JPH07113509A - Heat accumulation type low nox burner - Google Patents

Heat accumulation type low nox burner

Info

Publication number
JPH07113509A
JPH07113509A JP5339252A JP33925293A JPH07113509A JP H07113509 A JPH07113509 A JP H07113509A JP 5339252 A JP5339252 A JP 5339252A JP 33925293 A JP33925293 A JP 33925293A JP H07113509 A JPH07113509 A JP H07113509A
Authority
JP
Japan
Prior art keywords
heat storage
chamber
storage body
exhaust
communication hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5339252A
Other languages
Japanese (ja)
Other versions
JP3322470B2 (en
Inventor
Ryoichi Tanaka
良一 田中
Mamoru Matsuo
護 松尾
Tsutomu Yasuda
力 保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Original Assignee
Nippon Furnace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP33925293A priority Critical patent/JP3322470B2/en
Application filed by Nippon Furnace Co Ltd filed Critical Nippon Furnace Co Ltd
Priority to PCT/JP1994/002027 priority patent/WO1995015462A1/en
Priority to KR1019960702902A priority patent/KR100254128B1/en
Priority to US08/649,677 priority patent/US5848885A/en
Priority to CA002177352A priority patent/CA2177352C/en
Priority to EP95902291A priority patent/EP0732542A4/en
Priority to TW83111375A priority patent/TW260738B/en
Publication of JPH07113509A publication Critical patent/JPH07113509A/en
Application granted granted Critical
Publication of JP3322470B2 publication Critical patent/JP3322470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE:To permit the securing of stabilized combustion by a method wherein combustion air and combustion waste gas are passed through a heat accumulating body alternately and continuously to preheat combustion air by the heat of combustion waste gas and supply it to a burner. CONSTITUTION:A switching means 3 is turned continuously or intermittently to communicate sequentially the exhaust gas chamber 6a and the feed air chamber 6b of an outlet and inlet means 6 with either one of the chamber of a heat accumulating body 1, partitioned equally into N chambers circumferentially. Then, fuel F is injected continuously from a fuel nozzle 31, penetrating the center of the heat accumulating body 1, into a furnace 35 while high-temperature combustion air A is injected from the heat accumulating body 1 into the furnace 35 continuously through places around the circumference of the heat accumulating body. Accordingly, an effect, same as alternate combustion, can be obtained by only switching the combustion air A while continuing the injection of the fuel F. Thus, the combustion air is preheated by passing the combustion air A and the combustion exhaust gas E through the heat accumulating body 1 alternately and continuously and, thereafter, the preheated combustion air is supplied to a burner. According to this method, stabilized combustion can be secured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガスから廃熱を回収
して燃焼用空気の予熱に利用する蓄熱型バーナに関す
る。更に詳述すると、本発明は相対的に回転する蓄熱体
に交互に連続して燃焼用空気と燃焼排ガスとを通すこと
によって燃焼排ガスの熱で燃焼用空気を予熱して供給す
る蓄熱型バーナに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative burner which recovers waste heat from exhaust gas and uses it for preheating combustion air. More specifically, the present invention relates to a regenerative burner that preheats and supplies combustion air with the heat of combustion exhaust gas by alternately passing combustion air and combustion exhaust gas through a relatively rotating heat storage body. .

【0002】[0002]

【従来の技術】従来の蓄熱型バーナは、例えば図15に
示すように、ウィンドボックス101の中に該ウィンド
ボックス101を貫通するようにバーナガン(燃料ノズ
ル)102を設置し、蓄熱体103を経て供給される燃
焼用空気と燃料とをバーナ内で混合させてから炉内に噴
射するように設けられている。即ち、従来のバーナ10
4は、燃料ノズル102と燃焼用空気の噴射ノズル(こ
の場合、ウィンドボックス101)とが対になって構成
されている。そして、このバーナ104は2基で一対を
成し、一方のバーナ104を燃焼させている間に他方の
バーナ104から燃焼ガスを排出するようにしている。
燃焼ガスは、他方のバーナのウィンドボックス101を
経て排気される際に蓄熱体103で排熱が回収されるよ
うに設けられている。したがって、従来の蓄熱型バーナ
は、1組のバーナに交互に燃焼用空気と燃料とを供給す
るため、燃焼用空気供給系と排気系とをバーナに選択的
に接続するための手段と、燃料をいずれか一方のバーナ
に供給する手段とを必要としている。そして、このよう
な燃焼ガスと燃焼用空気の流路切替には、電磁弁を組合
せたものや四方弁、三方弁などを用いることが考えられ
ている。尚、図中符号105は四方弁、106は電磁
弁、107は押し込みファン、108は誘引ファンであ
る。
2. Description of the Related Art In a conventional heat storage type burner, for example, as shown in FIG. 15, a burner gun (fuel nozzle) 102 is installed in a wind box 101 so as to penetrate the wind box 101, and a heat storage body 103 is passed through. The combustion air and the fuel supplied are mixed in a burner and then injected into the furnace. That is, the conventional burner 10
Reference numeral 4 is a pair of a fuel nozzle 102 and a combustion air injection nozzle (in this case, the wind box 101). The two burners 104 form a pair, and the combustion gas is discharged from the other burner 104 while one of the burners 104 is burning.
The combustion gas is provided so that exhaust heat is recovered by the heat storage body 103 when exhausted through the wind box 101 of the other burner. Therefore, the conventional heat storage type burner alternately supplies the combustion air and the fuel to one set of burners, and therefore, means for selectively connecting the combustion air supply system and the exhaust system to the burner, and the fuel. And means for supplying the burner to either one of the burners. Then, for such switching of the flow paths of the combustion gas and the combustion air, it is considered to use a combination of electromagnetic valves, a four-way valve, a three-way valve, or the like. In the figure, reference numeral 105 is a four-way valve, 106 is an electromagnetic valve, 107 is a pushing fan, and 108 is an induction fan.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、空気ノ
ズルと燃料ノズルとを対にした従来のバーナ構造では、
休止中のバーナ側では排気される高温の燃焼排ガスによ
って燃料ノズルが焼損したり残留燃料のコーキングを招
いたりする問題がある。この燃料ノズルの焼損を回避す
るためには燃料ノズルの配置や構造を特開平2−100
02号のバーナのように複雑なものとしなければなら
ず、バーナの大型化を招く問題がある。
However, in the conventional burner structure in which the air nozzle and the fuel nozzle are paired,
On the burner side at rest, there are problems that the high temperature combustion exhaust gas exhausted burns the fuel nozzle or causes coking of residual fuel. In order to avoid the burnout of the fuel nozzle, the arrangement and structure of the fuel nozzle are disclosed in JP-A-2-100.
The burner of No. 02 must be complicated, and there is a problem that the burner becomes large.

【0004】また、燃焼ガスと燃焼用空気の流路切替に
電磁弁を組み合わせるときは、高温雰囲気で使用可能な
電磁弁は高価であり設備コストを著しく引き上げるし、
かつ気体配管用電磁弁などはかなり大型であるためその
数が増えると場所を取ることから使用数の低減が望まし
い。加えてこの場合、切り替えの際に燃焼用空気の供給
及び燃焼ガスの排気が瞬間的に低減ないし滞り、火炎が
不安定となったりCOの発生が増加する。また、四方弁
を使用する場合には、切り替えの瞬間に四方弁内で排気
系と給気系とがショートパスを起こしてバーナへ供給さ
れる燃焼用空気の量が瞬間的に減少して火炎を不安定に
する場合がある。
Further, when a solenoid valve is combined to switch the flow paths of the combustion gas and the combustion air, the solenoid valve that can be used in a high temperature atmosphere is expensive and the equipment cost is significantly increased.
Moreover, since the solenoid valves for gas pipes are quite large, it is desirable to reduce the number of uses because the space is taken up if the number increases. In addition, in this case, the supply of the combustion air and the exhaust of the combustion gas are momentarily reduced or delayed at the time of switching, the flame becomes unstable, and the generation of CO increases. When a four-way valve is used, the exhaust system and the air supply system cause a short path in the four-way valve at the moment of switching, and the amount of combustion air supplied to the burner momentarily decreases, resulting in a flame. May destabilize.

【0005】更に、バーナを交互に燃焼させる方式の蓄
熱型バーナでは、燃焼用空気より僅かに遅れて燃料が噴
射されるように燃焼用空気の噴射に、リードタイムをと
ることが着火の上で好ましいことから、燃焼用空気の流
れが切替えられてから一定時間が経過した後に燃料が供
給されるような複雑な制御が一般に要求される。このこ
とから、燃料の切替を必要としない蓄熱型低NOxバー
ナが望まれる。
Further, in the heat storage type burner of the type in which the burners are burned alternately, it is necessary to take a lead time for injecting the combustion air so that the fuel is injected with a slight delay from the combustion air for ignition. Since it is preferable, complicated control such that fuel is supplied after a lapse of a certain time after the flow of combustion air is switched is generally required. Therefore, a heat storage type low NOx burner that does not require switching of fuel is desired.

【0006】本発明は、途切れることなく連続して行わ
れる燃焼用空気の切替だけで燃料の切替を必要としない
蓄熱型低NOxバーナを提供することを目的とする。
It is an object of the present invention to provide a heat storage type low NOx burner which does not require fuel switching only by switching combustion air continuously without interruption.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
め、本発明の蓄熱型低NOxバーナは、周方向にN(N
=n+1、ここで、nは2以上の正の偶数で常時流体が
流れる室数である。)室に均等に区画され各室内を軸方
向に流体が通過可能とした蓄熱体と、この蓄熱体に中心
を貫通して炉内に燃料を直接噴射する燃料ノズルと、燃
焼用空気供給系に接続される給気室と燃焼ガス排気系に
接続される排気室とに環状仕切壁で区画された2重管状
の出入口手段と、蓄熱体と出入口手段との間に介在され
て蓄熱体と出入口手段との間を遮断する一方、給気室と
蓄熱体とを連通させる給気用連通孔と排気室と蓄熱体と
を連通させる排気用連通孔とを交互にn/2個ずつ配置
し、連続的あるいは間欠的に回転して出入口手段の排気
室と給気室とをN室に区画された蓄熱体の室のいずれか
に順次連通させる切替手段とから成り、かつ切替手段の
排気用連通孔と給気用連通孔とが数式7で表わされる角
度αの間隔をあけて配置され、
In order to achieve such an object, the heat storage type low NOx burner of the present invention has N (N
= N + 1, where n is a positive even number of 2 or more and is the number of chambers through which the fluid always flows. ) A heat storage body that is evenly divided into chambers and allows fluid to pass through each chamber in the axial direction, a fuel nozzle that directly penetrates the heat storage body to inject fuel into the furnace, and a combustion air supply system. A double tubular inlet / outlet means partitioned by an annular partition into an air supply chamber connected to the exhaust gas and an exhaust chamber connected to the combustion gas exhaust system, and a heat storage body and an inlet / outlet interposed between the heat storage body and the inlet / outlet means. While disconnecting from the means, the air supply communication holes for communicating the air supply chamber and the heat storage body and the exhaust communication holes for communicating the exhaust chamber and the heat storage body are alternately arranged n / 2 each, And a switching means for continuously or intermittently rotating to sequentially communicate the exhaust chamber and the air supply chamber of the inlet / outlet means with any of the heat storage chambers divided into N chambers, and the exhaust communication of the switching means. The hole and the communication hole for supply of air are arranged at an interval of an angle α represented by Formula 7,

【数7】 更に給気用連通孔及び排気用連通孔の大きさが数式8の
関係を
[Equation 7] In addition, the size of the communication hole for supply air and the size of the communication hole for exhaust should be expressed by the formula 8.

【数8】 満足し、炉内に燃料を連続的に噴射すると共にその周り
に高温の燃焼用空気を蓄熱体から炉内に直接噴射するよ
うにしている。尚、本明細書では、蓄熱体の区画された
室とは、蓄熱体そのものが複数の室に仕切られている場
合は勿論のこと、分配室によって実質的に複数の室に区
画されている場合の双方を含んでいる。
[Equation 8] Satisfactory, fuel is continuously injected into the furnace, and high temperature combustion air is injected around the fuel directly from the heat storage body into the furnace. In the present specification, the term “a room in which a heat storage body is partitioned” refers not only to a case where the heat storage body itself is partitioned into a plurality of chambers but also a case where the heat storage body is substantially partitioned into a plurality of chambers by a distribution chamber. Both are included.

【0008】また、本発明の蓄熱型低NOxバーナは、
N(ここで、N=n+1で、nは2以上の正の偶数で常
時流体が流れる室数を示す。)室を1ユニットとして総
室数Z(ここで、Z=a・Nで、aはユニット数を示す
0を除く正の整数)の複数ユニットの区画された室を蓄
熱体に形成すると共に総数Zの室のうち常時流体が流れ
ることのないa個の空室を1ユニットを構成するN室と
他のユニットのN室との間に形成し、かつ排気用連通孔
と給気用連通孔との配置角度αが数式9の関係を有し、
Further, the heat storage type low NOx burner of the present invention is
N (where N = n + 1, n is a positive even number of 2 or more, and indicates the number of chambers in which the fluid always flows). One chamber is defined as the total number of chambers Z (where Z = a · N, a Represents a number of units and is a positive integer excluding 0), and a plurality of divided chambers are formed in the heat storage body, and a total of Z chambers is formed of 1 a-vacant chamber in which no fluid constantly flows. Formed between the N chamber and the N chamber of another unit, and the arrangement angle α between the exhaust communication hole and the air supply communication hole has the relationship of Expression 9.

【数9】 かつ排気用連通孔と給気用連通孔との大きさが数式10
で示される関係を
[Equation 9] In addition, the size of the exhaust communication hole and the supply air communication hole is expressed by the mathematical formula 10.
The relationship indicated by

【数10】 満足するようにしている。[Equation 10] I am satisfied.

