JPH07115003A - Manufacture of chip resistor - Google Patents

Manufacture of chip resistor

Info

Publication number
JPH07115003A
JPH07115003A JP5257964A JP25796493A JPH07115003A JP H07115003 A JPH07115003 A JP H07115003A JP 5257964 A JP5257964 A JP 5257964A JP 25796493 A JP25796493 A JP 25796493A JP H07115003 A JPH07115003 A JP H07115003A
Authority
JP
Japan
Prior art keywords
insulating substrate
thermal conductivity
chip resistor
resistor
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5257964A
Other languages
Japanese (ja)
Inventor
Yoshihiro Bessho
芳宏 別所
Yasuhiko Hakotani
靖彦 箱谷
Hideo Kobayashi
英雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5257964A priority Critical patent/JPH07115003A/en
Publication of JPH07115003A publication Critical patent/JPH07115003A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To reduce manufacturing cost and enhance dimensional accuracy by forming a resistor or a protection film on one surface of a substrate using gloss ceramic for an insulation substrate and then forming a dividing groove on the other surfaces. CONSTITUTION:A molded body 3 is formed with glass ceramic slurry which includes large particle-sized aluminum powder 1 and small particle-sized aluminum powder 2. Then, the slurry molded body 3 is dried, thereby providing aluminum powder-made green sheets whose filling rates are different from each other. Then, the green sheets 4 are sintered to provide an insulation board which is thermally conductive and anisortropic. An electrode 6 is formed on a higher conductivity surface of the insulation substrate 5 while a resistor 7 is formed thereon and a protection film 8 is further formed. Then, a dividing groove is formed on a lower conductivity surface of the substrate 5 having thermal conductivity anisotropy and divided. Finally, end face electrodes 9 are formed on both sides of chip resistors discretely divided. This construction makes it possible to provide chip resistors excellent in a dissipating performance of heat generated by the discrete resistors 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として高密度実装技
術を要求される電子機器に用いるチップ抵抗器の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a chip resistor mainly used in electronic equipment which requires high-density mounting technology.

【0002】[0002]

【従来の技術】従来、チップ抵抗器の絶縁基板として分
割用スリットの入った焼結済み96重量%アルミナ基板
を用い、この絶縁基板上に電極、抵抗体および保護膜を
形成した後、分割して両側面部に端面電極を形成する製
造方法が採られていた。
2. Description of the Related Art Conventionally, a sintered 96% by weight alumina substrate having slits for dividing is used as an insulating substrate of a chip resistor, and electrodes, resistors and a protective film are formed on this insulating substrate, and then divided. In this manufacturing method, end face electrodes are formed on both side surfaces.

【0003】上記の製造方法により得られる従来のチッ
プ抵抗器の構造体においては、チップ抵抗器の抵抗体で
発生する熱は両側面部の端面電極から回路基板への熱伝
達によって放熱する形態となって高電力でチップ抵抗器
を用いることに限界があり、これに対処するためにはチ
ップ抵抗器のサイズを大きくせざるを得ないといった問
題があった。
In the structure of the conventional chip resistor obtained by the above manufacturing method, the heat generated in the resistor of the chip resistor is radiated by the heat transfer from the end face electrodes on both side surfaces to the circuit board. However, there is a limit in using a chip resistor with high power, and there is a problem that the size of the chip resistor must be increased in order to cope with this.

【0004】上記の従来の問題点を解決する方法とし
て、チップ抵抗器の絶縁基板の下面の中央部に良熱伝導
膜を形成したチップ抵抗器の構造体が提案されている
(実開昭64−6006号公報)。
As a method for solving the above-mentioned conventional problems, a structure of a chip resistor has been proposed in which a good heat conductive film is formed in the central portion of the lower surface of the insulating substrate of the chip resistor (Actual exploitation Sho 64). No. 6006).

【0005】以下、図面を参照しながら上述した従来の
放熱対策が施されたチップ抵抗器の構造体の一例につい
て説明する。
An example of the structure of the conventional chip resistor provided with the above-described heat dissipation countermeasure will be described below with reference to the drawings.

【0006】図5は従来の放熱対策が施されたチップ抵
抗器の構造体の要部断面図である。
FIG. 5 is a cross-sectional view of a main part of a structure of a conventional chip resistor provided with a heat dissipation measure.

【0007】図5において、15は絶縁基板、16は抵
抗体、20は電極、17は端面電極、18は保護膜、1
9は良熱伝導膜である。
In FIG. 5, 15 is an insulating substrate, 16 is a resistor, 20 is an electrode, 17 is an end face electrode, 18 is a protective film, 1
9 is a good heat conducting film.

【0008】以上のように構成された従来の放熱対策が
施されたチップ抵抗器の製造方法とその構造体につい
て、以下その概略を説明する。
An outline of a conventional method of manufacturing a chip resistor having the above-described structure and being provided with a heat dissipation measure and its structure will be described below.

【0009】チップ抵抗器の絶縁基板15には、あらか
じめ分割用スリットの入った焼結済み96重量%アルミ
ナ基板を用いる。この絶縁基板15上に複数個のチップ
抵抗器に相当する電極20、抵抗体16および保護膜1
8を各々形成する。さらに、抵抗体16を形成した絶縁
基板15の裏面に良熱伝導膜19を形成する。
As the insulating substrate 15 of the chip resistor, a sintered 96 wt% alumina substrate having slits for division is used. On this insulating substrate 15, electrodes 20, resistors 16 and protective film 1 corresponding to a plurality of chip resistors are provided.
8 are formed respectively. Further, a good heat conductive film 19 is formed on the back surface of the insulating substrate 15 on which the resistor 16 is formed.

