JPH07113216A - Tsunami breakwater - Google Patents

Tsunami breakwater

Info

Publication number
JPH07113216A
JPH07113216A JP28190093A JP28190093A JPH07113216A JP H07113216 A JPH07113216 A JP H07113216A JP 28190093 A JP28190093 A JP 28190093A JP 28190093 A JP28190093 A JP 28190093A JP H07113216 A JPH07113216 A JP H07113216A
Authority
JP
Japan
Prior art keywords
tsunami
breakwater
energy
overflow
bay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28190093A
Other languages
Japanese (ja)
Inventor
Kazumitsu Takanashi
和光 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP28190093A priority Critical patent/JPH07113216A/en
Publication of JPH07113216A publication Critical patent/JPH07113216A/en
Pending legal-status Critical Current

Links

Landscapes

  • Revetment (AREA)

Abstract

PURPOSE:To damp tsunami energy by notching part of the upper surface of a levee body to provide an overflow opening in which tsunami is partially passed, at the same time, forming a roughness surface on the circumference thereof, and installing the levee body in the shallow sea area of a bay section. CONSTITUTION:When tsunami surges against a tsumani breakwater 10 in the direction of the arrow to raise wave height, surface current of the tsunami partially flows in an overflow opening to pass through the breakwater 10. Then, at that time, a roughness surface 21 such as a sawtooth-shape, etc., is formed at least partially on the upper surface, etc., of the opening 20, so that the overflow sea water passing on the surface 21 consumes moving energy in the case of the passing. After that, the overflow sea water falls to the surface of the water from the rear end section 10b of the breakwater 10, and energy carrying capacity is further reduced. According to the constitution, tsunami energy can be efficiently damped in the shallow sea area and, at the same time, the arrival of tsunami energy to the coastline can be greatly controlled, and large scale damage caused by tsunami coming up to the land and going back to the sea can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は津波防波堤に係り、特に
浅海域に設置され、津波のエネルギーを減衰させ、沿岸
の津波被害を最小限にする津波防波堤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tsunami breakwater, and more particularly to a tsunami breakwater that is installed in a shallow sea area and that attenuates the energy of the tsunami to minimize coastal tsunami damage.

【0002】[0002]

【従来の技術】我国は、地球規模にみて地震多発地帯に
位置する上、四方が海に囲まれた島国である。このため
過去の歴史において、地震による直接被害に加え、海岸
地域では津波による被害が繰り返されてきた。ところ
で、津波は海底の地震、噴火等の地殻変動によってその
地点の海底プレートが垂直方向に偏位してズレが生じ、
そのズレが海底から海面までの間の海水に伝わって海面
に波長の長い波が発生し、発生点から四方八方に伝わり
陸上部に向かって伝わっていく現象で、海岸線近くの浅
海域で急激に波高が大きくなり、巨大なエネルギーを持
ったまま陸上部にはい上がっていく。この現象は「遡
上」と呼ばれ、津波の遡上した地域では海岸線近くの低
い土地に建てられた家屋等は津波が押し寄せる力でなぎ
倒されてしまう。そして遡上が頂点に達し力が弱まると
同時に、押し寄せた津波(海水)は猛烈な勢いで引いて
いく。この「引き」の時に多くの人々や路上の車や破壊
された家屋が海水とともに海にさらわれてしまい、引い
た後の陸上部には何も残らなかったという状況が多く報
告されている。このように津波は発生頻度は少ないもの
の発生した時の被害は甚大である。そこで、津波の被害
を無くすために総合的な津波対策が講じられてきた。
2. Description of the Related Art Japan is an island nation that is located in an earthquake-prone region on a global scale and is surrounded on all sides by the sea. For this reason, in the past history, in addition to direct damage caused by earthquakes, damage caused by tsunami has been repeated in coastal areas. By the way, the tsunami causes vertical displacement of the seafloor plate due to crustal movements such as earthquakes and eruptions on the seafloor, causing a shift.
The deviation is transmitted to the seawater between the sea floor and the sea surface, and a long wavelength wave is generated on the sea surface.The wave propagates in all directions from the generation point to the land area. The wave height increases, and it goes up to the land with huge energy. This phenomenon is called "run-up," and in areas where the tsunami has run up, houses and other buildings built on low land near the coastline are overwhelmed by the force of the tsunami. At the same time as the run-up reaches the peak and the power weakens, the tsunami (seawater) that rushes pulls with tremendous force. It has been reported that many people, cars on the streets, and destroyed houses were kidnapped by the sea along with seawater at the time of this "pull", leaving nothing behind on the land after pulling. As described above, although the tsunami has a low frequency of occurrence, the damage at the time of occurrence is great. Therefore, comprehensive tsunami countermeasures have been taken to eliminate the damage caused by the tsunami.