【0009】また、本発明の蓄熱型低NOxバーナは、
周方向にN(N=n+2、ここで、nは2以上の正の整
数で常時流体が流れる室数である。)室に均等に区画さ
れ各室内を軸方向に流体が通過可能とした蓄熱体と、こ
の蓄熱体の中心を貫通して炉内に燃料を直接噴射する燃
料ノズルと、燃焼用空気供給系に接続される給気室と燃
焼ガス排気系に接続される排気室とに環状仕切壁で区画
された2重管状の出入口手段と、蓄熱体と出入口手段と
の間に介在されて蓄熱体と出入口手段との間を遮断する
一方、給気室と蓄熱体とを連通させる給気用連通孔と排
気室と前記蓄熱体とを連通させる排気用連通孔とが数式
11で表わされる角度Cの間隔をあけて配置され、
Further, the heat storage type low NOx burner of the present invention is
Heat storage that is evenly divided into N (N = n + 2, where n is a positive integer greater than or equal to 2 and is the number of chambers in which fluid always flows) circumferentially, and allows fluid to pass axially through each chamber A body, a fuel nozzle that directly injects fuel into the furnace through the center of the heat storage body, an air supply chamber connected to the combustion air supply system, and an exhaust chamber connected to the combustion gas exhaust system A double tubular inlet / outlet means partitioned by a partition wall and a heat storage body interposed between the heat storage body and the inlet / outlet means to shut off the heat storage body and the inlet / outlet means, and to supply communication between the air supply chamber and the heat storage body. A gas communication hole, an exhaust chamber, and an exhaust communication hole that communicates the heat storage body with each other are arranged at an interval of an angle C represented by Formula 11.

【数11】 かつ連続的あるいは間欠的に回転して出入口手段の排気
室と給気室とをN室に区画された蓄熱体の室のいずれか
に順次連通させる切替手段とから成り、炉内に燃料を連
続的に噴射すると共にその周りに高温の燃焼用空気を蓄
熱体から炉内に直接噴射するようにしている。
[Equation 11] And continuous or intermittently rotating to sequentially connect the exhaust chamber and the air supply chamber of the inlet / outlet means to any of the heat storage chambers divided into N chambers, and to continuously feed the fuel into the furnace. And the high temperature combustion air is directly injected from the heat storage body into the furnace.

【0010】また、本発明の蓄熱型低NOxバーナは、
N(ここで、N=n+2で、nは2以上の正の整数で常
時流体が流れる室数を示す。)室を1ユニットとして総
室数Z(ここで、Z=a・Nで、aはユニット数を示す
0を除く正の整数)の複数ユニットの区画された室を蓄
熱体に形成すると共に排気用連通孔と給気用連通孔との
間に数式12
Further, the heat storage type low NOx burner of the present invention is
N (where N = n + 2, n is a positive integer of 2 or more and indicates the number of chambers through which the fluid always flows). One chamber is the total number of chambers Z (where Z = a · N, a Is a positive integer excluding 0, which indicates the number of units, and is formed in the heat storage body with a plurality of partitioned chambers, and the formula 12 is provided between the exhaust communication hole and the air supply communication hole.

【数12】 で表される角度Cの間隔が設定されるようにしている。[Equation 12] The interval of the angle C represented by is set.

【0011】また、本発明の蓄熱型低NOxバーナは、
燃料ノズルから噴射される燃料と蓄熱体から噴射される
燃焼用空気とがほぼ平行に噴射されるか、あるいは燃料
ノズルが切替手段と同時に回転して蓄熱体から噴射され
る燃焼用空気流に向けて側方から常に燃料が噴射される
ように設けられている。
Further, the heat storage type low NOx burner of the present invention is
The fuel jetted from the fuel nozzle and the combustion air jetted from the heat storage body are jetted substantially in parallel, or the fuel nozzle rotates at the same time as the switching means and is directed toward the combustion air flow jetted from the heat storage body. The fuel is always injected from the side.

【0012】また、本発明の蓄熱型低NOxバーナは、
蓄熱体の炉内側の出口に、互いに独立しかつ蓄熱体の区
画された各室毎に連通したノズルを配置しているる
Further, the heat storage type low NOx burner of the present invention is
At the outlet of the heat storage body inside the furnace, nozzles that are independent of each other and communicate with each compartment of the heat storage body are arranged.

【0013】更に、本発明の蓄熱型低NOxバーナは、
蓄熱体と燃料ノズルの前方に流路断面積を先端側へ向け
て絞り、かつ周囲に複数の排気孔を設けたバーナスロー
トを設置するようにしている。
Further, the heat storage type low NOx burner of the present invention is
A burner throat is provided in front of the heat accumulator and the fuel nozzle, the cross-sectional area of which is narrowed toward the tip side, and a plurality of exhaust holes are provided around the burner throat.

【0014】[0014]

【作用】したがって、出入口手段の給気室と排気室とは
それぞれ切替手段の給気用連通孔と排気用連通孔を介し
て蓄熱体の異なる室・区画に連通され、互いに交わるこ
となく蓄熱体内に燃焼用空気と燃焼排ガスとを流す。こ
のとき、請求項1および2の発明の場合には、a・N室
に区画された蓄熱体内のうちa・n/2室に炉内から燃
焼ガスが吸引されて流され、他のa・n/2室に燃焼用
空気が押し込まれて流され、残りのa室はいずれの流路
にも接続されずに流体が流れない空室となる。このた
め、出入口手段の給気室に連通される室・区画と排気室
に連通される室・区画とを切替手段の操作によって順次
変更すれば、排出される流体と供給される流体とが蓄熱
体の同じ室・区画を時間を異にして流れることとなる。
例えば、燃焼排ガスを流した後の蓄熱体に燃焼用空気が
流れることとなり、燃焼排ガスの通過で加熱された蓄熱
体の熱を燃焼用空気が奪うことによって熱交換が完了す
る。
Therefore, the air supply chamber and the exhaust chamber of the inlet / outlet means are communicated with different chambers / compartments of the heat storage body through the air supply communication hole and the exhaust communication hole of the switching means, respectively, and do not intersect with each other. The combustion air and the combustion exhaust gas are flown to the. At this time, in the case of the inventions of claims 1 and 2, the combustion gas is sucked and flowed from the furnace into the a.n / 2 chamber of the heat storage body partitioned into the a.N chamber, and the other a. Combustion air is pushed into the n / 2 chamber to flow, and the remaining a chamber is not connected to any of the flow paths and becomes a vacant chamber in which the fluid does not flow. Therefore, if the chamber / compartment communicating with the air supply chamber of the inlet / outlet means and the chamber / compartment communicating with the exhaust chamber are sequentially changed by the operation of the switching means, the discharged fluid and the supplied fluid accumulate heat. It will flow through the same room / compartment of the body at different times.
For example, the combustion air flows through the heat storage body after flowing the combustion exhaust gas, and the heat of the heat storage body heated by the passage of the combustion exhaust gas is taken by the combustion air to complete the heat exchange.

【0015】そして、流体の流れの切り替えは、同じ室
・区画に給気用連通孔と排気用連通孔とが同時に存在す
ることがなく、かつ前方の連通孔から1つずつ順次前方
の室・区画に移り変わるため、排気用連通孔が蓄熱体の
前方の室・区画例えば空気にかかってもそれよりも後方
の供給用連通孔及び他の排気用及び給気用連通孔は依然
として同じ室・区画内に存在し、切り替えは始まらな
い。そして、最前列の排気用連通孔が空室であった前方
の区画に完全に切替わってから、いままで最前列の排気
用連通孔と連通していた室・区画が空室となってそこに
次の給気用連通孔がさしかかる。このとき、給気用連通
孔は、今までの室・区画と新たな室・区画(空室)との
2つの区画に同時に跨り、2つの室・区画に同時に流体
を供給しながら切り替えられるので、流体の流れが遮断
されることがない。しかも、最前列の排気用連通孔は給
気用連通孔がさしかかった室・区画よりも1つ前の室・
区画に位置するため、排出される燃焼排ガスと供給され
る燃焼用空気とが同じ区画内において混じり合うことが
ない。
The flow of the fluid is switched such that the air supply communication hole and the exhaust communication hole do not exist in the same chamber / compartment at the same time, and the front communication chambers are sequentially operated one by one from the front communication hole. Since the exhaust communication hole is moved to a compartment, the chamber / compartment in front of the heat storage body, for example, even if the exhaust communication hole is exposed to air, the supply communication hole and other exhaust and air supply communication holes behind it are still in the same chamber / compartment. It exists inside, and switching does not start. Then, after the exhaust communication hole in the front row is completely switched to the front compartment that was empty, the room / compartment that has been communicating with the exhaust communication hole in the front row until now becomes an empty room. The next communication hole for air supply is approaching. At this time, the air supply communication hole can be switched over while simultaneously straddling the two compartments of the existing room / compartment and the new compartment / compartment (vacant room) while supplying the fluid to the two compartments / compartment at the same time. , The flow of fluid is not interrupted. In addition, the exhaust communication hole in the front row is the room that is one before the room / compartment where the air supply communication hole is approaching.
Since it is located in the section, the exhaust gas for exhaust and the combustion air supplied are not mixed in the same section.

【0016】また、請求項3および4の発明の場合にお
ける流体の流れの切り替えは、排気用連通孔と給気用連
通孔の双方が同時にそれぞれの前方の空室に移り変わ
る。そして、排気用連通孔および給気用連通孔が前方の
室・区画内を完全に占位したとき、いままで排気用連通
孔および給気用連通孔と連通していた室・区画は空室と
なる。ここで、排気用連通孔および給気用連通孔が一度
に複数の室・区画と連通する場合、回転方向に向かって
最後尾の室・区画が空室となる。このとき、排気用連通
孔および給気用連通孔は、今までの室・区画と新たな室
・区画との2つの区画に同時に跨り、2つの区画に同時
に流体を供給しながら切り替えられるので、流体の流れ
が遮断されることがない。しかも、前方の排気用連通孔
は給気用連通孔がさしかかった区画よりも1つ前の区画
に占位するため、排出される燃焼排ガスと供給される燃
焼用空気とが同じ区画内において混じり合うことがな
い。
Further, in switching the flow of the fluid in the case of the third and fourth aspects of the invention, both the exhaust communication hole and the air supply communication hole are simultaneously moved to the respective front empty chambers. When the exhaust communication hole and the air supply communication hole completely occupy the front chamber / compartment, the room / compartment that has been communicating with the exhaust communication hole and the air supply communication hole is empty. Becomes Here, when the exhaust communication hole and the air supply communication hole communicate with a plurality of chambers / compartments at one time, the rearmost chamber / compartment in the rotation direction becomes an empty room. At this time, the exhaust communication hole and the air supply communication hole can be switched over while simultaneously straddling the two compartments of the existing room / compartment and the new room / compartment while supplying the fluid to the two compartments at the same time. Fluid flow is never interrupted. Moreover, since the exhaust communication hole in the front is occupied in the section one before the section where the supply communication hole is approaching, the exhaust combustion exhaust gas and the supplied combustion air are mixed in the same section. It doesn't fit.

【0017】そこで、燃焼ノズルの周りから燃焼排ガス
の温度に近い高温の燃焼用空気が瞬間的な減少や滞りを
招くことなく炉内に直接安定して供給される。炉内に直
接別々に噴射される燃焼用空気と燃料とは、請求項5の
発明の場合、炉内へ噴射された直後に混合されずに広が
り燃焼ノズルおよび空気ノズルから離れた炉内の随所で
混合する。しかし、燃焼用空気は極めて高温(例えば1
000℃近いあるいはそれ以上)であることから、混合
すれば安定した燃焼を起こす。また、蓄熱体の熱が低下
すると、燃料は切り替えずに燃焼用空気だけを切り替え
るとことによって今まで燃焼ガスを排気していた燃焼用
空気供給手段の蓄熱体を利用して燃焼用空気を供給す
る。依って、燃焼用空気の供給を切り替えるだけで交互
燃焼と同じ結果を得る。
Therefore, high-temperature combustion air close to the temperature of the combustion exhaust gas is stably supplied from around the combustion nozzle directly into the furnace without causing a momentary decrease or delay. In the case of the invention of claim 5, the combustion air and the fuel which are directly injected into the furnace separately are spread out without being mixed immediately after being injected into the furnace, and are spread in various places in the furnace apart from the combustion nozzle and the air nozzle. Mix with. However, combustion air is extremely hot (eg 1
Since it is close to 000 ° C or higher), stable combustion occurs when mixed. Further, when the heat of the heat storage body decreases, the combustion air is supplied by using the heat storage body of the combustion air supply means that has exhausted the combustion gas until now by switching only the combustion air without switching the fuel. To do. Therefore, the same result as the alternating combustion is obtained only by switching the supply of the combustion air.

【0018】また、請求項6の発明の場合、燃料噴流は
直進する燃焼用空気噴流に対し横風噴流となって合流す
る。このとき、燃焼用空気噴流中には横風噴流・燃料噴
流によって互いに逆向きの渦領域となる一対の循環流が
生じ、燃焼用空気の噴流内部に燃料噴流を取り込む。そ
の後、2つの渦領域それぞれの内部に生じた大小複数の
渦塊によって燃焼用空気噴流の高濃度域が複雑に断面内
に拡散されると同時に噴流中央部に取り込まれた燃料噴
流も分散されて拡散される。即ち、燃料噴流が燃焼用空
気噴流の中に取り込まれた後、次第に噴流内部全体に広
がり、高温の燃焼用空気と混合されて燃焼用空気噴流内
で燃焼する。その間、燃焼用空気と混合される燃料噴流
の表面で燃焼が起こりNOxを発生させるが、そのNO
xは、循環流によって燃料噴流中に取り込まれ急速に還
元される。
Further, in the case of the invention of claim 6, the fuel jet merges with the straight-flowing combustion air jet as a cross wind jet. At this time, in the combustion air jet, a pair of circulation flows which are mutually opposite vortex regions are generated by the crosswind jet and the fuel jet, and the fuel jet is taken into the inside of the jet of the combustion air. After that, the high-concentration region of the combustion air jet is complicatedly diffused in the cross section by the large and small vortex clusters generated inside each of the two vortex regions, and at the same time, the fuel jet taken in the center of the jet is also dispersed. Diffused. That is, after the fuel jet is taken into the combustion air jet, the fuel jet gradually spreads throughout the inside of the jet, and is mixed with the high temperature combustion air and burned in the combustion air jet. During that time, combustion occurs on the surface of the fuel jet mixed with the combustion air to generate NOx.
The x is taken into the fuel jet by the circulation flow and rapidly reduced.

【0019】また、請求項7の発明の場合、切替手段の
回転によって燃焼排ガスと燃焼用空気とが流れる蓄熱体
の区画が切り替えられると、燃焼用空気が噴射されるノ
ズルが順次円周方向に移される。したがって、ノズルか
ら直接炉内へ燃焼用空気が噴射されると、炉内において
火炎の位置が円周方向に回転して非定在火炎を形成す
る。しかも、ノズルで燃焼用空気の運動量が制御され、
所定の形状及び性状の火炎が形成される。
Further, in the case of the invention of claim 7, when the section of the heat storage body through which the combustion exhaust gas and the combustion air flows is switched by the rotation of the switching means, the nozzles for injecting the combustion air are successively circumferentially arranged. Be transferred. Therefore, when the combustion air is directly injected from the nozzle into the furnace, the flame position rotates in the circumferential direction in the furnace to form a non-stationary flame. Moreover, the momentum of the combustion air is controlled by the nozzle,
A flame having a predetermined shape and property is formed.