【0010】その後、個別のチップ抵抗器に分割して両
側面部に端面電極17を形成して、図5に示すように、
絶縁基板15の上面には抵抗体16電極20及び保護膜
18、両側面には端面電極17、下面には良熱伝導膜1
9が形成されたチップ抵抗器の構造体を得るものであ
る。
Thereafter, the chip resistors are divided into individual chip resistors to form end face electrodes 17 on both side faces, and as shown in FIG.
The resistor 16 electrode 20 and the protective film 18 are on the upper surface of the insulating substrate 15, the end face electrodes 17 are on both side surfaces, and the good thermal conductive film 1 is on the lower surface.
9 is to obtain a chip resistor structure in which 9 is formed.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上記の
ようなチップ抵抗器の構造体では、次のような問題があ
る。
However, the structure of the chip resistor as described above has the following problems.

【0012】 分割用スリットの入った焼結済み96
重量%アルミナ基板を絶縁基材としたものにおいては、
絶縁基板の高度が高く、焼結後に分割用スリットを形成
することができないため、グリーンシート段階で分割用
スリットを入れることになり、焼結時に絶縁基板の寸法
バラツキが生じ、チップ抵抗器を製造するためにその寸
法バラツキを考慮した電極や抵抗体および保護膜用の印
刷マスクを多数用意しなければならない。
Sintered 96 with slits for division
In the case of using a weight% alumina substrate as an insulating base material,
Since the insulating substrate is highly advanced and the dividing slit cannot be formed after sintering, the dividing slit will be inserted at the green sheet stage, and the dimensional variation of the insulating substrate will occur during sintering, and the chip resistor will be manufactured. Therefore, it is necessary to prepare a large number of electrodes, resistors, and print masks for protective films in consideration of the dimensional variation.

【0013】 チップ抵抗器の放熱性を向上させるた
めの絶縁基板の下面の中央部に良熱伝導膜を形成した構
造では、チップ抵抗器を回路基板に実装する際に良熱伝
導膜に半田が接触して所望の抵抗値を得ることができな
い可能性がある。
In the structure in which the good thermal conductive film is formed in the central portion of the lower surface of the insulating substrate for improving the heat dissipation of the chip resistor, the good thermal conductive film is soldered when the chip resistor is mounted on the circuit board. It may not be possible to obtain the desired resistance value by contact.

【0014】 絶縁基板の下面の中央部に良熱伝導膜
を形成した構造では、高電力でチップ抵抗器を用いる場
合に、抵抗体の周囲の熱伝導性が悪く、絶縁基板の上面
の抵抗体で発生する熱の放熱性が不十分である。
In the structure in which the good thermal conductive film is formed in the center of the lower surface of the insulating substrate, when the chip resistor is used at high power, the thermal conductivity around the resistor is poor and the resistor on the upper surface of the insulating substrate is poor. The heat dissipation of the heat generated in is insufficient.

【0015】その結果、チップ抵抗器の製造方法におい
て絶縁基板の寸法バラツキに起因してその製造管理コス
トが増大すると同時に、チップ抵抗器の構造体において
その抵抗体の熱に起因してチップ抵抗器の性能が劣化す
るなどの問題を有していた。
As a result, in the manufacturing method of the chip resistor, the manufacturing control cost increases due to the dimensional variation of the insulating substrate, and at the same time, the chip resistor due to the heat of the resistor in the structure of the chip resistor. Had a problem such as deterioration in performance.

【0016】本発明は上記の課題に鑑みてなされたもの
であり、その目的とするところは、チップ抵抗器を寸法
精度よく製造し、かつ、その性能の信頼性の高いチップ
抵抗器を得ることのできるチップ抵抗器の製造方法を提
供することにある。
The present invention has been made in view of the above problems, and an object of the present invention is to manufacture a chip resistor with high dimensional accuracy and to obtain a chip resistor whose performance is highly reliable. It is to provide a method of manufacturing a chip resistor that can be manufactured.

【0017】[0017]

【課題を解決するための手段】本願の第1発明は、絶縁
基板にガラス・セラミックを用いるチップ抵抗器の製造
方法において、第一の粒子径を有するセラミック粉末
と、第一の粒子径よりも大きい第二の粒子径を有するセ
ラミック粉末とを含むガラス・セラミックのスラリーを
作製する工程と、該ガラス・セラミックのスラリーを厚
み方向にセラミック粉末の充填率の異なるグリーンシー
トに成形する工程と、前記工程により得られたグリーン
シートを焼結して厚み方向に熱伝導性の分布を有する熱
伝導異方性の絶縁基板を得る工程と、絶縁基板の熱伝導
性の高い面に電極と抵抗体および保護膜を形成する工程
と、絶縁基板の熱伝導性の低い面に分割溝を形成して絶
縁基板を所望のサイズに分割する工程とを含むことを特
徴とする。
The first invention of the present application is, in a method of manufacturing a chip resistor using a glass ceramic as an insulating substrate, a ceramic powder having a first particle diameter, and a ceramic powder having a particle diameter larger than the first particle diameter. A step of preparing a glass-ceramic slurry containing a ceramic powder having a large second particle diameter; a step of forming the glass-ceramic slurry into green sheets having different ceramic powder filling rates in the thickness direction; A step of sintering the green sheet obtained by the step to obtain an insulating substrate having a thermal conductivity anisotropy having a distribution of thermal conductivity in the thickness direction, and an electrode, a resistor and a resistor on the surface of the insulating substrate having high thermal conductivity. The method is characterized by including a step of forming a protective film and a step of forming a dividing groove on a surface of the insulating substrate having low thermal conductivity to divide the insulating substrate into a desired size.