【0003】津波の来襲のおそれのある海岸地域では各
種の津波対策施設の建設が進められている。そのひとつ
に津波防波堤がある。津波防波堤は入り込んだ湾の湾口
に建設され、津波波高や流勢を減殺して津波の到達時間
を遅らせるとともに、湾の形状を変えることで湾水の固
有振動周期を変え、外洋から押し寄せる津波の周期成分
に対して湾水が共振して津波波高が異常に大きくならな
いように設計されている。これにより湾内に到達する津
波の波高をおさえて陸上部への遡上が最小となるように
している。
Construction of various tsunami countermeasure facilities is underway in coastal areas where there is a risk of a tsunami. The tsunami breakwater is one of them. The tsunami breakwater was constructed at the entrance of the bay where the tsunami entered, and delayed the arrival time of the tsunami by diminishing the tsunami height and current, and changing the shape of the bay to change the natural oscillation cycle of the bay water, and It is designed so that the bay water does not resonate with the periodic component and the tsunami wave height does not increase abnormally. As a result, the height of the tsunami reaching the bay is suppressed and the run up to the land is minimized.

【0004】このような津波防波堤の我国における施工
例としては大船渡湾口津波防波堤が知られており、現在
建設中のものに釜石湾口津波防波堤がある。既に完成し
ている大船渡湾口津波防波堤は幅約700m、最大水深
が約38mある湾口部に建設された堤長約740mの長
大防波堤で、中央位置に幅約200m、水深D.L−1
6mの開口部が設けられている。この開口部は前記長大
防波堤の一部を潜堤構造としたもので、通常時の船舶の
航路確保と、津波来襲時の海水の湾内への流入量の制限
を目的としている。一方、釜石湾口津波防波堤は図7及
び図8に示したように、幅約2100m、水深約60m
に達する湾口部に、北堤50(L=990m)、南堤5
1(L=670m)とが湾口52を塞ぐように建設され
ている。水深−60m地点での津波防波堤は図8に示し
たように天端高が35mにもなる捨石マウンド53を構
築し、その上に消波スリット54が形成されたケーソン
55を設置した構造となっている。
As an example of the construction of such a tsunami breakwater in Japan, the Ofunato Bay mouth tsunami breakwater is known, and the one currently under construction is the Kamaishi Bay mouth tsunami breakwater. The Ofunato Bay mouth tsunami breakwater that has been completed is a long breakwater of about 740 m long constructed at the mouth of the bay with a width of about 700 m and a maximum depth of about 38 m. L-1
A 6 m opening is provided. This opening has a part of the long breakwater as a submerged structure, and its purpose is to secure the shipping route of the ship at normal times and to limit the inflow of seawater into the bay at the time of the tsunami. On the other hand, the Kamaishi Bay mouth tsunami breakwater has a width of about 2100 m and a water depth of about 60 m, as shown in FIGS.
At the mouth of the bay reaching, the north dike 50 (L = 990m) and the south dike 5
1 (L = 670 m) is constructed to block the bay mouth 52. The tsunami breakwater at a water depth of -60 m has a structure in which a rubble mound 53 having a crown height of 35 m is constructed and a caisson 55 having a wave-dissipating slit 54 is installed thereon, as shown in FIG. ing.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述したよう
な巨大な津波防波堤を建設するには膨大な建設費と工事
期間が長期にわたるという問題がある。また、実際にこ
のような巨大な構造物が建設されると、近隣港湾の潮汐
や周辺海域の生態系等の環境に大きな変化が生じるおそ
れもある。さらに、津波はあらゆる海域で発生する可能
性があり、津波の到達する海岸線の地形も多様である。
そのため大船渡湾や釜石湾(図7参照)のある三陸海岸
のように湾口幅の狭い沿岸地域では有効とされる津波防
波堤も、別のところではほとんど効果がないか、または
津波防波堤の建設そのものができないという欠点もあ
る。
However, there is a problem that a huge construction cost and a long construction period are required to construct the huge tsunami breakwater as described above. Moreover, when such a huge structure is actually constructed, there is a possibility that a big change may occur in the environment such as the tide of the neighboring port and the ecosystem of the surrounding sea area. In addition, tsunamis can occur in any sea area, and the terrain of the coastline reached by tsunamis is diverse.
Therefore, a tsunami breakwater that is effective in a coastal area with a narrow bay opening, such as Ofunato Bay and Kamaishi Bay (see Fig. 7), has little effect elsewhere, or the construction of the tsunami breakwater itself There is also a drawback that you cannot do it.

