JP4067705B2 - Transmission type breakwater made of steel plate cell type structure - Google Patents

Transmission type breakwater made of steel plate cell type structure Download PDF

Info

Publication number
JP4067705B2
JP4067705B2 JP19300699A JP19300699A JP4067705B2 JP 4067705 B2 JP4067705 B2 JP 4067705B2 JP 19300699 A JP19300699 A JP 19300699A JP 19300699 A JP19300699 A JP 19300699A JP 4067705 B2 JP4067705 B2 JP 4067705B2
Authority
JP
Japan
Prior art keywords
steel plate
wave
plate cell
dissipating
breakwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19300699A
Other languages
Japanese (ja)
Other versions
JP2001020247A (en
Inventor
太 窪田
泰伴 柳本
卓也 北村
大也 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Original Assignee
Toa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp filed Critical Toa Corp
Priority to JP19300699A priority Critical patent/JP4067705B2/en
Publication of JP2001020247A publication Critical patent/JP2001020247A/en
Application granted granted Critical
Publication of JP4067705B2 publication Critical patent/JP4067705B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、港湾や河川などに設置される鋼板セル型構造物およびそれを用いた消波堤に関するものである。
【0002】
【従来の技術と発明が解決しようとする課題】
海中や河川にある構造物には波の力が作用する。構造物の利用目的として、波そのものを減少させるものがある。防波堤がその一例である。
【0003】
防波堤は、防波堤を境にして港の外の波をはね返し、港の中の静穏度を保つ構造物である。また、場所によっては、防波堤に、港の外の波をはね返すだけではなく、消してしまう構造が求められる場合がある。このような場合、従来であれば、異形ブロックなどの消波工のように波のエネルギーを拡散させる構造物が利用されてきた。
【0004】
しかし、近年、防波堤の設置場所も大水深になり、異形ブロック等の使用が不経済となってきた。代わって利用されるようになったのが、スリットを入れたり、傾斜・階段状の構造物を水面付近にのみ設置した防波堤である。これは、波のエネルギーをスリットや階段で減少・散逸させるタイプの防波堤である。本発明もこのタイプに属する。
【0005】
これらの先行技術のうち、本発明に近い技術として、次に示すものが提案されている。1つは、特開平7−317041号公報に記載されている消波構造物であり、これは複数の水没水平板を沖側に向かって下る階段状に設置し、最岸側の水没水平板は干潮水位より上位に配置して、波を破砕するものであるが、波の透過性が大きすぎ、港内の静穏度が確保できず、防波堤に不適である。また、大水深や長大な海域に設置する場合、結局大きな支持架台等が必要となり、経済的な面で実用性が少ない。
【0006】
2つ目は、特開平4−62217号公報に記載されている親水高潮護岸である。この技術は、既設護岸から適当な距離をおいて浮体を設置し、この浮体の海側の水際近傍に水に親しむための階段もしくは傾斜を設け、浮体の陸側には波返しを設けた護岸であり、高潮時の高波浪を浮体の甲板面を通過する間に破壊し、波エネルギーの大部分を減衰させることができる。しかし、この護岸は既設護岸の前面に浮体を係留して消波を行うタイプであり、沖合に新設するような防波堤には不適である。
【0007】