【0018】本願の第2発明は、絶縁基板にガラス・セ
ラミックを用いるチップ抵抗器の製造方法において、第
一の比重を有するセラミック粉末と、第一の比重よりも
重い第二の比重を有するセラミック粉末とを含むガラス
・セラミックのスラリーを作製する工程と、該ガラス・
セラミックのスラリーを厚み方向にセラミック粉末の組
成の異なるグリーンシートに成形する工程と、前記工程
により得られたグリーンシートを焼結して厚み方向に熱
伝導性の分布を有する熱伝導異方性の絶縁基板を得る工
程と、絶縁基板の熱伝導性の高い面に電極と抵抗体およ
び保護膜を形成する工程と、絶縁基板の熱伝導性の低い
面に分割溝を形成して絶縁基板を所望のサイズに分割す
る工程とを含むことを特徴とする。
A second invention of the present application is, in a method of manufacturing a chip resistor using a glass ceramic as an insulating substrate, a ceramic powder having a first specific gravity and a ceramic having a second specific gravity which is heavier than the first specific gravity. A step of producing a glass-ceramic slurry containing a powder,
A step of forming a ceramic slurry into a green sheet having a different composition of ceramic powder in the thickness direction; and a step of sintering the green sheet obtained by the above step to obtain a thermal conductivity anisotropy having a distribution of thermal conductivity in the thickness direction. The process of obtaining an insulating substrate, the process of forming an electrode, a resistor, and a protective film on the surface of the insulating substrate having high thermal conductivity, and the step of forming a dividing groove on the surface of the insulating substrate having low thermal conductivity are desired. And a step of dividing into sizes.

【0019】[0019]

【作用】本発明によれば、チップ抵抗器の絶縁基板にガ
ラス・セラミックを用いており、かつ絶縁基板の一面に
抵抗体や保護膜を形成した後、絶縁基板の他面である熱
伝導性の低い比較的硬度を低くすることができる面に、
分割溝を形成することが可能となり、チップ抵抗器の製
造管理コストの低減とともにその寸法精度の向上が可能
となる。
According to the present invention, glass ceramic is used for the insulating substrate of the chip resistor, and after the resistor and the protective film are formed on one surface of the insulating substrate, the thermal conductivity of the other surface of the insulating substrate is improved. The surface of which the hardness can be relatively low,
It becomes possible to form the dividing groove, and it is possible to reduce the manufacturing management cost of the chip resistor and improve its dimensional accuracy.

【0020】また、チップ抵抗器の絶縁基板に厚み方向
に熱伝導性の分布を有する熱伝導異方性の絶縁基板を形
成し、絶縁基板の熱伝導性の高い面に抵抗体を形成して
いるために、高電力でチップ抵抗器を用いる場合におい
ても抵抗体で発生する熱の放熱性が良好となり、性能の
信頼性の高いチップ抵抗器が実現できる。
Further, an insulating substrate having a heat conduction anisotropy having a distribution of thermal conductivity in the thickness direction is formed on the insulating substrate of the chip resistor, and a resistor is formed on the surface of the insulating substrate having high thermal conductivity. Therefore, even when the chip resistor is used with high power, the heat dissipation of the heat generated by the resistor is good, and the chip resistor with high performance reliability can be realized.

【0021】[0021]

【実施例】以下、本発明の一実施例のチップ抵抗器の製
造方法について、図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing a chip resistor according to an embodiment of the present invention will be described below with reference to the drawings.

【0022】図1及び図2は本発明の第1の実施例にお
けるチップ抵抗器の製造方法を説明する工程図である。
図1及び図2において、1は粒子径の大きいアルミナ粉
末、2は粒子径の小さいアルミナ粉末、3はスラリーの
成形体、4はグリーンシート、5は熱伝導異方性の絶縁
基板、6は電極、7は抵抗体、8は保護膜、9は端面電
極である。
1 and 2 are process drawings for explaining a method of manufacturing a chip resistor according to the first embodiment of the present invention.
In FIGS. 1 and 2, 1 is an alumina powder having a large particle diameter, 2 is an alumina powder having a small particle diameter, 3 is a molded body of slurry, 4 is a green sheet, 5 is an insulating substrate having anisotropic heat conduction, and 6 is An electrode, 7 is a resistor, 8 is a protective film, and 9 is an end face electrode.

【0023】以上のように構成されたチップ抵抗器の製
造方法について、以下、図面を用いて説明する。まず、
図1(a)に示すように、粒子径の大きいアルミナ粉末
(例えば平均粒径2μmφ)1と粒子径の小さいアルミ
ナ粉末(例えば平均粒径0.5μmφ)2とを含むガラ
ス・セラミックのスラリーをシート成形してスラリーの
成形体3を形成する。
A method of manufacturing the chip resistor configured as described above will be described below with reference to the drawings. First,
As shown in FIG. 1A, a glass-ceramic slurry containing an alumina powder having a large particle size (for example, an average particle size of 2 μmφ) 1 and an alumina powder having a small particle size (for example, an average particle size of 0.5 μmφ) 2 is prepared. Sheet molding is performed to form a slurry compact 3.

【0024】このとき、ホウ珪酸鉛ガラス粉末とアルミ
ナ粉末(粒子径の大きいアルミナ粉末1と粒子径の小さ
いアルミナ粉末2の混合粉末)を重量比で30対70と
した無機成分と、有機バインダとしてポリビニルブチラ
ール、可塑剤としてジ−n−ブチルフタレート、溶剤と
してトルエンとイソプロピルアルコールの混合液(重量
比30対70)とを混合してスラリーとして、このスラ
リーをドクターブレード法で有機フィルム上にシート成
形してスラリーの成形体3を得た。
At this time, a lead borosilicate glass powder and an alumina powder (a mixed powder of alumina powder 1 having a large particle diameter and alumina powder 2 having a small particle diameter) were mixed at a weight ratio of 30 to 70, and an organic binder was used. Polyvinyl butyral, di-n-butyl phthalate as a plasticizer, and a mixed solution of toluene and isopropyl alcohol (weight ratio 30:70) as a solvent are mixed to form a slurry, and the slurry is formed into a sheet on an organic film by a doctor blade method. Thus, a slurry compact 3 was obtained.