【0006】そこで、本発明の目的は上述した従来の技
術が有する問題点を解消し、津波の持つ波動エネルギー
を海岸線に近い浅海域で減殺し、津波被害を有効に防止
するようにした津波防波堤を提供することにある。
Therefore, an object of the present invention is to solve the problems of the above-mentioned conventional techniques and to reduce the wave energy of the tsunami in shallow water near the coastline to effectively prevent tsunami damage. To provide.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は堤体天端面の所定位置を切欠いて津波の一
部を越波させる越流開口を設け、該越流開口の周面の少
なくとも一部に粗度面を形成し、該堤体を津波来襲のお
それのある湾部の浅海域に設置するようにしたことを特
徴とするものである。
In order to achieve the above-mentioned object, the present invention provides an overflow opening notched at a predetermined position on the top surface of a levee body to allow a part of a tsunami to overflow, and the peripheral surface of the overflow opening. Is characterized in that a roughness surface is formed on at least a part of the ridge and the levee body is installed in a shallow sea area of a bay where there is a risk of a tsunami.

【0008】[0008]

【作用】本発明によれば、堤体天端面の所定位置を切欠
いて津波の一部を越波させる越流開口を設け、該越流開
口の周面の少なくとも一部に粗度面を形成し、該堤体を
津波来襲のおそれのある湾部の浅海域に設置するように
したので、津波の有する波動エネルギーを流れのエネル
ギーとして変換し、所定の粗度面を通過させることで乱
れを生じさせエネルギーを減衰させ、陸上部に到達させ
ないか、陸上部に到達しても遡上挙動を最小限に押さえ
ることができる。
According to the present invention, an overflow opening for notifying a part of the tsunami is provided by notching a predetermined position on the top surface of the dam body, and a roughness surface is formed on at least a part of the peripheral surface of the overflow opening. Since the levee body was installed in the shallow sea area of the bay where there is a risk of a tsunami, the wave energy of the tsunami is converted into flow energy and the turbulence is generated by passing through the specified roughness surface. The energy is attenuated so that it does not reach the land portion, or the run-up behavior can be minimized even when it reaches the land portion.

【0009】[0009]