【0020】更に、本発明において、蓄熱体と燃焼ノズ
ルの前方に流路断面積を先端側へ向けて絞り、周囲に燃
焼ガスが通過し排出できる複数の排出孔を設けたバーナ
スロートを設置すれば、蓄熱体から噴射する燃料用空気
の噴射エネルギーによって、高温の燃焼排ガスの一部が
バーナスロート内へ吸引される排ガス再循環を起こす。
Furthermore, in the present invention, a burner throat may be installed in front of the heat storage body and the combustion nozzle, the flow passage cross-sectional area being narrowed toward the tip end side, and a plurality of discharge holes around which the combustion gas can pass and be discharged. For example, the injection energy of the fuel air injected from the heat storage causes exhaust gas recirculation in which part of the high temperature combustion exhaust gas is sucked into the burner throat.

【0021】[0021]

【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0022】図1に本発明の蓄熱型低NOxバーナの一
実施例を原理図で示す。この蓄熱型低NOxバーナは、
従来の拡散燃焼で用いられる300℃〜400℃程度の
燃焼用空気よりもはるかに高温(例えば800℃程度以
上、好ましくは1000℃〜1100℃程度の熱風)の
燃焼用空気Aと燃料Fとを別々に炉内35に噴射させて
燃焼させるようにしたものである。更に具体的には、本
実施例の蓄熱型低NOxバーナは、燃料Fを炉内35に
噴射する燃料ノズル31を蓄熱体1の中心に貫通させ、
燃料噴流の周りからほぼ平行に高温とされた燃焼用空気
Aを噴射させるようにしている。ここで、燃焼用空気A
は蓄熱体1の燃焼ガスを排気した箇所に通して高温とさ
れる。また、蓄熱体1を通して炉内35に噴射される燃
焼用空気Aの量はほぼ全量であって、燃焼用空気Aの一
部(通常数%程度)が常温のまま燃料ノズル31の冷却
用空気として、燃料用ノズル31とその周りの蓄熱体1
との隙間24から炉内35に噴射される場合もある。し
かし、実質的にはほぼ全量となる燃焼用空気Aが蓄熱体
1を経て高温にされてから炉内35に噴射されていると
言える。
FIG. 1 is a principle view showing an embodiment of a heat storage type low NOx burner of the present invention. This heat storage type low NOx burner
Combustion air A and fuel F at a much higher temperature (for example, about 800 ° C. or higher, preferably about 1000 ° C. to 1100 ° C.) than the combustion air of about 300 ° C. to 400 ° C. used in conventional diffusion combustion. In this case, they are separately injected into the furnace 35 for combustion. More specifically, in the heat storage type low NOx burner of the present embodiment, the fuel nozzle 31 for injecting the fuel F into the furnace 35 is passed through the center of the heat storage body 1,
The combustion air A, which has been heated to a high temperature, is injected substantially in parallel from around the fuel jet. Where combustion air A
Is passed through a portion of the heat storage body 1 where the combustion gas has been exhausted, and is heated to high temperature. Further, the amount of the combustion air A injected into the furnace 35 through the heat storage body 1 is almost the entire amount, and a part (usually about several%) of the combustion air A remains at room temperature to cool the fuel nozzle 31. As the fuel nozzle 31 and the heat storage body 1 around it
In some cases, it may be injected into the furnace 35 through the gap 24 between. However, it can be said that the combustion air A, which is substantially the entire amount, is injected into the furnace 35 after being heated to a high temperature through the heat storage body 1.

【0023】ここで、蓄熱体1を介して燃焼用空気Aの
供給と燃焼排ガスEの排気とを図るシステムは、基本的
には、周方向にN(N=n+1、ここで、nは2以上の
正の偶数で常時流体が流れる室数である。)室に均等に
区画され各室内を軸方向に流体が通過可能とした蓄熱体
1と、燃焼用空気供給系33に接続される給気室6aと
燃焼ガス排気系34に接続される排気室6bとを有する
出入口手段6と、この出入口手段6と蓄熱体1との間に
介在されて蓄熱体1と出入口手段6との間を遮断する一
方、連続的あるいは間欠的に回転して出入口手段6の排
気室6bと給気室6aとをN室に区画された蓄熱体1の
室のいずれかに順次に連通させる切替手段3とから構成
されている。蓄熱体1は、それ自体があるいはその上流
側に配置される分配手段などによって、少なくとも3室
以上に区画されている。
Here, the system for supplying the combustion air A and exhausting the combustion exhaust gas E through the heat storage body 1 is basically N in the circumferential direction (N = n + 1, where n is 2). The above-mentioned positive even number is the number of chambers through which the fluid always flows.) The heat storage body 1 that is evenly divided into the chambers and allows the fluid to pass through each chamber in the axial direction, and the supply air connected to the combustion air supply system 33. An inlet / outlet means 6 having an air chamber 6a and an exhaust chamber 6b connected to the combustion gas exhaust system 34, and between the inlet / outlet means 6 and the heat storage body 1 are arranged between the heat storage body 1 and the inlet / outlet means 6. While switching off, switching means 3 that rotates continuously or intermittently to sequentially connect the exhaust chamber 6b and the air supply chamber 6a of the inlet / outlet means 6 to any of the chambers of the heat storage body 1 partitioned into N chambers. It consists of The heat storage body 1 is divided into at least three or more chambers by itself or by a distribution means arranged on the upstream side thereof.

【0024】蓄熱体1としては、特定の形状や材質に限
定されるものではないが、燃焼排ガスのように1000
℃前後の高温流体と燃焼用空気のように20℃前後の低
温流体との熱交換には、例えばコージライトやムライト
等のセラミックスを材料として押し出し成形によって製
造されるハニカム形状のものの使用が好ましい。また、
ハニカム形状の蓄熱体1は、セラミックス以外の素材例
えば耐熱鋼等の金属で製作しても良い。また、500〜
600℃前後の中高温では、セラミックスよりも比較的
安価なアルミニウムや鉄、銅などの金属の使用が好まし
い。尚、ハニカム形状とは、本来六角形のセル(穴)を
意味しているが、本明細書では本来の六角形のみならず
四角形や三角形のセルを無数にあけたものを含む。ま
た、上述の如く一体成形せずに管などを束ねることによ
ってハニカム形状の蓄熱体1を得るようにしても良い。
本実施例の場合、蓄熱体1はその手前に配置された分配
室2によって周方向に総数Z(a・N)の室に区画され
ている。例えば、図1に示す実施例の場合、仕切り8に
よって3室9a,9b,9cに区画された分配室2によ
って、蓄熱体1内が図3に示すように流体が流れない空
室10と燃焼排ガスを流す室11と燃焼用空気を流す室
12との3室に区画される。即ち、蓄熱体1そのもの
は、1つ1つが独立した流路を構成するセルの集合から
成るハニカム形状を成していることから、分配室2によ
って仕切られた範囲が1つの区画された室を形成するこ
ととなる。分配室2を設ける場合、連通孔4,5を経て
流入する流体を分散させて蓄熱体1の全域に均一に分流
させることができる。また、蓄熱体1の形状も特に図示
のハニカム形状に限定されず、図10の(A)及び
(B)に示すように、平板形状や波板形状の蓄熱材料2
7を筒状のケーシング28内に放射状に配置したり、図
10の(C)に示すように、パイプ形状の蓄熱材料27
を軸方向に流体が通過するように筒状のケーシング28
内に充填したものであっても良い。更には、本実施例で
は分配室2によって単一の蓄熱体1が実質的にZ室に区
画されているが、これに特に限定されるものではなく、
蓄熱体1そのものをa・N室に区画形成しても良い。例
えば、図10の(D)に示すように隔壁29によって周
方向にa・N室に区画形成され、軸方向に流体が通過可
能とした筒状のケーシング28を用意し、これの各室に
球状、短管、短棒、細片、ナゲット状、網状などの蓄熱
材料27の塊りを充填することによって構成されたもの
でも良い。コージライトやムライトなどよりもはるかに
高温で使用可能なSiN等の蓄熱材料27を使用する場
合には、複雑なハニカム形状に成形することは容易では
ないが、単純なパイプ形状や棒、ボールなどに成形する
ことは容易である。そこで、図10の(C)や(D)に
示すような蓄熱体構造の採用が好ましい。
The heat storage body 1 is not limited to a particular shape or material, but is 1000
For heat exchange between a high-temperature fluid of around 0 ° C. and a low-temperature fluid of around 20 ° C. such as combustion air, it is preferable to use a honeycomb-shaped one produced by extrusion molding using a ceramic such as cordierite or mullite as a material. Also,
The honeycomb-shaped heat storage body 1 may be made of a material other than ceramics, for example, a metal such as heat-resistant steel. Also, from 500
At medium and high temperatures around 600 ° C., it is preferable to use a metal such as aluminum, iron, or copper, which is relatively cheaper than ceramics. The honeycomb shape originally means hexagonal cells (holes), but in the present specification, not only the original hexagonal cells but also quadrangular or triangular cells are opened innumerably. Further, as described above, the honeycomb-shaped heat storage body 1 may be obtained by bundling tubes or the like without integrally molding.
In the case of the present embodiment, the heat storage body 1 is divided into a total number of chambers Z (a · N) in the circumferential direction by the distribution chamber 2 arranged in front of it. For example, in the case of the embodiment shown in FIG. 1, the distribution chamber 2 divided into three chambers 9a, 9b, 9c by the partition 8 causes combustion in the heat storage body 1 as shown in FIG. It is divided into three chambers, a chamber 11 for flowing exhaust gas and a chamber 12 for flowing combustion air. That is, since the heat storage body 1 itself has a honeycomb shape composed of a set of cells each of which constitutes an independent flow path, the range partitioned by the distribution chamber 2 is defined as one partitioned chamber. Will be formed. When the distribution chamber 2 is provided, the fluid flowing in through the communication holes 4 and 5 can be dispersed and uniformly distributed over the entire area of the heat storage body 1. Further, the shape of the heat storage body 1 is not particularly limited to the honeycomb shape shown in the drawing, and as shown in FIGS. 10A and 10B, the heat storage material 2 having a flat plate shape or a corrugated plate shape.
7 are arranged radially in a cylindrical casing 28, or as shown in FIG. 10C, a pipe-shaped heat storage material 27.
The cylindrical casing 28 so that the fluid may pass through in the axial direction.
It may be filled inside. Further, in the present embodiment, the single heat storage body 1 is substantially divided into the Z chamber by the distribution chamber 2, but the present invention is not particularly limited to this.
The heat storage body 1 itself may be partitioned and formed in the aN chamber. For example, as shown in FIG. 10 (D), a cylindrical casing 28, which is partitioned and formed in the circumferential direction by partition walls 29 into which the fluid can pass in the axial direction, is prepared. It may be configured by filling a lump of the heat storage material 27 having a spherical shape, a short tube, a short rod, a strip, a nugget shape, a net shape, or the like. When using a heat storage material 27 such as SiN that can be used at a much higher temperature than cordierite or mullite, it is not easy to form a complicated honeycomb shape, but a simple pipe shape, rod, ball, etc. It is easy to mold into. Therefore, it is preferable to employ a heat storage structure as shown in (C) and (D) of FIG.

【0025】ここで、蓄熱体1に区画される室の数は燃
焼用空気を流す室(以下給気用の室という)12と燃焼
排ガスを流す室(以下排気用の室という)11とを1組
として最低1組に1つの空室(流体が流れない室)10
を組み合わせたものであり、n=2のとき即ちN=n+
1より3を最低室数とする。そして、排気用の室11と
給気用の室12とを組にして、例えば図6には2組の排
気用の室11-1,11-2と給気用の室12-1,12-2
を組み合わせた例を示しているが、このようにして何組
でも組み合わせ可能である。また、N個の室を1ユニッ
トとして複数ユニットを形成することも可能である。即
ち、室の総数Zは、Z=a・Nで表される(ここで、a
はユニット数を示す0を除く正の整数)。この場合、各
ユニットとユニットとの間に空室が位置するように各連
通孔4,5の位置が設定されている。このようにして、
N室を1ユニットとして総室数Zの複数ユニットの室を
蓄熱体1に形成することも可能である。この関係を図5
に例示する。尚、図5では作図の便宜上、排気用連通孔
4と給気用連通孔5の位置関係や大きさについては正確
に表されていない。
Here, the number of chambers divided into the heat storage body 1 is a chamber for flowing combustion air (hereinafter referred to as an air supply chamber) 12 and a chamber for flowing combustion exhaust gas (hereinafter referred to as an exhaust chamber) 11. At least one vacant room (a room in which fluid does not flow) 10 as a set
When n = 2, that is, N = n +
The minimum number of rooms is 1 to 3. Then, the exhaust chamber 11 and the air supply chamber 12 are paired, and for example, two sets of the exhaust chambers 11 -1 , 11 -2 and the air supply chambers 12 -1 , 12 are shown in FIG. Although an example is shown in which -2 is combined, any number of combinations can be combined in this way. It is also possible to form a plurality of units by setting N chambers as one unit. That is, the total number Z of rooms is represented by Z = a · N (where a is
Is a positive integer excluding 0 indicating the number of units). In this case, the positions of the communication holes 4 and 5 are set so that the vacant chamber is located between the units. In this way
It is also possible to form a plurality of units of the total number Z of chambers in the heat storage body 1 with the N chambers as one unit. This relationship is shown in Figure 5.
For example. In FIG. 5, for convenience of drawing, the positional relationship and size of the exhaust communication hole 4 and the air supply communication hole 5 are not shown accurately.