【0025】つぎに、スラリーの成形体3を乾燥させて
スラリー中の溶剤を揮発することにより、図1(b)に
示すように粒子径の大きいアルミナ粉末1と粒子径の小
さいアルミナ粉末2がスラリーの成形体3中で厚み方向
に分離して、アルミナ粉末の充填率の異なるグリーンシ
ート4を得た。
Next, by drying the molded body 3 of the slurry and volatilizing the solvent in the slurry, an alumina powder 1 having a large particle diameter and an alumina powder 2 having a small particle diameter are obtained as shown in FIG. 1 (b). The green sheets 4 having different alumina powder filling rates were obtained by separating the slurry formed bodies 3 in the thickness direction.

【0026】このスラリーの成形体3の乾燥工程におい
て、超音波振動などの補助手段を併用すると粒子径の大
きいアルミナ粉末1と粒子径の小さいアルミナ粉末2が
スラリーの成形体3中で一層容易に分離できた。
In the step of drying the slurry molded body 3, if auxiliary means such as ultrasonic vibration is also used, the alumina powder 1 having a large particle diameter and the alumina powder 2 having a small particle diameter can be more easily formed in the slurry molded body 3. I was able to separate.

【0027】その後、グリーンシート4をベルト炉によ
って焼結して、図1(c)に示す熱伝導異方性の絶縁基
板5を得た。焼結条件は900℃で1時間であった(9
00℃の保持時間は約10分である。)。
Then, the green sheet 4 was sintered in a belt furnace to obtain an insulating substrate 5 having anisotropic heat conduction as shown in FIG. 1 (c). The sintering condition was 900 ° C. for 1 hour (9
The holding time at 00 ° C is about 10 minutes. ).

【0028】こうして得た熱伝導異方性の絶縁基板5に
おいては、アルミナ粉末が高充填されているために熱伝
導性の高い面(アルミナを90重量%含んだ場合の熱伝
導率は0.04cal/cm・sec・℃)とその面よ
りもアルミナ粉末が低充填されているために熱伝導性の
低い面(アルミナを50重量%含んだ場合の熱伝導率は
0.007cal/cm・sec・℃)とを含み、その
厚み方向に熱伝導性の分布を有する。この熱伝導性の低
い面は、ガラスを多く含むために硬度が低く、その硬度
よりも硬度が高く、かつ、鋭利な角度形状を有する加工
刃により容易に研削が可能となる。
In the thus obtained insulating substrate 5 having anisotropic heat conduction, a surface having a high heat conductivity because the alumina powder is highly filled (the heat conductivity when alumina is contained 90% by weight is 0. (04 cal / cm.sec..degree. C.) and the surface thereof has a low thermal conductivity because the alumina powder is less filled than that surface (the thermal conductivity when 50% by weight of alumina is contained is 0.007 cal / cm.sec.). .Degree. C.) and has a distribution of thermal conductivity in the thickness direction. The surface having low thermal conductivity has a low hardness because it contains a large amount of glass, and has a hardness higher than that hardness and can be easily ground by a processing blade having a sharp angle shape.

【0029】そして、この熱伝導異方性を有する絶縁基
板5の熱伝導性の高い面に、銀−パラジウムを主成分と
する導体ペーストを用いて所定の電極パターンを印刷し
た後、850℃の焼成温度にて焼成して電極6を形成す
る。さらに、酸化ルテニウムを主成分とする抵抗ペース
トを用いて上記電極6に対応した抵抗体パターンを印刷
した後、850℃の焼成温度にて焼成して抵抗体7を形
成する。また、ガラスを主成分とするガラスペーストを
用いて上記抵抗体7に対応した保護膜パターンを印刷し
た後、650℃の焼成温度にて焼成して保護膜8を形成
して、図1(d)に示す複数個のチップ抵抗器に相当す
る電極6、抵抗体7および保護膜8を形成した熱伝導異
方性を有する絶縁基板5を得る。
Then, a predetermined electrode pattern is printed on the high thermal conductivity surface of the insulating substrate 5 having this thermal conductivity anisotropy by using a conductor paste containing silver-palladium as a main component, and then at 850 ° C. The electrode 6 is formed by firing at the firing temperature. Furthermore, a resistor pattern corresponding to the electrode 6 is printed using a resistance paste containing ruthenium oxide as a main component, and then fired at a firing temperature of 850 ° C. to form a resistor 7. Moreover, after printing a protective film pattern corresponding to the resistor 7 using a glass paste containing glass as a main component, the protective film 8 is formed by baking at a baking temperature of 650 ° C. The insulating substrate 5 having the heat conduction anisotropy, on which the electrodes 6, the resistors 7 and the protective film 8 corresponding to the plurality of chip resistors shown in FIG.

【0030】ついで、個別のチップ抵抗器に分割するた
めの分割溝を熱伝導異方性を有する絶縁基板5の熱伝導
性の低い面に、その硬度よりも硬度が高く、かつ、鋭利
な角度形状を有する加工刃により形成した後、弾性を有
するゴム板などの上にて均等に機械的応力を加えて分割
する。これにより、図1(e)に示す所望の寸法の個別
のチップ抵抗器が寸法精度よく得られる。
Next, a dividing groove for dividing into individual chip resistors is formed on the surface of the insulating substrate 5 having thermal conduction anisotropy having a low thermal conductivity, which is higher in hardness than the hardness thereof and has a sharp angle. After being formed by a processing blade having a shape, it is divided by applying mechanical stress evenly on a rubber plate having elasticity. As a result, the individual chip resistor having a desired size shown in FIG. 1E can be obtained with high dimensional accuracy.