【実施例】以下本発明による津波防波堤の一実施例を添
付図面を参照して説明する。図1は海岸線付近の浅海域
に建設された本発明による津波防波堤の一例を示した概
略斜視図である。この津波防波堤10は堤長が20〜4
0m程度に設定された離岸堤タイプの津波防波堤で、基
礎捨石等(図示せず)を敷設して形成した海底基盤上に
鉄筋コンクリートケーソンを載置した構造からなり、防
波堤天端10aのほぼ中央位置には越流開口20が形成
されている。越流開口20は図2(a)に示したように
湾外に面した側の開口幅(a)が湾内側の開口幅(b)
より大きく設定された平面形状が略台形形状をなした切
欠構造をなしている。したがって図1に示したように津
波が矢印のようにこの津波防波堤10に押し寄せ、波高
が上昇した際にその一部のその表面流が越流開口20に
流れ込んで津波防波堤部分を通過する。その際、越流開
口20の天端面には制水工としての粗度(ラフネス)面
21が形成されており、この粗度面上を通過する越流海
水は通過時に移動エネルギーを消費し、津波防波堤10
の後端部10bから水面に落下する「段下り」により保
有エネルギーがさらに低減される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the tsunami breakwater according to the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic perspective view showing an example of a tsunami breakwater according to the present invention constructed in a shallow sea area near a coastline. This tsunami breakwater 10 has a length of 20 to 4
It is a breakwater type tsunami breakwater set to about 0 m. It consists of a structure in which a reinforced concrete caisson is placed on a seabed foundation formed by laying foundation rubble (not shown), and it is almost in the center of the breakwater crown 10a. An overflow opening 20 is formed at the position. As for the overflow opening 20, the opening width (a) facing the outside of the bay is the opening width (b) inside the bay as shown in FIG.
The larger planar shape has a notch structure with a substantially trapezoidal shape. Therefore, as shown in FIG. 1, the tsunami rushes to the tsunami breakwater 10 as indicated by the arrow, and when the wave height rises, a part of the surface current flows into the overflow opening 20 and passes through the tsunami breakwater portion. At that time, a roughness (roughness) surface 21 as a water control work is formed on the top end surface of the overflow opening 20, and the overflow seawater passing on this roughness surface consumes moving energy during passage, Tsunami breakwater 10
The retained energy is further reduced by the "step down" that falls from the rear end portion 10b to the water surface.

【0010】また、津波防波堤10の堤高は図2(b)
に示したように計画高潮位(H.H.W.L)を上回る
高さに設定されている。具体的には再現期間10年の津
波時の最高潮位が用いられている。さらに越流開口20
の天端高さは高潮位(H.W.L)とほぼ等しく設定さ
れ、このときの波高としては50年確率で発生来襲する
高波が設定されている。また、海域の状況によっては平
均海水面(M.W.L)を越流開口20の天端高さに設
定することもできる。このように津波の波高は湾内の浅
海域に達した際に湾の形状、湾水の固有振動周期との関
係で著しく波高が変化するので、前記設計値設定に際し
ては建設の対象となる海域の特性や海洋データを踏まえ
て設定することが好ましい。
The height of the tsunami breakwater 10 is shown in FIG. 2 (b).
As shown in, the height is set higher than the planned high tide (H.H.W.L.). Specifically, the highest tide level during the tsunami with a return period of 10 years is used. Overflow opening 20
The height of the crown is set to be approximately equal to the high tide level (H.W.L.), and the wave height at this time is set to a high wave that will occur with a probability of 50 years. Further, the average sea level (MWL) can be set to the top height of the overflow opening 20 depending on the condition of the sea area. In this way, the wave height of the tsunami changes significantly when it reaches the shallow sea area in the bay, in relation to the shape of the bay and the natural oscillation period of the bay water. It is preferable to set it based on characteristics and ocean data.

【0011】また、越流開口20を越波して流れる津波
の流れとしての縮流率は図2(a)に示した越流開口2
0の開口前端20aと開口後端20bとの開口比(a/
b)で規定することができる。その値は越流部天端の粗
度によっても異なるが、a/b>2以上とすることが好
ましい。また、越流効率の点から後端開口幅(b)はb
>1mとすることが好ましい。
Further, the contraction rate as the flow of the tsunami flowing over the overflow opening 20 is shown in FIG. 2 (a).
The opening ratio (a / a) between the opening front end 20a and the opening rear end 20b of 0
It can be specified in b). Although the value varies depending on the roughness of the top of the overflow section, it is preferable that a / b> 2 or more. Also, the rear end opening width (b) is b from the viewpoint of overflow efficiency.
It is preferably> 1 m.

【0012】図3は変形例として越流開口20部分の側
面22を階段状に仕上げた津波防波堤10を示してい
る。この変形例によれば、この部分を通過越流する津波
の水位が変化するのに応じてさらに移動エネルギーを減
衰させることができる。また、階段状になっているため
津波防波堤10天端部分を歩行でき、メンテナンス作業
時における作業の安全性を確保することができる。
FIG. 3 shows, as a modification, a tsunami breakwater 10 in which the side surface 22 of the overflow opening 20 is finished in a stepped shape. According to this modification, the moving energy can be further attenuated as the water level of the tsunami passing over this portion changes. In addition, since it has a staircase shape, it is possible to walk on the top end portion of the tsunami breakwater 10, and it is possible to ensure work safety during maintenance work.