【0026】出入口手段6は、環状仕切壁例えば円筒状
の仕切壁7によって、燃焼用空気供給系33と接続され
る給気室6aと排気系統34と接続される排気室6bと
に区画されている。本実施例の場合、仕切壁7の内側に
供給室6a、外側に排気室6bが形成されている。本実
施例の場合、切替手段3は出入口手段6と分配室2の間
で単独に切替手段3と共に回転するように設けられてい
る。例えば、図2に示すように、出入口手段6は外筒部
13aと切替手段3の支持環23の間に軸受部材15を
介在させて切替手段3を回転自在に保持している。そし
て、出入口手段6と切替手段3の間には流体が漏洩しな
いようにシール部材16,17が設けられている。
The inlet / outlet means 6 is divided by an annular partition wall, for example, a cylindrical partition wall 7, into an air supply chamber 6a connected to the combustion air supply system 33 and an exhaust chamber 6b connected to the exhaust system 34. There is. In the case of the present embodiment, the supply chamber 6a is formed inside the partition wall 7, and the exhaust chamber 6b is formed outside. In the case of the present embodiment, the switching means 3 is provided between the inlet / outlet means 6 and the distribution chamber 2 so as to rotate independently with the switching means 3. For example, as shown in FIG. 2, the inlet / outlet means 6 holds the switching means 3 rotatably with the bearing member 15 interposed between the outer cylinder portion 13a and the support ring 23 of the switching means 3. Then, seal members 16 and 17 are provided between the inlet / outlet means 6 and the switching means 3 so as to prevent fluid from leaking.

【0027】出入口手段6の供給室6aと排気室6bと
をそれぞれ対応する蓄熱体1の室・区画12,11にの
み連通させる切替手段3は、流路と直交する円板から成
り、蓄熱体1のある1つの区画と供給室6aとを連通さ
せる給気用連通孔5と、1つの区画と排気室6bとを連
通させる排気用連通孔4とをa・n/2個ずつ有してい
る。例えば、図1の場合にはnは2、aは1であるか
ら、1個ずつの給気用連通孔5と排気用連通孔4とを有
している。そして、この排気用連通孔4と給気用連通孔
5とは、同じ室・区画に給気用連通孔5と排気用連通
孔4とが同時に存在し得ないこと、空室10の次の室
・区画に位置する最前列の連通孔から順次1つずつ前方
の室・区画に移り変わること、給気用連通孔及び排気
用連通孔4の大きさは、半径方向に互いに重ならないよ
うにn個を配置したときに1室に全てが同時に収まる大
きさであること、の3条件を満たすことが必要である。
即ち、排気室6bと蓄熱体1の排気用の室11とを連通
させる排気用連通孔4と給気室6aと蓄熱体1の給気用
の室12とを連通させる給気用連通孔5とを交互にn/
2個ずつ配置し、かつ数式13で表される角度αの間隔
をあけて排気用連通孔4と給気用連通孔5とが配置さ
れ、
The switching means 3 for connecting the supply chamber 6a and the exhaust chamber 6b of the inlet / outlet means 6 to only the corresponding chambers / compartments 12 and 11 of the heat storage body 1 is composed of a disc orthogonal to the flow path. The air supply communication hole 5 for communicating one compartment with 1 and the supply chamber 6a and the exhaust communication hole 4 for communicating one compartment with the exhaust chamber 6b are provided by a · n / 2 each. There is. For example, in the case of FIG. 1, since n is 2 and a is 1, it has one air supply communication hole 5 and one exhaust communication hole 4. The exhaust communication hole 4 and the supply communication hole 5 must be such that the supply communication hole 5 and the exhaust communication hole 4 cannot exist in the same chamber / compartment at the same time. The front-row communication holes located in the chambers / compartments are sequentially moved one by one to the front chambers / compartments, and the sizes of the air supply communication holes and the exhaust communication holes 4 are set so that they do not overlap each other in the radial direction. It is necessary to satisfy the three conditions that all of them are placed in one room at the same time when they are placed.
That is, the exhaust chamber 6b communicates with the exhaust chamber 11 of the heat storage body 1, and the exhaust communication hole 4 communicates with the air supply chamber 6a and the air supply chamber 12 of the heat storage body 1 communicates with each other. Alternating with n /
Two of them are arranged, and the exhaust communication hole 4 and the supply air communication hole 5 are arranged at an interval of an angle α represented by Formula 13.

【数13】 更に給気用連通孔5及び排気用連通孔4の大きさが数式
14の関係を
[Equation 13] Further, the sizes of the air supply communication hole 5 and the exhaust communication hole 4 have the relationship of Expression 14.

【数14】 満足することが必要である。ここで、角度αは、α=3
60°/nに設定することが好ましい。このとき、各排
気用連通孔4と給気用連通孔5とが等間隔に配置される
ため、各連通孔の位置設計と穿孔作業が容易となる。
[Equation 14] It is necessary to be satisfied. Here, the angle α is α = 3
It is preferably set to 60 ° / n. At this time, since the exhaust communication holes 4 and the air supply communication holes 5 are arranged at equal intervals, the position design of the communication holes and the drilling work are facilitated.

【0028】また、複数ユニットを設ける場合には、総
数Zの室のうち常時流体が流れることのないa個の空室
10を各ユニットの間に形成し、かつ数式15の関係を
有する
In the case where a plurality of units are provided, a number of empty chambers 10 in which the fluid does not always flow out of the total number Z of chambers are formed between the units, and the relationship of Expression 15 is satisfied.

【数15】 角度αをあけて排気用連通孔4と給気用連通孔5とが配
置され、かつ排気用連通孔4と給気用連通孔5と大きさ
が数式16
[Equation 15] The exhaust communication hole 4 and the air supply communication hole 5 are arranged at an angle α, and the size of the exhaust communication hole 4 and the air supply communication hole 5 is defined by Equation 16

【数16】 で示される関係を満足するように設けられている。[Equation 16] It is provided so as to satisfy the relationship shown by.

【0029】例えば、n=4,a=1の場合、図6の
(A)に示すように、排気用連通孔4-1,4-2と給気用
連通孔5-1,5-2とが交互に2個ずつ配置されている。
そして、回転方向最前列の排気用連通孔4-1と給気用連
通孔5-2との間に連通孔のない空室10が形成されてい
る。この場合、図6の(B)に示すように、全ての給気
用連通孔5-1,5-2と排気用連通孔4-1,4-2とを1つ
の室に集めたと仮定すると、半径方向において重ならな
いで全てが1室内に収容される。このとき、給気用連通
孔5-1,5-2と排気用連通孔4-1,4-2とはほぼ同じ大
きさ同じ形状の孔に設定されているが、これに特に限定
されるものではなく、給気用と排気用とで大きさや形状
を変更しても良いし、必要であれば連通孔1つ1つ毎に
大きさや形状を変更しても良い。
For example, when n = 4 and a = 1, as shown in FIG. 6A, the exhaust communication holes 4-1 , 4-2 and the air supply communication holes 5-1 , 5-2 are provided. Two and are arranged alternately.
The Check 10 without communicating hole between the rotation direction front row of exhaust communicating hole 4 -1 and the air supply communicating hole 5-2 is formed. In this case, it is assumed that, as shown in FIG. 6B, all the air supply communication holes 5-1 , 5-2 and the exhaust communication holes 4-1 , 4-2 are gathered in one chamber. , All are housed in one room without overlapping in the radial direction. At this time, the air supply communication holes 5 -1 , 5-2 and the exhaust communication holes 4 -1 , 4-2 are set to have substantially the same size and shape, but the invention is not particularly limited to this. However, the size and shape may be changed between air supply and exhaust, and if necessary, the size and shape may be changed for each communication hole.

【0030】また、排気用連通孔4,4-1,4-2,…,
-n及び給気用連通孔5,5-1,5-2,…,5-nの孔形
状は、図3に示す円形に特に限定されず三角形や矩形、
楕円形、長方形は言うに及ばず図4に示す非対称な形状
であっても実施可能である。一般に燃焼用空気の量と燃
焼排ガスの量とがほぼバランスする関係に設定される
が、場合によっては一方の連通孔を他方の連通孔よりも
大きめに設定されることもある。または、排気用連通孔
4と給気用連通孔5とをほぼ同じ大きさとする場合に
は、燃焼により膨れ上がった分の燃焼ガスは蓄熱体1を
通さずに炉外へ排出し、他の熱処理設備や対流熱交換
器、エコノマイザー、加熱設備などに供給して熱源とし
て利用するようにすることが好ましい。尚、円形以外の
形状の連通孔であっても、前述の数式13〜16の関係
は成立する。β1 は切替手段3の回転中心Oから排気用
連通孔4に外接する中心角であり、β2 は切替手段3の
回転中心Oから吸気用連通孔5に外接する中心角であ
る。
Further, exhaust communicating hole 4,4 -1, 4 -2, ...,
4 -n and the air supply communicating hole 5,5 -1, 5 -2, ..., 5 -n hole shape, particularly limited not triangles and rectangles in a circle shown in FIG. 3,
Not only the elliptical shape and the rectangular shape but also the asymmetrical shape shown in FIG. 4 can be implemented. Generally, the amount of combustion air and the amount of combustion exhaust gas are set in a substantially balanced relationship, but in some cases, one communication hole may be set larger than the other communication hole. Alternatively, when the exhaust communication hole 4 and the air supply communication hole 5 have substantially the same size, the combustion gas expanded by combustion is discharged to the outside of the furnace without passing through the heat storage body 1, and other It is preferable to supply it to a heat treatment facility, a convection heat exchanger, an economizer, a heating facility or the like so that it can be used as a heat source. It should be noted that, even if the communication holes have a shape other than a circular shape, the relationships of the above-mentioned formulas 13 to 16 are established. β 1 is a central angle circumscribing from the rotation center O of the switching means 3 to the exhaust communication hole 4, and β 2 is a central angle circumscribing from the rotation center O of the switching means 3 to the intake communication hole 5.

【0031】また、前後関係にある排気用連通孔例えば
-1と給気用連通孔5-1の間の角度αは、蓄熱体1の同
じ室・区画に同時に連通することがないように設定され
ている。したがって、最前列の排気用連通孔4-1を基準
としたとき、最前列の排気用連通孔4-1が仕切り8に差
しかかったとき、隣室の給気用連通孔5-1は仕切り8か
ら少なくとも排気用連通孔4-1の分だけ離れた位置に存
在し、更に隣の室の排気用連通孔4-2は同室の仕切り8
から少なくとも排気用連通孔4-1と給気用連通孔5-1
だけ離れた位置に存在し、更に4番目の室の給気用連通
孔5-2は同室の仕切り8から少なくとも排気用連通孔4
-1と給気用連通孔5-1及び排気用連通孔4-2の3つの孔
分だけ離れた位置に存在する。即ち、図6の(A)に示
すように、最前列の排気用連通孔4-1が前方の空室10
内に差しかかるとき、同室11-1の隣室(1つ後の室)
12-1との仕切り8には給気用連通孔5-1は達しておら
ず、最前列の排気用連通孔4-1のみが前方の空室10に
跨るようにして2室同時に連通する。そして、最前列の
排気用連通孔4-1が空室10であった前方の室内に完全
に切り替えられたときに、今まで最前列の排気用連通孔
-1が存在していた室11-1が空室となり、そこに後方
の隣室12-2の給気用連通孔5-1が差しかかり、2列目
の給気用連通孔5-1のみが2室11-1,11-2に跨るよ
うにして空室となった室11-1内に移る。このようにし
て、3列目の排気用連通孔4-2、4列目の給気用連通孔
-2が順次前方の室に移され、流体の流れが切り替えら
れる。即ち、切替手段3の回転方向とは逆方向に空室1
0が相対的に回転移動するようにして排気と給気とが切
り替えられる位置関係に排気用連通孔4-1,4-2と給気
用連通孔5-1,5-2とが配置されている。
Further, the angle α between the exhaust communication hole, for example, 4 -1 and the air supply communication hole 5 -1 , which are in a front-rear relationship, is set so that they do not communicate with the same chamber / compartment of the heat storage body 1 at the same time. It is set. Therefore, when based on the exhaust communicating hole 4 -1 of the front row, when the front row of the exhaust communicating hole 4 -1 is approaching the partition 8, the air supply communicating hole 5 -1 adjacent room partition 8 at least present in the amount corresponding to a position separated in the exhaust communicating hole 4 -1, further exhaust communicating hole 4 -2 next chambers sharing of the partition 8
For at least the exhaust from at least the exhaust communicating hole 4 -1 present in distant positions by communicating holes 5 -1 minute for air supply, further a fourth air supply communicating hole of the chamber 5 -2 sharing of the partition 8 from Communication hole 4
-1 , the air supply communication hole 5-1 and the exhaust communication hole 4-2 are present at positions separated by three holes. That is, as shown in FIG. 6 (A), exhaust communicating hole 4 -1 front row ahead of Check 10
When approaching inside, the room next to the same room 11 -1 (one room after)
The air supply communication hole 5 -1 does not reach the partition 8 with 12 -1, and only the exhaust communication hole 4 -1 in the front row extends over the front empty chamber 10 so that the two chambers communicate at the same time. . Then, the chamber exhaust communicating hole of the front row 4 -1 when it is completely switched to the front of the chamber was empty chamber 10, was present exhaust communicating hole 4 -1 front row ever 11 -1 becomes an empty room, and the air supply communication hole 5 -1 of the adjacent room 12 -2 at the rear side comes into contact therewith, and only the second-row air supply communication hole 5 -1 has two rooms 11 -1 , 11 -2 It moves to the vacant room 11 -1 so as to straddle the room. In this way, the third column exhaust communicating hole 4 -2, 4 column air supply communicating hole 5-2 is transferred to successively forward the chamber is switched fluid flow. That is, the vacant chamber 1 is rotated in the direction opposite to the rotation direction of the switching means 3.
The exhaust communication holes 4 -1 , 4-2 and the supply air communication holes 5 -1 , 5-2 are arranged in a positional relationship in which exhaust gas and supply air are switched so that 0 relatively rotates. ing.

【0032】この切替手段3は、本実施例の場合、出入
口手段6と軸受手段15によって回転自在に支持されて
いる。そして、駆動機構によって連続的あるいは間欠的
に回転可能に設けられている。駆動機構は特に限定され
るものではないが、例えば本実施例の場合、ディスク状
の切替手段3の周縁にギア22を形成し、これと噛合す
るドライブギア20を有するモータ21を切替手段3の
周りに配置しモータ駆動するように設けられている。勿
論、これに限定されるものではなく、切替手段3の周縁
に圧接される摩擦車によって回転駆動させるようにして
も良い。尚、蓄熱体1と分配室2とを収容するケーシン
グ13bと切替手段3との間、並びに切替手段3と分配
室2との間にはシール材18および19が介在され、シ
ールされている。
In this embodiment, the switching means 3 is rotatably supported by the entrance / exit means 6 and the bearing means 15. The drive mechanism is provided so as to be rotatable continuously or intermittently. Although the drive mechanism is not particularly limited, for example, in the case of the present embodiment, a gear 22 is formed on the peripheral edge of the disc-shaped switching means 3 and a motor 21 having a drive gear 20 meshing with the gear 22 is provided in the switching means 3. It is arranged around and is driven by a motor. Of course, the present invention is not limited to this, and it may be rotationally driven by a friction wheel that is pressed against the peripheral edge of the switching means 3. Sealing materials 18 and 19 are interposed and sealed between the casing 13b housing the heat storage body 1 and the distribution chamber 2 and the switching means 3 and between the switching means 3 and the distribution chamber 2.