【0031】この分割溝を形成する際に、算盤玉の形状
を有するダイアモンド製の回転加工刃を用いて0.5〜
1.0kg/cm2 の圧力を加えながら熱伝導異方性を
有する絶縁基板5の表面を回転させながら研削加工し
た。このとき、熱伝導異方性を有する絶縁基板5の表面
には数ミクロンの深さに回転加工刃による分割溝が形成
できた。回転加工刃の先端角度は130度に加工したも
のを用いた。
At the time of forming the dividing grooves, a diamond rotary machining blade having the shape of an abacus ball is used to form 0.5-
The surface of the insulating substrate 5 having the thermal conductivity anisotropy was ground while rotating while applying a pressure of 1.0 kg / cm 2 . At this time, a dividing groove was formed on the surface of the insulating substrate 5 having heat conduction anisotropy by a rotary working blade to a depth of several microns. The tip of the rotary processing blade was processed to 130 degrees.

【0032】最後に、図1(f)に示すように個別に分
割したチップ抵抗器の両側面に端面電極9を形成するこ
とにより、図2に示す厚み方向に熱伝導性の分布を有す
る熱伝導異方性を有する絶縁基板5と、その上面に電極
6、抵抗体7及び保護膜8、両側面に端面電極9が形成
されたチップ抵抗器の構造体を得る。
Finally, as shown in FIG. 1 (f), the end face electrodes 9 are formed on both side surfaces of the individually divided chip resistor, so that the heat conductivity having the distribution of heat conductivity in the thickness direction shown in FIG. 2 is obtained. A structure of a chip resistor having an insulating substrate 5 having conduction anisotropy, an electrode 6, a resistor 7 and a protective film 8 on its upper surface, and end face electrodes 9 on both side surfaces is obtained.

【0033】このとき得たチップ抵抗器の構造体におい
ては、抵抗体7が形成された面はアルミナ粉末が高充填
されているために熱伝導性が高く、高電力でチップ抵抗
器を用いた場合においても抵抗体7で発生する熱の放熱
性が良好となり、性能の信頼性の高いチップ抵抗器が実
現できる。
In the chip resistor structure obtained at this time, since the surface on which the resistor 7 was formed was highly filled with alumina powder, the thermal conductivity was high, and the chip resistor was used at high power. Even in such a case, the heat dissipation of the heat generated by the resistor 7 is improved, and a chip resistor having high performance reliability can be realized.

【0034】なお、本実施例ではガラス・セラミックの
セラミック粉末にアルミナ粉末を用いたが、窒化アルミ
や炭化珪素などの良熱伝導性を有する粉末であればいか
なるものでもよい。
Although alumina powder was used as the glass-ceramic ceramic powder in this embodiment, any powder having good thermal conductivity such as aluminum nitride or silicon carbide may be used.

【0035】本発明の第2の実施例を図3および図4を
用いて説明する。
A second embodiment of the present invention will be described with reference to FIGS. 3 and 4.

【0036】まず、図3(a)に示すように、炭化珪素
粉末10とアルミナ粉末11とを含むガラス・セラミッ
クのスラリーをシート成形してスラリーの成形体12を
形成する。
First, as shown in FIG. 3A, a glass-ceramic slurry containing silicon carbide powder 10 and alumina powder 11 is formed into a sheet to form a slurry compact 12.

【0037】このとき、ホウ珪酸鉛ガラス粉末とセラミ
ック粉末(炭化珪素粉末10とアルミナ粉末11の混合
粉末)を重量比で50対50とした無機成分と、有機バ
インダとしてポリビニルブチラール、可塑剤としてジ−
n−ブチルフタレート、溶剤としてトルエンとイソプロ
ピルアルコールの混合液(重量比30対70)とを混合
してスラリーとして、このスラリーをドクターブレード
法で有機フィルム上にシート成形してスラリーの成形体
12を得た。
At this time, a lead borosilicate glass powder and a ceramic powder (mixed powder of silicon carbide powder 10 and alumina powder 11) were mixed in a weight ratio of 50:50, polyvinyl butyral as an organic binder, and dibutyl as a plasticizer. −
N-butyl phthalate and a mixed solution of toluene and isopropyl alcohol (weight ratio of 30:70) as a solvent are mixed to form a slurry, and the slurry is formed into a sheet on an organic film by a doctor blade method to obtain a molded body 12 of the slurry. Obtained.

【0038】つぎに、スラリーの成形体12を乾燥させ
てスラリー中の溶剤を揮発することにより、図3(b)
に示すように比重の軽い炭化珪素粉末(比重=3.2)
10と比重の重いアルミナ粉末(比重=3.9)11が
スラリーの成形体12中でその比重差によって厚み方向
に分離したグリーンシート13を得た。
Next, the slurry compact 12 is dried and the solvent in the slurry is volatilized, so that FIG.
Silicon carbide powder with a low specific gravity as shown in (specific gravity = 3.2)
A green sheet 13 was obtained in which 10 and alumina powder 11 having a large specific gravity (specific gravity = 3.9) 11 were separated in the thickness direction in the slurry molded body 12 due to the difference in specific gravity.

【0039】このスラリーの成形体12の乾燥工程にお
いて、超音波振動などの補助手段を併用すると比重の軽
い炭化珪素粉末10と比重の重いアルミナ粉末11がス
ラリーの成形体12中で一層容易に分離できた。
In the step of drying the slurry compact 12, in combination with an auxiliary means such as ultrasonic vibration, the silicon carbide powder 10 having a low specific gravity and the alumina powder 11 having a high specific gravity are more easily separated in the slurry compact 12. did it.