【0013】図4は越流開口20の天端面に形成された
粗度面21の形状を示したものである。同図(a)〜
(c)はケーソンの蓋コンクリート上に一体的に打設さ
れた上部コンクリートの表面に形成された粗度面21の
例を示したもので、同図(a)は図1にも示した鋸波状
に形成された粗度面21を示しており、矢印方向から流
れ込む海水がこの部分を通過する際に流れが乱されるこ
とにより津波の持つエネルギーの一部が効率よく消費さ
れる。同図(b)は変形例として台形断面が連続した粗
度面21が形成された例を示している。この粗度面21
は施工時の型枠工が容易で、また細かい段下り部が連続
して形成されているので、エネルギー減衰効果が大きい
という利点がある。図4(c)は偏平な角柱形状の突起
24を平面的に千鳥状に形成した粗度面21を示してお
り、基面に沿って流れる津波の流れに対して2次元的な
乱れを生じさせることができる。なお、(a)〜(c)
に示した粗度面21は現場打ちコンクリートにより形成
しても良いし、プレキャストコンクリートとして製造し
たものを現場に搬入してケーソン上に堅固に固着しても
良い。同図(d)は大きな寸法の割石25をケーソンの
上面に形成されたコンクリート製枠体(図示せず)内に
密な状態に詰め込み、割石の半分程度の高さまで充填コ
ンクリート26を打設して空隙部分を固めて割石露出部
分で粗度面21を構成するようにした変形例を示したも
のである。このような天然石からなる粗度面21は耐久
性に優れるという利点を有する。
FIG. 4 shows the shape of the roughness surface 21 formed on the top end surface of the overflow opening 20. Same figure (a) ~
(C) shows an example of the roughness surface 21 formed on the surface of the upper concrete integrally cast on the caisson lid concrete, and FIG. 1 (a) shows the saw shown in FIG. The roughness surface 21 is formed in a wavy shape, and when seawater flowing from the direction of the arrow passes through this portion, the flow is disturbed, so that part of the energy of the tsunami is efficiently consumed. FIG. 6B shows an example in which a roughness surface 21 having a continuous trapezoidal cross section is formed as a modification. This roughness surface 21
Has an advantage that the energy damping effect is great because the formwork at the time of construction is easy and the fine step-down portions are formed continuously. FIG. 4C shows the roughness surface 21 in which the flat prismatic protrusions 24 are formed in a staggered shape in a plane, and two-dimensional turbulence is generated with respect to the flow of the tsunami flowing along the base surface. Can be made. Note that (a) to (c)
The roughness surface 21 shown in 1 may be formed by cast-in-place concrete, or the precast concrete manufactured may be brought into the site and firmly fixed on the caisson. In the same figure (d), large-sized crushed stones 25 are packed in a concrete frame body (not shown) formed on the upper surface of the caisson in a dense state, and filled concrete 26 is poured up to about half the height of the crushed stones. This is a modified example in which the void portion is solidified to form the roughness surface 21 by the exposed portion of the calculus. The roughness surface 21 made of such natural stone has an advantage of excellent durability.

