishikawajima Harima Heavy Ind Co Ltd Fatigue damage measuring method
JPH10213573A (en) * 1997-01-28 1998-08-11 Nkk Corp Estimating method for surface layer damage
JPH11142375A (en) * 1997-11-10 1999-05-28 Ishikawajima Harima Heavy Ind Co Ltd Method for detecting minute defect of butt welded joint
JPH11295179A (en) * 1998-04-09 1999-10-29 Mitsubishi Electric Corp Abnormal place detecting device
JP2000180418A (en) * 1998-12-10 2000-06-30 Toshiba Corp Surface inspecting apparatus
JP2001004600A (en) * 1999-06-17 2001-01-12 Nkk Corp Method for detecting surface damage and surface damage detector

Also Published As

Publication number Publication date
JP2007017300A (en) 2007-01-25

Similar Documents

Publication Publication Date Title
KR101281273B1 (en) Method and system for determining material properties using ultrasonic attenuation
Michaels Detection, localization and characterization of damage in plates with an in situ array of spatially distributed ultrasonic sensors
US7900516B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
US7353709B2 (en) Method and system for determining material properties using ultrasonic attenuation
US20120226159A1 (en) Ultrasonic scanning system and ultrasound image enhancement method
JP6529887B2 (en) Residual stress evaluation method
CN109196350B (en) Method for detecting defects in materials by ultrasound
EP1474680B1 (en) System and method for detecting defects in a manufactured object
US20190004014A1 (en) Apparatus, systems, and methods for determining nonlinear properties of a material to detect early fatigue or damage
JP4746365B2 (en) Surface inspection method
CA2258913C (en) Ultrasonic technique for inspection of weld and heat-affected zone for localized high temperature hydrogen attack
JP4591850B2 (en) Ultrasonic inspection method and apparatus
JP4673686B2 (en) Surface inspection method and surface inspection apparatus
KR20070065934A (en) Apparatus and method for crack length evaluation by phased array ultrasonic
KR101814462B1 (en) Device and method for measuring yield strength using ultrasonic
JP4371364B2 (en) Automatic ultrasonic flaw detector and automatic ultrasonic flaw detection method for thick structure
KR100542651B1 (en) Nondestructive Acoustic Evaluation Device and Method by using Nonlinear Acoustic Responses
KR101826917B1 (en) Multi-channel ultrasonic diagnostic method for long distance piping
KR102116051B1 (en) Pulse-echo nonlinear nondestructive inspection device using array type ultrasonic transducers
RU2714868C1 (en) Method of detecting pitting corrosion
Liu et al. Feasibility and reliability of grain noise suppression in monitoring of highly scattering materials
KR101452442B1 (en) Elasticity Test method
RU2246724C1 (en) Method of ultrasonic testing of material quality
KR101963820B1 (en) Reflection mode nonlinear ultrasonic diagnosis apparatus
JP6529853B2 (en) Residual stress evaluation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4746365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3