【0040】その後、グリーンシート13をベルト炉に
よって焼結して、図3(c)に示す熱伝導異方性の絶縁
基板14を得た。焼結条件は900℃で1時間であった
(900℃の保持時間は約10分である。)。
Then, the green sheet 13 was sintered in a belt furnace to obtain an insulating substrate 14 having anisotropic heat conduction as shown in FIG. 3 (c). The sintering condition was 900 ° C. for 1 hour (holding time at 900 ° C. is about 10 minutes).

【0041】このとき得た熱伝導異方性の絶縁基板14
においては、熱伝導性の高い炭化珪素粉末10を多く含
むために熱伝導性の高い面(炭化珪素を50重量%含ん
だ場合の熱伝導率は0.1cal/cm・sec・℃)
と、炭化珪素粉末10よりも熱伝導性の低いアルミナ粉
末11を多く含むために熱伝導性の低い面(アルミナを
50重量%含んだ場合の熱伝導率は0.007cal/
cm・sec・℃)とを含み、その厚み方向に熱伝導性
の分布を有する。この熱伝導異方性を有する絶縁基板1
4は、ガラスを多く含むために硬度が低く、その硬度よ
りも硬度が高く、かつ、鋭利な角度形状を有する加工刃
により容易に研削が可能となる。
Insulating substrate 14 having anisotropic heat conduction obtained at this time
In the above, since a large amount of silicon carbide powder 10 having a high thermal conductivity is included, the surface having a high thermal conductivity (the thermal conductivity in the case of including 50% by weight of silicon carbide is 0.1 cal / cm · sec · ° C.).
And a surface having a low thermal conductivity because it contains a large amount of alumina powder 11 having a lower thermal conductivity than the silicon carbide powder 10 (the thermal conductivity in the case of including 50% by weight of alumina is 0.007 cal /
cm · sec · ° C.) and has a thermal conductivity distribution in the thickness direction. Insulating substrate 1 having this heat conduction anisotropy
No. 4 has a low hardness because it contains a large amount of glass, has a hardness higher than that, and can be easily ground by a processing blade having a sharp angled shape.

【0042】そして、この熱伝導異方性を有する絶縁基
板14の熱伝導性の高い面に銀−パラジウムを主成分と
する導体ペーストを用いて所定の電極パターンを印刷し
た後、850℃の焼成温度にて焼成して電極6を形成す
る。さらに、酸化ルテニウムを主成分とする抵抗ペース
トを用いて上記電極6に対応した抵抗体パターンを印刷
した後、850℃の焼成温度にて焼成して抵抗体7を形
成する。また、ガラスを主成分とするガラスペーストを
用いて上記抵抗体7に対応した保護膜パターンを印刷し
た後、650℃の焼成温度にて焼成して保護膜8を形成
して、図3(d)に示す複数個のチップ抵抗器に相当す
る電極6、抵抗体7および保護膜8を形成した熱伝導異
方性を有する絶縁基板14を得る。
Then, a predetermined electrode pattern is printed using a conductor paste containing silver-palladium as a main component on the surface of the insulating substrate 14 having the thermal conductivity anisotropy and having high thermal conductivity, and then baked at 850 ° C. The electrode 6 is formed by firing at a temperature. Furthermore, a resistor pattern corresponding to the electrode 6 is printed using a resistance paste containing ruthenium oxide as a main component, and then fired at a firing temperature of 850 ° C. to form a resistor 7. Moreover, after printing a protective film pattern corresponding to the resistor 7 using a glass paste containing glass as a main component, the protective film 8 is formed by baking at a baking temperature of 650 ° C. The insulating substrate 14 having the heat conduction anisotropy, in which the electrodes 6, the resistors 7 and the protective film 8 corresponding to the plurality of chip resistors shown in FIG.

【0043】ついで、個別のチップ抵抗器に分割するた
めの分割溝を熱伝導異方性を有する絶縁基板14の熱伝
導性の低い面に、その硬度よりも硬度が高く、かつ、鋭
利な角度形状を有する加工刃により形成した後、弾性を
有するゴム板などの上にて均等に機械的応力を加えて分
割する。これにより、図3(e)に示す所望の寸法の個
別のチップ抵抗器が寸法精度よく得られる。
Next, the dividing groove for dividing into the individual chip resistors is formed on the surface of the insulating substrate 14 having the thermal conduction anisotropy having a low thermal conductivity, the hardness being higher than the hardness and having a sharp angle. After being formed by a processing blade having a shape, it is divided by applying mechanical stress evenly on a rubber plate having elasticity. As a result, the individual chip resistors having the desired dimensions shown in FIG. 3E can be obtained with high dimensional accuracy.

【0044】この分割溝を形成する際に、算盤玉の形状
を有するダイアモンド製の回転加工刃を用いて0.5〜
1.0kg/cm2 の圧力を加えながら熱伝導異方性を
有する絶縁基板14の表面を回転させながら研削加工し
た。このとき、熱伝導異方性を有する絶縁基板14の表
面には数ミクロンの深さに回転加工刃による分割溝が形
成できた。回転加工刃の先端角度は130度に加工した
ものを用いた。
At the time of forming the dividing groove, a rotating blade made of diamond having an abacus ball shape is used to form 0.5 to
The surface of the insulating substrate 14 having the thermal conductivity anisotropy was ground while rotating while applying a pressure of 1.0 kg / cm 2 . At this time, a dividing groove formed by a rotary working blade could be formed at a depth of several microns on the surface of the insulating substrate 14 having thermal conductivity anisotropy. The tip of the rotary processing blade was processed to 130 degrees.