【0033】尚、排気系34と給気系33とは図示して
いないが押し込みファンと誘引ファンに接続されてい
る。また、立ち上げ用の点火バーナ37が必要に応じて
設置されている。
Although not shown, the exhaust system 34 and the air supply system 33 are connected to a push-in fan and an induction fan. Further, an ignition burner 37 for starting up is installed as needed.

【0034】燃料ノズル31は、蓄熱体1を貫通して炉
内35に直接露出ないし突出するように配置されてい
る。燃料ノズル31と蓄熱体1との間には僅かな隙間2
4が設けられ、燃焼用空気の一部が冷却用流体として流
されている。勿論、この冷却用の空気は場合によっては
流さない。更に具体的には、この燃料ノズル31は、出
入口手段6の中心、切替手段3の中心、分配室2の中心
及び蓄熱体1の中心を貫通して噴射口(図示省略)が炉
内35あるいはバーナスロート32内に突出するように
設置され、ケーシング13aなどで支持されている。こ
こで、噴射口は先端の中心に軸方向に開口している。
The fuel nozzle 31 is arranged so as to penetrate the heat storage body 1 and be directly exposed or projected into the furnace interior 35. There is a slight gap 2 between the fuel nozzle 31 and the heat storage body 1.
4 is provided, and a part of the combustion air is made to flow as a cooling fluid. Of course, this cooling air is not flowed in some cases. More specifically, the fuel nozzle 31 penetrates through the center of the inlet / outlet means 6, the center of the switching means 3, the center of the distribution chamber 2 and the center of the heat storage body 1 and has an injection port (not shown) inside the furnace 35 or It is installed so as to project into the burner throat 32 and is supported by the casing 13a or the like. Here, the injection port is opened in the axial direction at the center of the tip.

【0035】また、蓄熱体1及び燃料ノズル31の前方
には、流路断面積を先端側へ向けて絞り、周囲に燃焼排
ガスが通過し排出できる複数の排気孔としてバイパス孔
25を設けたバーナスロート32が設置されている。こ
のバーナスロート32は必ず設置されているものではな
いが、該バーナスロート32の存在によって蓄熱体1か
ら噴射される燃焼用空気Aの放散を防ぐと共に、燃焼用
空気の噴射エネルギーによってバイパス孔25から燃焼
排ガスを吸引して燃料噴流の周囲に排ガス再循環を起こ
させ、燃料噴流中に生成する炭化水素ラジカルによって
NOxを低減させ得る。また、バイパス孔25を経てバ
ーナスロート32内に吸引された燃焼排ガスの一部は燃
焼用空気に随伴されて燃焼ガスの容量を増大させる。し
たがって、燃焼ガスをより遠くまで勢いよく到達させ得
る。
Further, in front of the heat storage body 1 and the fuel nozzle 31, the burner is provided with bypass holes 25 as a plurality of exhaust holes through which the flow passage cross-sectional area is narrowed toward the tip side and the combustion exhaust gas can pass therethrough and be discharged. A throat 32 is installed. The burner throat 32 is not necessarily installed, but the existence of the burner throat 32 prevents the combustion air A injected from the heat storage body 1 from being diffused, and the injection energy of the combustion air causes the burner throat 32 to pass through the bypass hole 25. NOx can be reduced by sucking the combustion exhaust gas to cause exhaust gas recirculation around the fuel jet flow and reducing hydrocarbon radicals generated in the fuel jet flow. Further, a part of the combustion exhaust gas sucked into the burner throat 32 through the bypass hole 25 is accompanied by the combustion air to increase the capacity of the combustion gas. Therefore, the combustion gas can be forced to reach farther.

【0036】以上のように構成されたバーナによれば次
のようにして低NOx燃焼を実現できる。
According to the burner configured as described above, low NOx combustion can be realized as follows.

【0037】燃料中の空気と排気の切替動作を図1及び
図3に基づいて詳しく説明すると次のようなものであ
る。まず、出入口手段6の給気室6aに燃焼用空気Aが
導入されると、この燃焼用空気Aは給気用連通孔5を経
て分配室2の第2の室9bに流入し、更に該当する蓄熱
体1の室・区画12に流入する。このとき、蓄熱体1の
該当する区画・室は切替前に通過していた高温ガス・燃
焼排ガスEの熱によって加熱されているため、通過する
燃焼用空気Aは蓄熱体1の熱を奪って高温即ち当該蓄熱
体1を加熱した燃焼ガスの温度近くの高温とされる。そ
して蓄熱体1の中央に配置された燃料ノズル31の周り
から、炉内35へ直接1000℃程度の高温となった燃
焼用空気Aを燃料Fとほぼ平行に噴射する。他方、出入
口手段6の排気室6bに排気用連通孔4を介して連通さ
れた蓄熱体1の該当する区画11には、排気系34の誘
引ファンの働きによって炉内35の燃焼排ガスFが導入
される。そして、この蓄熱体1の区画11部分を加熱す
ることによって温度が下がった燃焼排ガスは分配室2の
第1の室9aに流入してから排気用連通孔4を経て排気
室6bに排出される。
The switching operation between the air in the fuel and the exhaust gas will be described in detail with reference to FIGS. 1 and 3 as follows. First, when the combustion air A is introduced into the air supply chamber 6a of the inlet / outlet means 6, the combustion air A flows into the second chamber 9b of the distribution chamber 2 through the air supply communication hole 5 and is further applicable. Flows into the chamber / compartment 12 of the heat storage body 1. At this time, since the corresponding compartment / chamber of the heat storage body 1 is heated by the heat of the high-temperature gas / combustion exhaust gas E that had passed before the switching, the passing combustion air A takes away the heat of the heat storage body 1. The temperature is set to a high temperature, that is, a high temperature near the temperature of the combustion gas that has heated the heat storage body 1. Then, from around the fuel nozzle 31 arranged in the center of the heat storage body 1, the combustion air A having a high temperature of about 1000 ° C. is directly injected into the furnace 35 in parallel with the fuel F. On the other hand, the combustion exhaust gas F in the furnace 35 is introduced into the corresponding compartment 11 of the heat storage body 1 communicated with the exhaust chamber 6b of the inlet / outlet means 6 through the exhaust communication hole 4 by the action of the induction fan of the exhaust system 34. To be done. Then, the combustion exhaust gas whose temperature is lowered by heating the section 11 of the heat storage body 1 flows into the first chamber 9a of the distribution chamber 2 and is then discharged to the exhaust chamber 6b through the exhaust communication hole 4. .

【0038】次いで、切替手段3を図1の状態から反時
計回転方向へ連続的にあるいは間欠的に回転させると、
まず排気用連通孔4が左隣りの分配室の第3の室9cに
かかり、第1の室9aと第3の室9cとが同時に排気室
6bと連通する。したがって、炉内の燃焼排ガスEは蓄
熱体1の第1の区画と第3の区画(図3に符号10で示
された部分)とを通過してから分配室2の第1の室9a
と第3の室9cとに流入してこれら両室9a,9cに排
気用連通孔4を介して接続されている排気室6bに流出
する。そして排気される。その後、排気用連通孔4が完
全に第3の室9c(図3において符号10で示される空
室であった部分)に切り替えられてから、第2の室9b
に占位していた給気用連通孔5が第1の室9a(図3に
おいて符号11で示される室部分)に切り替えられ、第
2の室9b(図3において符号12で示される室)で区
画される領域が空室となる。換言すれば、今まで流体が
流されていなかった空室10に燃焼排ガスEが流され、
今まで燃焼排ガスEが流されていた室11に燃焼用空気
Aが流され、更に燃焼用空気Aが流されていた室12に
は流体が流されない。依って、燃焼排ガスEの熱によっ
て蓄熱体1が加熱され、加熱された蓄熱体1を通過する
燃焼用空気Aが蓄熱体1の熱によって温められる。この
とき、流体の流れの切替は、空室10を利用して2室に
跨ったときにもそれぞれの室と連通させながら行うの
で、流体の流れが途絶えることがない。そして、燃焼排
ガスEの次に燃焼用空気Aと順次流れを途切らすことな
く切り替えられる。したがって燃焼用空気Aは、加熱さ
れた蓄熱体1を通って排ガス温度に近い高温例えば10
00℃程度の熱風となって炉内35へ供給される。
Next, when the switching means 3 is continuously or intermittently rotated counterclockwise from the state shown in FIG.
First, the exhaust communication hole 4 extends over the third chamber 9c of the left adjacent distribution chamber, and the first chamber 9a and the third chamber 9c simultaneously communicate with the exhaust chamber 6b. Therefore, the combustion exhaust gas E in the furnace passes through the first compartment and the third compartment (the portion indicated by reference numeral 10 in FIG. 3) of the heat storage body 1 before the first chamber 9a of the distribution chamber 2.
And the third chamber 9c, and flows out to the exhaust chamber 6b which is connected to these chambers 9a and 9c through the exhaust communication hole 4. And it is exhausted. After that, the exhaust communication hole 4 is completely switched to the third chamber 9c (the part that was the empty chamber indicated by reference numeral 10 in FIG. 3), and then the second chamber 9b.
The air supply communication hole 5 that was occupied by the space is switched to the first chamber 9a (the chamber portion indicated by the reference numeral 11 in FIG. 3), and the second chamber 9b (the chamber indicated by the reference numeral 12 in FIG. 3). The area partitioned by is an empty room. In other words, the combustion exhaust gas E is flown into the vacant chamber 10 where the fluid has not been flown until now,
The combustion air A is made to flow into the chamber 11 in which the combustion exhaust gas E has been made to flow, and the fluid is not made to flow in the chamber 12 in which the combustion air A has been made to flow. Therefore, the heat storage body 1 is heated by the heat of the combustion exhaust gas E, and the combustion air A passing through the heated heat storage body 1 is warmed by the heat of the heat storage body 1. At this time, the fluid flow is switched while communicating with the two chambers even when the two chambers are occupying the vacant chamber 10, so that the fluid flow is not interrupted. Then, the combustion exhaust gas E is sequentially switched to the combustion air A next to the combustion exhaust gas E without interruption. Therefore, the combustion air A passes through the heated heat storage body 1 and has a high temperature close to the exhaust gas temperature, for example, 10
The hot air of about 00 ° C. is supplied to the furnace 35.

【0039】ほぼ全量の燃焼用空気に相当する高温燃焼
用空気Aと燃料ノズル31から噴射される燃料Fとは別
々に炉内35に噴射され、炉内35に広がりつつ燃焼す
る。このとき、燃焼用空気Aと燃料Fはその流速を急速
に低下させかつ混合領域を広範囲に拡大していることか
ら、本来は燃焼し難い条件である。しかし、燃焼用空気
Aそのものが1000℃程度の高温であるため、このよ
うな条件でも容易に燃焼する。即ち、緩慢燃焼する。こ
の緩慢燃焼はNOxの発生が少ない。この緩慢燃焼によ
って発生する燃焼ガスは前述した如く炉内35での熱利
用の後、蓄熱体1の一部の領域を通過して炉外に排出さ
れる。ここで、蓄熱体1の切替は、例えば20秒〜90
秒、好ましくは10秒程度の間隔で行うか、あるいは蓄
熱体1を経由して排出される燃焼ガスが所定の温度例え
ば200℃程度となったときに行う。
The high temperature combustion air A, which corresponds to almost the entire amount of combustion air, and the fuel F injected from the fuel nozzle 31 are separately injected into the furnace 35 and burned while spreading in the furnace 35. At this time, since the combustion air A and the fuel F rapidly reduce their flow velocities and widen the mixing region, it is a condition that is originally difficult to burn. However, since the combustion air A itself has a high temperature of about 1000 ° C., it easily burns even under such conditions. That is, it burns slowly. This slow combustion produces less NOx. The combustion gas generated by the slow combustion is used in the inside of the furnace 35 as described above, then passes through a part of the heat storage body 1 and is discharged to the outside of the furnace. Here, the switching of the heat storage body 1 is, for example, 20 seconds to 90 seconds.
Second, preferably about 10 seconds, or when the combustion gas discharged through the heat storage body 1 reaches a predetermined temperature, for example, about 200 ° C.

【0040】尚、上述の実施例は本発明の好適な実施の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能であ
る。例えば、切替手段3は空室を形成するための部分を
除くほとんどの領域に各連通孔を形成しても良い。
The above embodiment is one example of the preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, the switching means 3 may form each communication hole in almost all regions except a portion for forming a vacant chamber.