【0014】次に、前述の津波防波堤10を適用した小
漁港の例を図5及び図6を参照して説明する。図5は防
波堤に囲まれた船泊まり30を有する漁港の入口付近に
津波防波堤10を建設した例を示しており、矢印のよう
に押し寄せると予想される津波の進行方向に対して離岸
堤構造の津波防波堤10が複数基配置されている。本例
では津波が押し寄せる前面には3基の津波防波堤10が
ほぼ横一線になるように所定間隔をあけて配置され、こ
の第1列目の津波防波堤10の間を通り抜けた津波を受
けるように後方位置に離れて第2段目の津波防波堤10
が配置されている。このとき第1段目の津波防波堤10
により偏向した流れが脇に逸れて遡上して海岸線沿いに
ある民家32等を押し流さないように予想される津波の
流れに沿って津波導流堤31を陸上に建設することも好
ましい。この津波導流堤31は図示したように陸上に遡
上した津波の向きを偏向させるように構築され、この津
波導流堤31に衝突した津波は再び海上に流れ込むよう
に流れの向きを変え、海上に戻される。これにより地上
への津波の遡上と引きとにより建築物等が根こそぎにさ
れるのを防止することができる。
Next, an example of a small fishing port to which the above-mentioned tsunami breakwater 10 is applied will be described with reference to FIGS. Fig. 5 shows an example of a tsunami breakwater 10 constructed near the entrance of a fishing port with a boat stay 30 surrounded by breakwaters. A plurality of tsunami breakwaters 10 are arranged. In this example, three tsunami breakwaters 10 are arranged at a predetermined interval in front of the tsunami so that they are almost in line with each other so that the tsunami passing through the tsunami breakwaters 10 in the first row can be received. Second tsunami breakwater 10 away from the rear position
Are arranged. At this time, the first stage tsunami breakwater 10
It is also preferable to construct the tsunami diversion dam 31 on land along the tsunami flow that is expected to prevent the flow deflected by the sideways from escaping to the side and going up to the private houses 32 and the like along the coastline. As shown in the figure, the tsunami dike 31 is constructed so as to deflect the direction of the tsunami that has run up to the land, and the tsunami that collides with the tsunami dike 31 changes its direction so that it will flow back into the sea. Returned to sea. As a result, it is possible to prevent the buildings and the like from being uprooted due to the rising and pulling of the tsunami to the ground.

【0015】図6は浅海域に建設された比較的長い堤長
を有する津波防波堤10の一例を示した概略平面図であ
る。図6に示したように漁港30への航路33を確保し
た上で湾内の海岸線への津波の到達を全域にわたって遮
断するような津波防波堤10を建設することも可能であ
る。この場合、前述の越流開口20は長く延設された津
波防波堤10の天端に所定間隔で形成するようにし、通
常は約20mに1箇所の間隔で形成しておくことが好ま
しい。
FIG. 6 is a schematic plan view showing an example of a tsunami breakwater 10 having a relatively long dike length constructed in shallow water. As shown in FIG. 6, it is possible to construct the tsunami breakwater 10 that secures the route 33 to the fishing port 30 and blocks the tsunami from reaching the coastline in the bay over the entire area. In this case, the above-mentioned overflow openings 20 are formed at a predetermined interval on the top end of the tsunami breakwater 10 that is extended, and normally it is preferable to be formed at an interval of about 20 m.

【0016】さらに津波防波堤10を越波するような津
波に対して越波後の津波エネルギーを減衰させるために
図5及び図6に示したような消波ブロック35を投入し
て消波工を併設することが好ましい。特に津波が浅海域
に到達し、海底の変化により砕波、段波として海岸線に
押し寄せるようになった場合に消波効果が十分発揮され
る。
Furthermore, in order to attenuate the tsunami energy after the overtopping against the tsunami that overwhelms the tsunami breakwater 10, a wave-dissipating block 35 as shown in FIGS. It is preferable. In particular, when the tsunami reaches shallow water and changes in the seabed causes it to break into waves and run into the coastline as step waves, the wave-dissipating effect is fully exerted.

【0017】[0017]

【発明の効果】以上の説明から明らかなように、本発明
によれば、浅海域で津波のエネルギーを効率よく減衰さ
せることができるので、海岸線への到達の大幅に減じる
ことができ、陸上への遡上及び引きによる陸上部での被
害を防ぐことができるという効果を奏する。
As is apparent from the above description, according to the present invention, the energy of the tsunami can be efficiently attenuated in the shallow sea area, so that the arrival at the shoreline can be significantly reduced and the landline can be greatly reduced. This has the effect of preventing damage to land areas due to run-ups and pulls.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による津波防波堤の一実施例を示した概
略斜視図。
FIG. 1 is a schematic perspective view showing an embodiment of a tsunami breakwater according to the present invention.

【図2】本発明の津波防波堤の一例を示した平面図、断
面図。
FIG. 2 is a plan view and a sectional view showing an example of the tsunami breakwater of the present invention.

【図3】津波防波堤の越流開口の変形例を示した正面
図、平面図。
FIG. 3 is a front view and a plan view showing a modified example of an overflow opening of a tsunami breakwater.