【0045】最後に、図3(f)に示すように個別に分
割したチップ抵抗器の両側面に端面電極9を形成するこ
とにより、図4に示す厚み方向に熱伝導性の分布を有す
る熱伝導異方性を有する絶縁基板14と、その上面に電
極6抵抗体7及び保護膜8、両側面に端面電極9が形成
されたチップ抵抗器の構造体を得る。
Finally, as shown in FIG. 3 (f), by forming the end face electrodes 9 on both side faces of the individually divided chip resistors, heat having a heat conductivity distribution in the thickness direction shown in FIG. 4 is formed. A structure of a chip resistor having an insulating substrate 14 having conduction anisotropy, an electrode 6 resistor 7 and a protective film 8 on the upper surface, and end face electrodes 9 on both side surfaces is obtained.

【0046】こうして得たチップ抵抗器の構造体におい
ては、抵抗体7が形成された面は熱伝導性の高い炭化珪
素粉末10を多く含むために熱伝導性が高く、高電力で
チップ抵抗器を用いた場合においても抵抗体7で発生す
る熱の放熱性が良好となり、性能の信頼性の高いチップ
抵抗器が実現できる。
In the structure of the chip resistor thus obtained, the surface on which the resistor 7 is formed contains a large amount of silicon carbide powder 10 having high thermal conductivity, so that the thermal conductivity is high and the chip resistor is high in power. Even in the case of using, the heat dissipation of the heat generated in the resistor 7 is improved, and a chip resistor having high performance reliability can be realized.

【0047】なお、本実施例ではガラス・セラミックの
セラミック粉末にアルミナ粉末および炭化珪素粉末を用
いるとしたが、窒化アルミなどの良熱伝導性を有する粉
末を組み合わせてもよい。
Although alumina powder and silicon carbide powder are used as the ceramic powder of glass / ceramic in this embodiment, powders having good thermal conductivity such as aluminum nitride may be combined.

【0048】また、第1および第2の実施例におけるセ
ラミック粉末の配合量や熱伝導性および製造条件につい
ては、特許請求の範囲に記載した範囲であればいかなる
ものでもよい。
Further, the compounding amount of the ceramic powder, the thermal conductivity and the manufacturing conditions in the first and second embodiments may be any as long as they are within the ranges described in the claims.

【0049】[0049]

【発明の効果】本発明のチップ抵抗器の製造方法によれ
ば、寸法精度の向上が可能となると共に、高電力でチッ
プ抵抗器を用いる場合においても抵抗体で発生する熱の
放熱性が良好となる、性能の信頼性の高いチップ抵抗器
を得ることができる。
According to the method of manufacturing a chip resistor of the present invention, the dimensional accuracy can be improved, and the heat dissipation of the heat generated by the resistor is good even when the chip resistor is used at high power. It is possible to obtain a chip resistor having high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例におけるチップ抵抗器の
製造方法を説明する工程図である。
FIG. 1 is a process diagram illustrating a method of manufacturing a chip resistor according to a first embodiment of the present invention.

【図2】本発明の第1の実施例によって得られたチップ
抵抗器の構造体の要部断面図である。
FIG. 2 is a cross-sectional view of an essential part of the structure of the chip resistor obtained according to the first embodiment of the present invention.

【図3】本発明の第2の実施例におけるチップ抵抗器の
製造方法を説明する工程図である。
FIG. 3 is a process drawing for explaining the manufacturing method of the chip resistor according to the second embodiment of the present invention.

【図4】本発明の第2の実施例によって得られたチップ
抵抗器の構造体の要部断面図である。
FIG. 4 is a sectional view of an essential part of the structure of the chip resistor obtained according to the second embodiment of the present invention.

【図5】従来の放熱対策が施されたチップ抵抗器の構造
体の要部断面図である。
FIG. 5 is a cross-sectional view of a main part of a structure of a conventional chip resistor provided with a heat dissipation measure.

【符号の説明】[Explanation of symbols]

1 粒子径の大きいアルミナ粉末 2 粒子径の小さいアルミナ粉末 3、12 スラリーの成形体 4、13 グリーンシート 5、14 熱伝導異方性の絶縁基板 6 電極 7 抵抗体 8 保護膜 9 端面電極 10 炭化珪素粉末 11 アルミナ粉末 1 Alumina powder having a large particle diameter 2 Alumina powder having a small particle diameter 3, 12 Slurry molded body 4, 13 Green sheet 5, 14 Insulating substrate having heat conduction anisotropy 6 Electrode 7 Resistor 8 Protective film 9 End surface electrode 10 Carbonization Silicon powder 11 Alumina powder