【0041】図7〜図9に切替手段3の他の実施例を示
す。この実施例の切替手段3は、排気用連通孔4と給気
用連通孔5とをN室に区画された蓄熱体1の各室のほぼ
全域を占める大きさの孔とし、燃焼排ガスEを流す室と
燃焼用空気Aを流す室との間に少なくとも1室以上の空
室を区画できるような配置関係がとられたものである。
即ち、蓄熱体1は、前述の実施例と同様に分配室2によ
る区画あるいは蓄熱体そのものの区画によって、周方向
にN(N=n+2、ここで、nは2以上の正の整数で常
時流体が流れる室数である。)室に均等に区画され、各
室内を軸方向に流体が通過可能とされている。ここで、
蓄熱体1に区画される室の数は燃焼用空気を流す給気用
の室12と燃焼排ガスを流す排気用の室11とを1組と
して最低1組に2つの空室(流体が流れない室)10,
10を組み合わせたものであり、4室・区画を最低室数
・区画数とする。排気用の室11と給気用の室12とは
同数である必要はなく、場合によっては図9に示すよう
に、排気用の室11の数よりも給気用の室12の数を多
くしたり、あるいはその逆とすることも可能である。こ
の場合、排気量と空気量との比率が異なる場合に、それ
ぞれの比率ごとに利用する蓄熱体の伝熱面面積を変える
ことができ、適正な熱収支を保つことができるといった
利点がある。また、複数の室・区画が1つの連通孔によ
って同時に流体が流れるようにしても良い。例えば図7
あるいは図8に示すように、2つないし3つ、あるいは
それ以上の数の室・区画が同時に1つの連通孔に繋がる
ようにしても良い。この場合、切り替えに必要な空室の
大きさが小さくなり、切替時間を短くすることができ
る。更に、N個の室を1ユニットとして複数ユニットを
形成することも可能である。即ち、室の総数Zは、Z=
a・Nで表される(ここで、aはユニット数を示す0を
除く正の整数)。この場合、1つの空室10を介在させ
て1群の排気用の室11と給気用の室12とが交互に配
置されるように各連通孔4,5の位置が設定される。こ
の関係を図8および図9に例示する。尚、図8および図
9では作図の便宜上、燃料ノズル31が図示されていな
い。
7 to 9 show another embodiment of the switching means 3. In the switching means 3 of this embodiment, the exhaust communication hole 4 and the air supply communication hole 5 are holes of a size occupying substantially the entire area of each chamber of the heat storage body 1 divided into N chambers, and the combustion exhaust gas E is discharged. The arrangement relationship is such that at least one or more empty chambers can be partitioned between the flowing chamber and the chamber for flowing the combustion air A.
That is, the heat storage body 1 has N (N = n + 2, where n is a positive integer of 2 or more) in the circumferential direction and is always a fluid because of the division by the distribution chamber 2 or the division of the heat storage body itself as in the above-described embodiment. The number of chambers in which the fluid flows is equal to the number of chambers in which the fluid flows. here,
The number of chambers divided into the heat storage body 1 is at least two vacant chambers (fluid does not flow) with one set of a supply chamber 12 for flowing combustion air and one exhaust chamber 11 for flowing combustion exhaust gas. Room) 10,
It is a combination of 10 and 4 rooms / compartment is the minimum number of rooms / compartment. The number of exhaust chambers 11 and the number of supply chambers 12 do not have to be the same, and in some cases, as shown in FIG. 9, the number of supply chambers 12 is larger than the number of exhaust chambers 11. It is also possible to do so or vice versa. In this case, when the ratio between the exhaust gas amount and the air amount is different, there is an advantage that the heat transfer surface area of the heat storage body used can be changed for each ratio and an appropriate heat balance can be maintained. Further, a plurality of chambers / compartments may be made to flow the fluid simultaneously by one communication hole. For example, in FIG.
Alternatively, as shown in FIG. 8, two or three or more chambers / compartments may be simultaneously connected to one communication hole. In this case, the size of the vacant room required for switching is reduced, and the switching time can be shortened. Further, it is also possible to form a plurality of units with N chambers as one unit. That is, the total number Z of rooms is Z =
It is represented by a · N (where a is a positive integer excluding 0 indicating the number of units). In this case, the positions of the communication holes 4 and 5 are set such that one group of exhaust chambers 11 and one group of air supply chambers 12 are alternately arranged with one vacant chamber 10 interposed. This relationship is illustrated in FIGS. 8 and 9. 8 and 9, the fuel nozzle 31 is not shown for convenience of drawing.

【0042】そして、切替手段3は、蓄熱体1の1つあ
るいは2つ以上の室・区画12,12-1,12-2,…,
12-nと供給室6aとを連通させる給気用連通孔5と、
1つあるいは2つ以上の室・区画11,11-1,1
-2,…,11-nと排気室6bとを連通させる排気用連
通孔4とをユニット数aだけ有している。例えば、図7
の場合にはユニット数aは1であるから、1個ずつの給
気用連通孔5と排気用連通孔4とを有している。そし
て、この排気用連通孔4と給気用連通孔5とは、その間
に相互に少なくとも1室以上の空室10を区画できるよ
うな配置関係を満たすことが必要である。即ち、1ユニ
ットの場合、給気用連通孔5と排気用連通孔4とが数式
17
The switching means 3 includes one or more chambers / compartments 12, 12 -1 , 12 -2 , ..., Of the heat storage body 1.
12 -n and the supply chamber 6a for communicating the air supply communication hole 5,
One or more rooms / compartments 11, 11 -1 , 1,
1 -2, ..., and a 11 -n and the exhaust communicating hole for communicating the exhaust chamber 6b 4 only the number of units a. For example, in FIG.
In this case, the number of units a is 1, so that each unit has one air supply communication hole 5 and one exhaust communication hole 4. It is necessary that the exhaust communication hole 4 and the air supply communication hole 5 satisfy a positional relationship such that at least one or more empty chambers 10 can be defined between them. That is, in the case of one unit, the air supply communication hole 5 and the exhaust communication hole 4 are represented by the formula 17

【数17】 で表わされる角度Cの間隔をあけて配置されている。こ
こで、角度Cは、空室分の角度、即ち(360°/(n
+2))よりも僅かに大きく設定することが好ましい。
この場合には、給気と排気の混合を完全に防いで尚かつ
圧損を最小限に抑えることができる。また、複数ユニッ
トを設ける場合には、排気用連通孔4と給気用連通孔5
との間に数式18
[Equation 17] Are arranged at intervals of an angle C represented by. Here, the angle C is an angle corresponding to the vacant space, that is, (360 ° / (n
It is preferable to set it slightly larger than +2)).
In this case, it is possible to completely prevent the supply air and the exhaust gas from being mixed with each other, and to minimize the pressure loss. Further, when a plurality of units are provided, the exhaust communication hole 4 and the air supply communication hole 5 are provided.
Between and

【数18】 で表される角度Cの間隔が設定されて、ユニット数分の
排気用連通孔4と給気用連通孔5とが交互に配置され
る。
[Equation 18] The intervals of the angle C represented by are set, and the exhaust communication holes 4 and the air supply communication holes 5 for the number of units are alternately arranged.

【0043】以上のように構成された切替手段における
流体の流れの切り替えは、排気用連通孔4と給気用連通
孔5の双方が同時にそれぞれの前方の空室10,10に
移り変わることによって行われる。そして、排気用連通
孔4および給気用連通孔5が空室であった前方の室・区
画内を完全に占位したとき、いままで排気用連通孔4お
よび給気用連通孔5と連通していた室・区画はそれぞれ
空室となる。例えば図7に示す1ユニット8室のケース
を例に挙げて説明すると、回転方向の最後尾の室・区画
11-3,12-3が空室となる。このとき、排気用連通孔
4および給気用連通孔5は、今までの室・区画11-1
11-2,11-3および12-1,12-2,12-3と新たな
室・区画10,10との4つの区画に同時に跨るが、複
数の区画に同時に流体を供給しながら切り替えられると
共に空室10を利用しているので、流体の流れが遮断さ
れることがないことは勿論のこと、前方の排気用連通孔
4は給気用連通孔5がさしかかった区画よりも1つ前の
区画に占位するため、排出される燃焼排ガスと供給され
る燃焼用空気とが同じ区画内において混じり合うことが
ない。
The switching of the fluid flow in the switching means configured as described above is performed by simultaneously moving both the exhaust communication hole 4 and the air supply communication hole 5 to the respective front empty chambers 10, 10. Be seen. When the exhaust communication hole 4 and the air supply communication hole 5 completely occupy the front chamber / compartment that was an empty room, the exhaust communication hole 4 and the air supply communication hole 5 communicate with each other until now. The room / compartment that was open will be vacant. For example, taking the case of one unit and eight chambers shown in FIG. 7 as an example, the rearmost chambers / compartments 11 -3 and 12 -3 in the rotation direction are empty. At this time, the exhaust communication hole 4 and the air supply communication hole 5 are provided in the chamber / compartment 11 -1 ,
11 -2 , 11 -3 and 12 -1 , 12 -2 , 12 -3 and new chambers / compartments 10 and 10 are simultaneously crossed over four compartments, but can be switched while simultaneously supplying fluid to a plurality of compartments. Since the vacant chamber 10 is also used, the flow of fluid is not interrupted, and the exhaust communication hole 4 on the front side is one position before the section where the communication hole 5 for air supply is approaching. Since the exhaust gas is exhausted and the combustion air supplied is not mixed with each other in the same section.

【0044】また、図11に示すように、切替手段3と
燃料ノズル31を溶接着けなどで一体に回転する構造に
する一方、燃料ノズル31の燃料噴孔23を切替手段3
の給気用連通孔5の半径方向に向けて設け、切替手段3
と燃料ノズル31を同時に回転させて常に空気流A中に
燃料Fを噴射することも可能である。この場合、燃料噴
流は直進する燃焼用空気噴流に対し横風噴流となって合
流する。このとき、燃焼用空気噴流中には横風噴流・燃
料噴流によって互いに逆向きの渦領域となる一対の循環
流が生じ、燃焼用空気の噴流内部に燃料噴流を取り込
む。その後、2つの渦領域それぞれの内部に生じた大小
複数の渦塊によって燃焼用空気噴流の高濃度域が複雑に
断面内に拡散されると同時に噴流中央部に取り込まれた
燃料噴流も分散されて拡散される。即ち、燃料噴流が燃
焼用空気噴流の中に取り込まれた後、次第に噴流内部全
体に広がり、高温の燃焼用空気と混合されて燃焼用空気
噴流内で燃焼する。その間、燃焼用空気と混合される燃
料噴流の表面で燃焼が起こりNOxを発生させるが、そ
のNOxは、循環流によって燃料噴流中に取り込まれ急
速に還元される。
As shown in FIG. 11, the switching means 3 and the fuel nozzle 31 are integrally rotated by welding or the like, while the fuel injection hole 23 of the fuel nozzle 31 is switched.
Provided in the radial direction of the air supply communication hole 5 of the switching means 3
It is also possible to simultaneously rotate the fuel nozzle 31 and the fuel nozzle 31 to inject the fuel F into the air flow A at all times. In this case, the fuel jet merges with the jet air for combustion that travels straight as a cross-wind jet. At this time, in the combustion air jet, a pair of circulation flows which are mutually opposite vortex regions are generated by the crosswind jet and the fuel jet, and the fuel jet is taken into the inside of the jet of the combustion air. After that, the high-concentration region of the combustion air jet is complicatedly diffused in the cross section by the large and small vortex clusters generated inside each of the two vortex regions, and at the same time, the fuel jet taken in the center of the jet is also dispersed. Diffused. That is, after the fuel jet is taken into the combustion air jet, the fuel jet gradually spreads throughout the inside of the jet, and is mixed with the high temperature combustion air and burned in the combustion air jet. During that time, combustion occurs on the surface of the fuel jet mixed with the combustion air to generate NOx, and the NOx is taken into the fuel jet by the circulation flow and rapidly reduced.

【0045】図12に他の実施例を示す。この実施例の
蓄熱型低NOxバーナは、図2に示すバーナの蓄熱体1
の出口側(炉内35側)に蓄熱体1の区画された室数N
と同数の独立したノズル38,…,38が設置されてい
る。このノズル38,…,38はそれぞれバーナスロー
ト32内に開口されている。本実施例の場合、ノズル3
8,38はバーナスロート32と一体的に形成されてい
る。しかし、これに特に限定されるものではなく、別部
材によってノズル38,…,38とバーナスロート32
とを形成しても良い。バーナスロート32には、炉内3
5の燃焼排ガスを排出するための複数のバイパス孔25
が設けられている。このバイパス孔25は、好ましくは
各ノズル38毎に設けられている。尚、ノズル38,
…,38は、その後端側が蓄熱体1の室・区画10,1
1,12の領域に占位する大きさに広げられ、先端側が
所望の大きさに絞られている。このノズル38,…,3
8の開口の大きさを変えることで、燃焼用空気の噴射速
度(運動量)を自由にコントロールすることができ、火
炎の形状及び性状を変えることができる。例えば勢いの
強い火炎としたり、勢いのない弱い火炎とできる。
FIG. 12 shows another embodiment. The heat storage type low NOx burner of this embodiment is the heat storage body 1 of the burner shown in FIG.
Number N of compartments of the heat storage body 1 on the outlet side (inside the furnace 35) of the
The same number of independent nozzles 38, ..., 38 are installed. The nozzles 38, ..., 38 are opened in the burner throat 32, respectively. In this embodiment, the nozzle 3
8, 38 are formed integrally with the burner throat 32. However, the present invention is not limited to this, and the nozzles 38, ...
And may be formed. The burner throat 32 has 3 inside the furnace
5. A plurality of bypass holes 25 for discharging the combustion exhaust gas of No. 5
Is provided. The bypass hole 25 is preferably provided for each nozzle 38. The nozzle 38,
..., 38, the rear end side is the chamber / compartment 10, 1 of the heat storage body 1.
It is widened to the size occupied by the regions 1 and 12, and the tip side is narrowed to a desired size. This nozzle 38, ..., 3
By changing the size of the opening of 8, the injection speed (momentum) of the combustion air can be freely controlled, and the shape and properties of the flame can be changed. For example, it can be a strong flame or a weak flame with no momentum.

【0046】図13に他の実施例を示す。この実施例の
蓄熱型低NOxバーナは、図12の実施例のバーナのバ
ーナスロート32部分を除き、蓄熱体1の各区画・室と
接続されたノズル38,…,38を直接炉内35に臨ま
せ、各ノズル38,…,38から直接炉内35へ燃焼用
空気を噴射させる一方、燃焼排ガスをノズル38から蓄
熱体1内へ吸引させるようにしたものである。
FIG. 13 shows another embodiment. In the heat storage type low NOx burner of this embodiment, except for the burner throat 32 portion of the burner of the embodiment of FIG. 12, the nozzles 38, ..., 38 connected to each compartment / chamber of the heat storage body 1 are directly placed in the furnace 35. , 38, the combustion air is directly injected into the furnace 35, while the combustion exhaust gas is sucked into the heat storage body 1 from the nozzle 38.

【0047】このように構成されたバーナによると、切
替手段3の連続的あるいは間欠的な回転によって、独立
したいずれか1つのノズル38から燃焼用空気が噴射さ
れる一方、いずれか1つのノズルを経て燃焼排ガスが蓄
熱体1側へ吸引される。そして、燃焼用空気と燃焼排ガ
スとの蓄熱体1への流れの切替えは、切替手段3の回転
によって行われているため、順次隣のノズル38へと移
る。したがって、図14の(A)〜(C)に示すように
燃焼用空気が噴射する位置が順次円周方向に移り変わ
り、炉内35で火炎位置が常時円周方向に回る非定在火
炎を形成する。このような非定在火炎は、バーナ周辺に
被加熱物を設置する場合、例えば水管ボイラなどに利用
する場合、非常に高温の火炎でもチューブが過熱するこ
とを回避できる。
According to the burner thus constructed, the combustion air is injected from any one of the independent nozzles 38 by the continuous or intermittent rotation of the switching means 3, while the one of the nozzles is operated. After that, the combustion exhaust gas is sucked to the heat storage body 1 side. Since the switching of the flow of the combustion air and the combustion exhaust gas to the heat storage body 1 is performed by the rotation of the switching unit 3, the flow sequentially moves to the adjacent nozzle 38. Therefore, as shown in (A) to (C) of FIG. 14, the position at which the combustion air is injected sequentially changes in the circumferential direction, and a flame position in the furnace 35 forms a non-stationary flame in which the flame position always rotates in the circumferential direction. To do. Such a non-stationary flame can avoid overheating of the tube even with a very high temperature flame when installing an object to be heated around the burner, for example, when using it for a water tube boiler.