【図4】各種の粗度面の例を示した部分拡大斜視図。FIG. 4 is a partially enlarged perspective view showing examples of various roughness surfaces.

【図5】津波防波堤の設置例を示した概略平面配置図。FIG. 5 is a schematic plan view showing an example of installation of a tsunami breakwater.

【図6】津波防波堤の設置例を示した概略平面配置図。FIG. 6 is a schematic plan layout showing an example of installation of a tsunami breakwater.

【図7】従来の津波防波堤の設置例を示した概略平面配
置図。
FIG. 7 is a schematic plan layout showing an example of installation of a conventional tsunami breakwater.

【図8】従来の津波防波堤の構造の一例を示した概略部
分断面図。
FIG. 8 is a schematic partial cross-sectional view showing an example of the structure of a conventional tsunami breakwater.

【符号の説明】[Explanation of symbols]

10 津波防波堤 20 越流開口 21 粗度面 10 Tsunami breakwater 20 Overflow opening 21 Roughness surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】堤体天端面の所定位置を切欠いて津波の一
部を越波させる越流開口を設け、該越流開口の周面の少
なくとも一部に粗度面を形成し、該堤体を津波来襲のお
それのある湾部の浅海域に設置するようにしたことを特
徴とする津波防波堤。
1. An overflow opening for notifying a part of a tsunami is provided by notching a predetermined position on the top surface of the cutoff body, and a roughness surface is formed on at least a part of the peripheral surface of the overflow body. The tsunami breakwater is characterized by being installed in a shallow sea area of the bay where there is a risk of a tsunami.
JP28190093A 1993-10-15 1993-10-15 Tsunami breakwater Pending JPH07113216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28190093A JPH07113216A (en) 1993-10-15 1993-10-15 Tsunami breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28190093A JPH07113216A (en) 1993-10-15 1993-10-15 Tsunami breakwater

Publications (1)

Publication Number Publication Date
JPH07113216A true JPH07113216A (en) 1995-05-02

Family

ID=17645529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28190093A Pending JPH07113216A (en) 1993-10-15 1993-10-15 Tsunami breakwater

Country Status (1)

Country Link
JP (1) JPH07113216A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181331A (en) * 2012-03-01 2013-09-12 Shimizu Corp Breakwater structure
JP2013194501A (en) * 2012-03-19 2013-09-30 Matsushita Hiromi Sea tsunami protection breakwater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181331A (en) * 2012-03-01 2013-09-12 Shimizu Corp Breakwater structure
JP2013194501A (en) * 2012-03-19 2013-09-30 Matsushita Hiromi Sea tsunami protection breakwater

Similar Documents

Publication Publication Date Title
JP2007262890A (en) Structure for controlling permeable sea area and construction method thereof
CN111648299A (en) Wave-blocking high-pile wharf based on densely-arranged inclined piles and construction method thereof
JP2006257841A (en) Tidal wave sluice
Burcharth et al. Types and functions of coastal structures
JPH07113219A (en) Multistage tsunami breakwater
RU195367U1 (en) Prefabricated waterworks module
JPH07113216A (en) Tsunami breakwater
JPH10331128A (en) Tidal wave damping block for submerged breakwater and submerged breakwater
JP4067705B2 (en) Transmission type breakwater made of steel plate cell type structure
JPH1150426A (en) Wave absorbing structure breakwater using the same, and construction method of wave absorbing structure
CN220225110U (en) Coastal zone silt erosion protection structure
JP3055895B2 (en) Wave control structure and construction method
JP2519173B2 (en) Concrete revetment block and laying method of this concrete revetment block
JP3390128B2 (en) Breakwater and its construction method
JP2520363B2 (en) Sloping bank
JP3112741B2 (en) breakwater
CN216864997U (en) Multistage unrestrained seawall structure that disappears
JP2014043754A (en) Offshore undersea breakwater
JPH07113217A (en) Land training levee
JP3760738B2 (en) Harbor structure
KR20060101409A (en) Trivet preventing from soil erosion
US3890790A (en) Anti-heave protective system
JPH0823129B2 (en) Double slope breakwater
JP2000319840A (en) Sea water exchange type breakwater responding to fluctuation in tidal level
JP2022062432A (en) Submarine embankment structure