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板にガラス・セラミックを用いる
チップ抵抗器の製造方法において、第一の粒子径を有す
るセラミック粉末と、第一の粒子径よりも大きい第二の
粒子径を有するセラミック粉末とを含むガラス・セラミ
ックのスラリーを作製する工程と、該ガラス・セラミッ
クのスラリーを厚み方向にセラミック粉末の充填率の異
なるグリーンシートに成形する工程と、前記工程により
得られたグリーンシートを焼結して厚み方向に熱伝導性
の分布を有する熱伝導異方性の絶縁基板を得る工程と、
絶縁基板の熱伝導性の高い面に電極と抵抗体および保護
膜を形成する工程と、絶縁基板の熱伝導性の低い面に分
割溝を形成して絶縁基板を所望のサイズに分割する工程
とを含むことを特徴とするチップ抵抗器の製造方法。
1. A method of manufacturing a chip resistor using a glass ceramic as an insulating substrate, wherein a ceramic powder having a first particle size and a ceramic powder having a second particle size larger than the first particle size. And a step of forming the glass-ceramic slurry into a green sheet having a different filling rate of ceramic powder in the thickness direction, and sintering the green sheet obtained in the above step. And obtaining a thermally conductive anisotropic insulating substrate having a thermal conductivity distribution in the thickness direction,
A step of forming an electrode, a resistor and a protective film on the surface of the insulating substrate having high thermal conductivity, and a step of forming a dividing groove on the surface of the insulating substrate having low thermal conductivity to divide the insulating substrate into a desired size. A method of manufacturing a chip resistor, comprising:
【請求項2】 セラミック粉末にアルミナ、窒化アルミ
または炭化珪素の粉末を含むことを特徴とする請求項1
記載のチップ抵抗器の製造方法。
2. The ceramic powder contains alumina, aluminum nitride or silicon carbide powder.
A method for manufacturing the described chip resistor.
【請求項3】 絶縁基板にガラス・セラミックを用いる
チップ抵抗器の製造方法において、第一の比重を有する
セラミック粉末と、第一の比重よりも重い第二の比重を
有するセラミック粉末とを含むガラス・セラミックのス
ラリーを作製する工程と、該ガラス・セラミックのスラ
リーを厚み方向にセラミック粉末の組成の異なるグリー
ンシートに成形する工程と、前記工程により得られたグ
リーンシートを焼結して厚み方向に熱伝導性の分布を有
する熱伝導異方性の絶縁基板を得る工程と、絶縁基板の
熱伝導性の高い面に電極と抵抗体および保護膜を形成す
る工程と、絶縁基板の熱伝導性の低い面に分割溝を形成
して絶縁基板を所望のサイズに分割する工程とを含むこ
とを特徴とするチップ抵抗器の製造方法。
3. A method of manufacturing a chip resistor using glass-ceramic as an insulating substrate, wherein glass containing ceramic powder having a first specific gravity and ceramic powder having a second specific gravity heavier than the first specific gravity. A step of forming a ceramic slurry, a step of forming the glass / ceramic slurry into a green sheet having a different ceramic powder composition in the thickness direction, and a step of sintering the green sheet obtained in the above step in the thickness direction. A step of obtaining an insulating substrate having a thermal conductivity anisotropy having a distribution of thermal conductivity; a step of forming an electrode, a resistor and a protective film on a surface of the insulating substrate having a high thermal conductivity; And a step of forming a dividing groove on the lower surface to divide the insulating substrate into a desired size.
【請求項4】 第一の比重を有するセラミック粉末に炭
化珪素粉末を、第二の比重を有するセラミック粉末にア
ルミナ粉末をそれぞれ用いたことを特徴とする請求項3
記載のチップ抵抗器の製造方法。
4. A ceramic powder having a first specific gravity is silicon carbide powder, and a ceramic powder having a second specific gravity is alumina powder.
A method for manufacturing the described chip resistor.
【請求項5】 熱伝導異方性の絶縁基板より硬度が高
く、かつ、鋭利な角度形状を有する加工刃により分割溝
を形成することを特徴とする請求項1または3記載のチ
ップ抵抗器の製造方法。
5. The chip resistor according to claim 1, wherein the dividing groove is formed by a processing blade having a hardness higher than that of an insulating substrate having anisotropic heat conduction and having a sharp angled shape. Production method.
JP5257964A 1993-10-15 1993-10-15 Manufacture of chip resistor Pending JPH07115003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5257964A JPH07115003A (en) 1993-10-15 1993-10-15 Manufacture of chip resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5257964A JPH07115003A (en) 1993-10-15 1993-10-15 Manufacture of chip resistor

Publications (1)

Publication Number Publication Date
JPH07115003A true JPH07115003A (en) 1995-05-02

Family

ID=17313662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5257964A Pending JPH07115003A (en) 1993-10-15 1993-10-15 Manufacture of chip resistor

Country Status (1)

Country Link
JP (1) JPH07115003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824763B2 (en) * 2002-05-30 2004-11-30 Kimberly-Clark Worldwide, Inc. Anti-fungal powder having enhanced excipient properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6824763B2 (en) * 2002-05-30 2004-11-30 Kimberly-Clark Worldwide, Inc. Anti-fungal powder having enhanced excipient properties

Similar Documents

Publication Publication Date Title
JPH0452000B2 (en)
JPH11251723A (en) Circuit board
JPH07115003A (en) Manufacture of chip resistor
JPH10116707A (en) Chip type thermistor and its manufacturing method
JPH07176411A (en) Manufacture of chip resistor and structure thereof
JPH07111204A (en) Manufacture of chip resistor
JPH08250829A (en) Thick film paste and ceramic circuit board using it
JP3229473B2 (en) Manufacturing method of chip resistor
JPH07111203A (en) Manufacture of chip resistor and its structure body
JP2003209199A (en) Substrate for mounting semiconductor element
JP3162539B2 (en) Method of manufacturing ceramic wiring board having conductor formed by conductor paste
JP2958492B2 (en) Method for manufacturing multilayer wiring circuit board
JP3064047B2 (en) Multilayer ceramic circuit board
JP3186750B2 (en) Ceramic plate for semiconductor manufacturing and inspection equipment
JPH1153940A (en) Copper metalized composition and glass ceramic wiring board using it
JP3093602B2 (en) Manufacturing method of ceramic circuit board
JPH0484494A (en) Multilayer circuit board
JP3336292B2 (en) Manufacturing method of chip type varistor
JPS60245152A (en) Seized substrate for mounting semiconductor device and manufacture thereof
JPH0369197B2 (en)
JP2512570B2 (en) Method for producing anisotropically conductive ceramic composite
JP2004146848A (en) Resistor wiring substrate and its manufacturing method
JP2003249725A (en) Multiple-pattern ceramic substrate
JPH07115008A (en) Manufacture of chip resistor
JPS6276592A (en) Multilayer ceramic circuit substrate