【0048】また、本実施例では、出入口手段6は円筒
部材によって形成されているが、こくに特に限定され
ず、六角形、四角形あるいは三角形などの2重筒状体で
形成しても良い。また、上述の実施例はバーナシステム
の最少単位を示すもので、炉体に2以上のバーナシステ
ムを配置することもある。
Further, in this embodiment, the inlet / outlet means 6 is formed by a cylindrical member, but it is not particularly limited to this, and may be formed by a double cylindrical body such as a hexagon, a quadrangle or a triangle. Further, the above-mentioned embodiment shows the minimum unit of the burner system, and two or more burner systems may be arranged in the furnace body.

【0049】[0049]

【発明の効果】以上の説明より明らかなように、本発明
の蓄熱型低NOxバーナは、排気系と給気系とを周方向
にN室に区画された蓄熱体の室のいずれかに順次連通さ
せて蓄熱体の中心を貫通する燃料ノズルから炉内に連続
して燃料を噴射し、その周りに場所を移して絶えず高温
の燃焼用空気を蓄熱体から炉内に噴射するようにしてい
るので、燃料を噴射し続けながら燃焼用空気を切り替え
るだけで交番燃焼と同様の効果が得られると共に燃料を
切り替えるための設備や噴射タイミングを調整するため
の制御装置などを必要としない。更に燃焼用空気及び燃
焼排ガスが通過する室は空室を利用して切り替えられる
ため、切替時に燃焼用空気が低減したり滞ることがな
く、安定した燃焼が確保できる。加えて、燃料ノズルは
途切れることなく噴射する燃料によって冷却されるた
め、焼損や燃料コーキングの虞がない上に配置位置や構
造等が複雑とならずに済む。
As is apparent from the above description, the heat storage type low NOx burner of the present invention is arranged such that the exhaust system and the air supply system are sequentially arranged in any one of the chambers of the heat storage body which are divided into N chambers in the circumferential direction. Fuel is continuously injected into the furnace from a fuel nozzle that penetrates through the center of the heat storage body, and fuel is continuously injected into the furnace by moving the area around it to continuously inject hot combustion air from the heat storage body into the furnace. Therefore, the effect similar to the alternating combustion can be obtained only by switching the combustion air while continuously injecting the fuel, and the equipment for switching the fuel and the control device for adjusting the injection timing are not required. Further, since the chamber through which the combustion air and the combustion exhaust gas pass is switched using the vacant chamber, stable combustion can be secured without the combustion air being reduced or stagnant at the time of switching. In addition, since the fuel nozzle is continuously cooled by the injected fuel, there is no risk of burning and fuel coking, and the arrangement position and structure are not complicated.

【0050】また、本発明において燃料と燃焼用空気と
を炉内にほぼ平行にして別々に噴射する場合には、高温
の燃焼用空気と燃料とが炉内の随所で緩慢燃焼を起こ
し、蓄熱型バーナとしての特性を失うことなくNOxの
発生を従来の蓄熱型バーナよりも大幅に低減できる。
Further, in the present invention, when the fuel and the combustion air are injected substantially parallel to each other and separately injected, the high temperature combustion air and the fuel cause slow combustion everywhere in the furnace to accumulate heat. The generation of NOx can be significantly reduced as compared with the conventional heat storage type burner without losing the characteristics of the type burner.

【0051】また、本発明において燃料ノズルを切替手
段と共に回転させて燃料噴流を燃焼用空気噴流に側方か
ら合流させる場合、燃料噴流が高温の燃焼用空気噴流に
取り込まれて燃焼用空気噴流内部で拡散して燃焼するの
で、発生NOxが更に燃料噴流中に取り込まれて還元さ
れ、NOxが著しく低減する。
Further, in the present invention, when the fuel nozzle is rotated together with the switching means to join the fuel jet with the combustion air jet from the side, the fuel jet is taken into the high temperature combustion air jet and the inside of the combustion air jet is taken. Since the NOx is diffused and burned by the NOx, the generated NOx is further taken into the fuel jet flow and reduced, and NOx is significantly reduced.

【0052】また、本発明において高温空気の切り替え
は連続して行われるので、空気過剰率を必要最低限に設
定しても、炉内が酸素不足になることがなく安定した燃
焼を持続し、CO発生量を最少に抑えることができる。
Further, in the present invention, the switching of the hot air is continuously performed, so even if the excess air ratio is set to the necessary minimum, stable combustion is maintained without oxygen shortage in the furnace, It is possible to minimize the amount of CO generated.

【0053】また、請求項7の発明の場合、独立したノ
ズルからそれぞれ炉内に直接燃焼用空気が噴射され、か
つそれが燃焼ノズルの周囲で円周方向に回転するように
場所を移し、炉内で形成される火炎が円周方向に回転す
る非定在火炎を形成することができる。したがって、非
常に高温の火炎の場合でもバーナ周辺に配置される被加
熱物例えば水管ボイラのチューブなどの過熱を回避でき
る。しかも、ノズルの開口の大きさを変えることによっ
て燃焼用空気の炉内への噴射速度(運動量)を自由にコ
ントロールすることができ、火炎の形状及び性状を変え
ることができる。
Further, in the case of the invention of claim 7, the combustion air is directly injected into the furnace from each independent nozzle, and the location is changed so that the combustion air is rotated in the circumferential direction around the combustion nozzle. It is possible to form a non-stationary flame in which the flame formed therein rotates in the circumferential direction. Therefore, even in the case of a very high temperature flame, it is possible to avoid overheating of the object to be heated arranged around the burner, for example, the tube of the water tube boiler. Moreover, by changing the size of the nozzle opening, the injection speed (momentum) of the combustion air into the furnace can be freely controlled, and the shape and properties of the flame can be changed.

【0054】更に、蓄熱体と燃焼ノズルの前方に流路断
面積を先端側へ向けて絞りその周囲に複数の排気孔を設
けたバーナスロートを設置した場合、蓄熱体から噴射す
る燃焼用空気の噴射エネルギーによって高温の燃焼ガス
の一部が燃焼用空気に随伴されるので、排ガス再循環を
起こしてNOxを低減させると共に燃焼ガスの容量を増
大させて炉内奥まで燃焼ガスを到達させ得る。
Further, when a burner throat is provided in front of the heat storage body and the combustion nozzle, the flow passage cross-sectional area is narrowed toward the tip side and a plurality of exhaust holes are provided around it, the combustion air injected from the heat storage body Since a part of high-temperature combustion gas is accompanied by the combustion air by the injection energy, exhaust gas recirculation can be performed to reduce NOx and increase the capacity of the combustion gas to reach the interior of the furnace.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蓄熱型低NOxバーナの基本構成を示
す斜視図である。
FIG. 1 is a perspective view showing a basic configuration of a heat storage type low NOx burner of the present invention.

【図2】本発明の蓄熱型低NOxバーナの一実施例を示
す断面図である。
FIG. 2 is a sectional view showing an embodiment of a heat storage type low NOx burner of the present invention.

【図3】排気用連通孔と給気用連通孔との関係を示す説
明図である。
FIG. 3 is an explanatory diagram showing a relationship between an exhaust communication hole and an air supply communication hole.

【図4】排気用連通孔と給気用連通孔の他の例を示す説
明図である。
FIG. 4 is an explanatory diagram showing another example of an exhaust communication hole and an air supply communication hole.

【図5】流体が流れる室数nとユニット数aとの関係で
室数Nを示す一覧図である。
FIG. 5 is a list showing the number N of chambers in relation to the number n of chambers through which a fluid flows and the number a of units.

【図6】n=4,a=1のときの排気用連通孔と給気用
連通孔との関係を示す図で、(A)は全ての連通孔の配
置図、(B)は1室に全孔を集めた状態の説明図であ
る。
FIG. 6 is a diagram showing a relationship between an exhaust communication hole and an air supply communication hole when n = 4 and a = 1, (A) is a layout view of all communication holes, and (B) is one chamber. It is explanatory drawing of the state which gathered all the holes in.

【図7】切替手段の他の実施例を示す原理図である。FIG. 7 is a principle view showing another embodiment of the switching means.

【図8】流体が流れる室数nとユニット数aとの関係で
室の配置を示す一覧図である。
FIG. 8 is a list showing the arrangement of chambers in relation to the number of chambers in which a fluid flows and the number of units a.

【図9】排気用連通孔と給気用連通孔との数が異なる例
における流体が流れる室数nとユニット数aとの関係で
室の配置を示す一覧図である。
FIG. 9 is a list diagram showing the arrangement of chambers in the relationship between the number of chambers in which a fluid flows and the number of units a in an example in which the numbers of communication holes for exhaust and supply holes are different.

【図10】蓄熱体の他の実施例を示す説明図で、(A)
は放射状に板を配置したタイプ、(B)は放射状に波板
を配置したタイプ、(C)はパイプを束ねたタイプ、
(D)は蓄熱材料をN室に区画されたケーシング内に充
填したタイプを示す。
FIG. 10 is an explanatory view showing another embodiment of the heat storage body, (A)
Is a type in which plates are radially arranged, (B) is a type in which corrugated plates are radially arranged, (C) is a type in which pipes are bundled,
(D) shows a type in which a heat storage material is filled in a casing divided into N chambers.

【図11】本発明の蓄熱型低NOxバーナの他の実施例
を示す縦断面図である。
FIG. 11 is a longitudinal sectional view showing another embodiment of the heat storage type low NOx burner of the present invention.

【図12】本発明の蓄熱型低NOxバーナの他の実施例
を示す縦断面図である。
FIG. 12 is a longitudinal sectional view showing another embodiment of the heat storage type low NOx burner of the present invention.

【図13】本発明の蓄熱型低NOxバーナの他の実施例
を示す縦断面図である。
FIG. 13 is a longitudinal sectional view showing another embodiment of the heat storage type low NOx burner of the present invention.

【図14】図13の実施例において使用される蓄熱型低
NOxバーナにおいて火炎が円周方向に回転する動作
(A)〜(C)の説明図である。
FIG. 14 is an explanatory diagram of operations (A) to (C) in which the flame rotates in the circumferential direction in the heat storage type low NOx burner used in the embodiment of FIG. 13.

【図15】従来の蓄熱型バーナの原理図である。FIG. 15 is a principle diagram of a conventional heat storage type burner.

【符号の説明】[Explanation of symbols]

1 蓄熱体 2 分配室 3 切替手段 4 排気用連通孔 5 給気用連通孔 6 出入口手段 6a 給気室 6b 排気室 7 仕切壁 9a,9b,9c 分配室の室 10 蓄熱体の空室 11 蓄熱体の排気用の室 12 蓄熱体の給気用の室 13a,13b ケーシング F 燃料 A 高温燃焼用空気 E 燃焼排ガス 31 燃料ノズル 32 バーナスロート 35 炉内 1 Heat Storage Body 2 Distribution Chamber 3 Switching Means 4 Exhaust Communication Hole 5 Air Supply Communication Hole 6 Entry / Exit Means 6a Air Supply Chamber 6b Exhaust Chamber 7 Partition Walls 9a, 9b, 9c Distribution Chamber 10 Heat Storage Vacancy 11 Heat Storage Chamber for exhausting body 12 Chamber for supplying air to heat storage body 13a, 13b Casing F Fuel A High temperature combustion air E Combustion exhaust gas 31 Fuel nozzle 32 Burner throat 35 In furnace

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 周方向にN(N=n+1、ここで、nは
2以上の正の偶数で常時流体が流れる室数である。)室
に均等に区画され各室内を軸方向に流体が通過可能とし
た蓄熱体と、この蓄熱体の中心を貫通して炉内に燃料を
直接噴射する燃料ノズルと、燃焼用空気供給系に接続さ
れる給気室と燃焼ガス排気系に接続される排気室とに環
状仕切壁で区画された2重管状の出入口手段と、前記蓄
熱体と前記出入口手段との間に介在されて前記蓄熱体と
出入口手段との間を遮断する一方、前記給気室と前記蓄
熱体とを連通させる給気用連通孔と前記排気室と前記蓄
熱体とを連通させる排気用連通孔とを交互にn/2個ず
つ配置し、連続的あるいは間欠的に回転して前記出入口
手段の排気室と給気室とをN室に区画された前記蓄熱体
の室のいずれかに順次連通させる切替手段とから成り、
かつ前記切替手段の排気用連通孔と給気用連通孔とが数
式1で表わされる角度αの間隔をあけて配置され、 【数1】 更に前記給気用連通孔及び排気用連通孔の大きさが数式
2の関係を 【数2】 満足し、前記炉内に燃料を連続的に噴射すると共にその
周りに高温の燃焼用空気を前記蓄熱体から炉内に直接噴
射することを特徴とする蓄熱型低NOxバーナ。
1. N (N = n + 1, where n is a positive even number equal to or greater than 2 is the number of chambers through which fluid always flows) circumferentially is evenly divided into chambers, and fluid is axially distributed in each chamber. A heat storage body that can pass through, a fuel nozzle that penetrates the center of this heat storage body to inject fuel directly into the furnace, and is connected to an air supply chamber connected to the combustion air supply system and a combustion gas exhaust system. A double tubular inlet / outlet means partitioned from the exhaust chamber by an annular partition wall and the heat storage body and the inlet / outlet means are interposed to shut off the heat storage body and the inlet / outlet means, while the air supply is provided. A supply air communication hole that communicates the chamber and the heat storage body and an exhaust communication hole that communicates the exhaust chamber and the heat storage body are alternately arranged by n / 2 each, and rotate continuously or intermittently. The exhaust chamber and the air supply chamber of the inlet / outlet means are arranged in any one of the heat storage chambers divided into N chambers. It consists of switching means to communicate next,
Further, the exhaust communication hole and the air supply communication hole of the switching means are arranged at an interval of an angle α represented by Formula 1, and Further, the relationship between the size of the air supply communication hole and the size of the exhaust communication hole is expressed by Equation 2 as follows: A heat storage type low NOx burner which is satisfied and which continuously injects fuel into the furnace and directly injects high temperature combustion air around the fuel from the heat storage body into the furnace.
【請求項2】 N(ここで、N=n+1で、nは2以上
の正の偶数で常時流体が流れる室数を示す。)室を1ユ
ニットとして総室数Z(ここで、Z=a・Nで、aはユ
ニット数を示す0を除く正の整数)の複数ユニットの室
を蓄熱体に形成すると共に総数Zの室のうち常時流体が
流れることのないa個の空室を1ユニットを構成するN
室と他のユニットのN室との間に形成し、かつ前記排気
用連通孔と給気用連通孔との配置角度αが数式3の関係
を有し、 【数3】 かつ前記排気用連通孔と給気用連通孔との大きさが数式
4で示される関係を 【数4】 満足することを特徴とする請求項1記載の蓄熱型低NO
xバーナ。
2. A total number of chambers Z (where Z = a, where N = n + 1, n is a positive even number of 2 or more and indicates the number of chambers in which the fluid always flows).・ N, a is a positive integer excluding 0 indicating the number of units) A plurality of unit chambers are formed in the heat storage body, and a total of Z chambers is a unit of a vacant chamber in which fluid does not always flow. Configuring N
Formed between the chamber and the N chamber of the other unit, and the arrangement angle α between the exhaust communication hole and the air supply communication hole has the relationship of Equation 3, Moreover, the relationship between the size of the exhaust communication hole and the supply air communication hole is expressed by the following equation (4). The heat storage type low NO according to claim 1, characterized in that
x burner.
【請求項3】 周方向にN(N=n+2、ここで、nは
2以上の正の整数で常時流体が流れる室数である。)室
に均等に区画され各室内を軸方向に流体が通過可能とし
た蓄熱体と、この蓄熱体の中心を貫通して炉内に燃料を
直接噴射する燃料ノズルと、燃焼用空気供給系に接続さ
れる給気室と燃焼ガス排気系に接続される排気室とに環
状仕切壁で区画された2重管状の出入口手段と、前記蓄
熱体と前記出入口手段との間に介在されて前記蓄熱体と
出入口手段との間を遮断する一方、前記給気室と前記蓄
熱体とを連通させる給気用連通孔と前記排気室と前記蓄
熱体とを連通させる排気用連通孔とが数式5で表わされ
る角度Cの間隔をあけて配置され、 【数5】 かつ連続的あるいは間欠的に回転して前記出入口手段の
排気室と給気室とをN室に区画された前記蓄熱体の室の
いずれかに順次連通させる切替手段とから成り、前記炉
内に燃料を連続的に噴射すると共にその周りに高温の燃
焼用空気を前記蓄熱体から炉内に直接噴射することを特
徴とする蓄熱型低NOxバーナ。
3. N (N = n + 2, where n is a positive integer greater than or equal to 2 is the number of chambers in which fluid always flows) circumferentially is evenly divided into chambers, and fluid is axially distributed in each chamber. A heat storage body that can pass through, a fuel nozzle that penetrates the center of this heat storage body to inject fuel directly into the furnace, and is connected to an air supply chamber connected to the combustion air supply system and a combustion gas exhaust system. A double tubular inlet / outlet means partitioned from the exhaust chamber by an annular partition wall and the heat storage body and the inlet / outlet means are interposed to shut off the heat storage body and the inlet / outlet means, while the air supply is provided. An air supply communication hole that communicates the chamber and the heat storage body and an exhaust communication hole that communicates the exhaust chamber and the heat storage body are arranged at an interval of an angle C represented by Formula 5, and ] And switching means for continuously or intermittently rotating to sequentially communicate the exhaust chamber and the air supply chamber of the inlet / outlet means with any of the chambers of the heat storage body divided into N chambers. A heat storage type low NOx burner characterized by continuously injecting fuel and injecting high temperature combustion air around the fuel directly into the furnace from the heat storage body.
【請求項4】 N(ここで、N=n+2で、nは2以上
の正の整数で常時流体が流れる室数を示す。)室を1ユ
ニットとして総室数Z(ここで、Z=a・Nで、aはユ
ニット数を示す0を除く正の整数)の複数ユニットの区
画された室を蓄熱体に形成すると共に前記排気用連通孔
と給気用連通孔との間に数式6 【数6】 で表される角度Cの間隔が設定されたことを特徴とする
請求項3記載の蓄熱型低NOxバーナ。
4. A total number of chambers Z (where Z = a, where N = n + 2, n is a positive integer of 2 or more and indicates the number of chambers in which the fluid always flows) is defined as one unit. · N, a is a positive integer excluding 0, which indicates the number of units, is defined in the heat storage body as a compartmentalized chamber of a plurality of units, and Equation 6 is provided between the exhaust communication hole and the air supply communication hole. Number 6] The heat storage type low NOx burner according to claim 3, wherein an interval of an angle C represented by is set.
【請求項5】 前記燃料ノズルから噴射される燃料と前
記蓄熱体から噴射される燃焼用空気とはほぼ平行に噴射
されることを特徴とする請求項1ないし4のいずれかに
記載の蓄熱型低NOxバーナ。
5. The heat storage type according to claim 1, wherein the fuel injected from the fuel nozzle and the combustion air injected from the heat storage body are injected substantially in parallel. Low NOx burner.
【請求項6】 前記燃料ノズルは前記切替手段と同時に
回転して前記蓄熱体から噴射される燃焼用空気流に向け
て側方から常に燃料が噴射されることを特徴とする請求
項1ないし4のいずれかに記載の蓄熱型低NOxバー
ナ。
6. The fuel nozzle is rotated simultaneously with the switching means so that fuel is always injected from a side toward a combustion air flow injected from the heat storage body. The heat storage type low NOx burner according to any one of 1.
【請求項7】 前記蓄熱体の炉内側の出口に、互いに独
立しかつ前記蓄熱体の区画される各室毎に連通したノズ
ルを設けたことを特徴とする請求項1ないし4のいずれ
かに記載の蓄熱型低NOxバーナ。
7. The outlet of the heat storage body inside the furnace is provided with a nozzle that is independent of each other and communicates with each chamber in which the heat storage body is partitioned. The heat storage type low NOx burner described.
【請求項8】 蓄熱体と燃料ノズルの前方に流路断面積
を先端側へ向けて絞り、かつ周囲に複数の排気孔を設け
たバーナスロートを設置することを特徴とする請求項1
ないし7のいずれかに記載の蓄熱型低NOxバーナ。
8. A burner throat having a flow passage cross-sectional area narrowed toward the tip side in front of the heat storage body and the fuel nozzle, and a burner throat having a plurality of exhaust holes in the periphery thereof is installed.
8. A heat storage type low NOx burner according to any one of 1 to 7.
【請求項9】 前記蓄熱体は、該蓄熱体と切替手段との
間にそれぞれ周方向にa・N(ここで、aはユニット数
である)室に区画され軸方向に流体が通過可能とした分
配室を設けることによって、a・N室に区画されたこと
を特徴とする請求項1ないし8のいずれかに記載の蓄熱
型低NOxバーナ。
9. The heat storage body is partitioned into an aN (where a is the number of units) chambers in the circumferential direction between the heat storage body and the switching means, and fluid can pass in the axial direction. The heat storage type low NOx burner according to any one of claims 1 to 8, wherein the heat storage type low NOx burner is divided into an aN chamber by providing the distribution chamber.
【請求項10】 前記蓄熱体は軸方向に連通したセル孔
を多数有するハニカム状であることを特徴とする請求項
1ないし9のいずれかに記載の蓄熱型低NOxバーナ。
10. The heat storage type low NOx burner according to claim 1, wherein the heat storage body has a honeycomb shape having a large number of cell holes communicating in the axial direction.
【請求項11】 前記蓄熱体はパイプ形状の蓄熱材料を
軸方向に流体が通過するように径方向に多数配列して成
るものであることを特徴とする請求項1ないし9のいず
れかに記載の蓄熱型低NOxバーナ。
11. The heat storage body is formed by arranging a large number of pipe-shaped heat storage materials in a radial direction so that a fluid passes through in an axial direction. Heat storage type low NOx burner.
【請求項12】 前記蓄熱体は平板あるいは波板形状の
蓄熱材料を放射状に多数配列して成ることを特徴とする
請求項1ないし9のいずれかに記載の蓄熱型低NOxバ
ーナ。
12. The heat storage type low NOx burner according to claim 1, wherein the heat storage body is formed by arranging a large number of flat or corrugated heat storage materials in a radial pattern.
【請求項13】 前記蓄熱体は互いに独立させてa・N
室に区画され軸方向に流体が通過可能としたケーシング
内に蓄熱材料のブロックないし小片を充填して成ること
を特徴とする請求項1ないし8のいずれかに記載の蓄熱
型低NOxバーナ。
13. The heat storage bodies are independent of each other and are aN
The heat storage type low NOx burner according to any one of claims 1 to 8, wherein a block or a small piece of heat storage material is filled in a casing which is partitioned into a chamber and through which a fluid can pass in the axial direction.
JP33925293A 1993-08-27 1993-12-03 Thermal storage type low NOx burner Expired - Lifetime JP3322470B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP33925293A JP3322470B2 (en) 1993-08-27 1993-12-03 Thermal storage type low NOx burner
KR1019960702902A KR100254128B1 (en) 1993-12-03 1994-12-01 Regenerative type burner and storage type heat exchanging system available therefor
US08/649,677 US5848885A (en) 1993-12-03 1994-12-01 Regenerative burner and regenerative heat exchange system applicable thereto
CA002177352A CA2177352C (en) 1993-12-03 1994-12-01 Regenerative burner and regenerative heat exchange system applicable thereto
PCT/JP1994/002027 WO1995015462A1 (en) 1993-12-03 1994-12-01 Regenerative type burner and storage type heat exchanging system available therefor
EP95902291A EP0732542A4 (en) 1993-12-03 1994-12-01 Regenerative type burner and storage type heat exchanging system available therefor
TW83111375A TW260738B (en) 1993-10-04 1994-12-07 Heat-storage type burner and heat-storage type heat exchange system using the burner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP23432593 1993-08-27
JP5-234325 1993-08-27
JP33925293A JP3322470B2 (en) 1993-08-27 1993-12-03 Thermal storage type low NOx burner

Publications (2)

Publication Number Publication Date
JPH07113509A true JPH07113509A (en) 1995-05-02
JP3322470B2 JP3322470B2 (en) 2002-09-09

Family

ID=26531501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33925293A Expired - Lifetime JP3322470B2 (en) 1993-08-27 1993-12-03 Thermal storage type low NOx burner

Country Status (1)

Country Link
JP (1) JP3322470B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100494093B1 (en) * 2000-12-19 2005-06-13 주식회사 포스코 BURNER APPARATUS FOR REDUCING NOx
CN102654283A (en) * 2012-02-15 2012-09-05 广东工业大学 Cyclone combustion system for coal slag powder
CN103727535A (en) * 2014-01-16 2014-04-16 北京大学 Diagonal-flow constant-temperature flameless burner
CN104033889A (en) * 2014-05-28 2014-09-10 山东科技大学 Heat accumulating type biomass gasification combustion device and production process thereof
WO2017102758A1 (en) * 2015-12-15 2017-06-22 Tenova S.P.A Compact burner with both fuel and combustive air regeneration

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822209B (en) * 2014-03-12 2016-03-23 中国人民解放军国防科学技术大学 The gas burner of supersonic speed blowtorch

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100494093B1 (en) * 2000-12-19 2005-06-13 주식회사 포스코 BURNER APPARATUS FOR REDUCING NOx
CN102654283A (en) * 2012-02-15 2012-09-05 广东工业大学 Cyclone combustion system for coal slag powder
CN102654283B (en) * 2012-02-15 2014-09-24 广东工业大学 Cyclone combustion system for coal slag powder
CN103727535A (en) * 2014-01-16 2014-04-16 北京大学 Diagonal-flow constant-temperature flameless burner
CN103727535B (en) * 2014-01-16 2016-01-20 北京大学 A kind of diagonal flow type normal temperature flameless burner
CN104033889A (en) * 2014-05-28 2014-09-10 山东科技大学 Heat accumulating type biomass gasification combustion device and production process thereof
CN104033889B (en) * 2014-05-28 2016-06-29 山东科技大学 The biomass gasification fired device of heat accumulating type and production technology thereof
WO2017102758A1 (en) * 2015-12-15 2017-06-22 Tenova S.P.A Compact burner with both fuel and combustive air regeneration

Also Published As

Publication number Publication date
JP3322470B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
KR100254128B1 (en) Regenerative type burner and storage type heat exchanging system available therefor
KR970000103B1 (en) Steel heating furnace
JPH09203501A (en) Small-sized once-through boiler
CN103429761A (en) Top-combustion hot-blast furnace
JPH1194239A (en) Alternate changing-over heat storage regenerative burner system and method of controlling its combustion
JPH07113509A (en) Heat accumulation type low nox burner
KR100583819B1 (en) Self regenerative type single radiant tube burner
JP4229502B2 (en) Thermal storage radiant tube burner
JP3668546B2 (en) Air circulation type tube heating equipment
JP3325105B2 (en) Immersion tube heating type molten aluminum insulation furnace
JPH07167423A (en) Combustion controlling method for combustion heater
CN206831498U (en) A kind of disperse formula Regenerative Combustion System
JP2002221091A (en) Exhaust gas boiler and combustion method in exhaust gas boiler
JP2004003857A (en) Combustion method of radiant tube burner system
KR101742282B1 (en) Full time regenerative type single radiant tube burner
JPH0783585A (en) Heat accumulative type heat exchanger and heat accumulative type burner system utilizing the exchanger
JP2966819B2 (en) Heat storage type heat exchanger and heat storage type burner system using the same
JP3774288B2 (en) Supply air preheating device and supply air preheating method
JPH08193793A (en) Switching device for channel for feeding high temperature gas
JP3606310B2 (en) Premixed swirl combustor
JP3691863B2 (en) Radiant tube burner and alternating combustion radiant tube burner system using the same
JPH0989242A (en) Regenerative burner and heating furnace with regenerative burner
JP2001173905A (en) Exhaust gas circulating indirect heating pyrogen unit
JP4060990B2 (en) Alternating combustion type regenerative burner system and heating furnace using the same
JP2725893B2 (en) Hot gas generator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8