3つ目は、本出願人による特開昭63−63807号公報に記載されている鋼製セル構造物からなる透過式消波堤である。これは、円柱状の鋼製セル構造物を所定の間隔をおいて一列または複数列に配列し、これらの全てあるいは一部の天端高を越波を生じさせる程度に低くしたものであり、透水性と消波能力を兼ね備えているが、鋼製セル構造物の上部が基本的に平坦であるため、ある程度の消波能力を有するが、反射率が比較的大きく、消波能力が充分でなく、スリットや階段式の消波能力には及ばない。
【0008】
本発明は、前述のような問題点を解消すべくなされたものであり、その目的は、大水深においても安定して経済的に設置が可能であると共に、透水性と消波能力を併せ持つ鋼板セル型の消波堤において、消波能力をより向上させることができ、また港内等の静穏度を向上させることのできる鋼板セル型構造物およびそれ用いた消波堤を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、セル殻内に中詰材を充填し、上部をコンクリート等で封止して構成される円柱状の鋼板セル構造物を、波進行方向と直交する方向に間隔をおいて、複数、配列してなる透過式消波堤において、前記セル殻の上部に、水平面と直立壁面とで構成され、沖側前面に向かって下り勾配となる3段の階段状の段部を形成し、沖側前面に位置する1段目の段部と2段目の段部間に干潮水位(L.W.L)が位置し、2段目の段部と3段目の段部の間に満潮水位(H.W.L)が位置するようにしたことを特徴とする。
板セル構造物は、セル殻内に砂,石,コンクリート等の中詰材を充填し、上部をコンクリート等で封止して構成されており、このような鋼板セル構造物の上部に、前面側(沖側)が低く、背面側(港側)が高い3段の段部を一体的に形成する。
【0010】
このような段部を有する鋼板セル構造物を、上述のように段部が沖側前面に向かって下り勾配となるように、かつ連続的に構築せずに所要の間隔をおいて配列(波進行方向と直交する方向に配列)して鋼板セル型の消波堤を構成する。波進行方向に対して1列でもよいし、波進行方向に間隔をおいて複数列としてもよい。
【0011】
上のような鋼板セル型の消波堤において、鋼板セル構造物の上部工に水平面と直立壁面とで構成される3段の段部を形成し、この鋼板セル構造物を適当な間隔をおいて配設することにより、(1) 階段の1段目の直立壁と2段目の直立壁で反射した波にそれぞれ位相差が生じることで、反射波が互いに打ち消し合い(図2(a) 参照)、(2) 波が階段を乗り越える際、砕波に伴うエネルギー消費が生じ(図2(b) 参照)、(3) 複数の鋼板セル構造物を間隔をおいて並べることで、階段部に流れ込んだ波が互いにぶつかり合うことによる消波が生じ(図2(c) 参照)、以上の3つの消波能力の相乗効果により、従来の鋼板セル型の消波堤よりも高い消波能力を得ることができる。
【0012】
また、従来の水没水平板方式や浮体護岸方式では、大水深に設置することは構造的・経済的に困難であるが、本発明の直立する鋼板セル型であれば、大水深(例えば、水深10〜30m)でも安定して、安価に消波構造物を構築することができる。さらに、従来の鋼板セル型の消波堤と同様に透過性を持たせることができるが、前述の高い消波能力により、透過率を従来の鋼板セル型の消波堤よりも低く抑えることができ、港内等の静穏度を向上させることができる。
【0013】
【発明の実施の形態】
以下、本発明を図示する実施の形態に基づいて説明する。この実施形態は本発明を消波堤に適用した例である。図1は本発明の鋼板セル構造物および鋼板セル型の消波堤の1例を示したものである。図2は鋼板セル構造物による消波効果を示したものである。図3は鋼板セル構造物の具体的数値例を示したものである。図4は鋼板セル型の消波堤を従来と本発明を比較したものである。
【0014】
図1において、鋼板セル構造物1は、例えば15〜30m程度の円筒形状の鋼板製のセル殻2と、このセル殻2内に充填される砂,石,コンクリート等の中詰材3から構成され、このような鋼板セル構造物1の上部に前面側(沖側)に向かって下り勾配の階段状の段部4を形成して消波能力を高め、この段部4が形成された鋼板セル構造物1を波進行方向と直交する方向に所定の間隔dをおいて配列して、高い消波能力と透過性を併せ持つ鋼板セル型の消波堤を構築する。
【0015】
鋼板セル構造物1の構築方法としては種々のものがあり、特定の方法に限定されないが、1例として根入れ式鋼板セル工法を挙げることができる。この方法は、ヤードで製作されたセル殻2を曳航し、所定の設置箇所において多数のバイブロハンマーからなる打設装置を連動させて海底面に一気に打設し、直ちに、砂,石,コンクリート等の中詰材3をセル殻2内に投入してセル殻2を安定化させる工法である。天端面はコンクリート等で覆って封止する。その他、コンクリート底版付きの円筒ケーソンを海底面に設置する工法などでもよい。
【0016】
段部4は、セル殻2の上部に予め階段状の切り欠きを形成しておき、この部分にコンクリート等を階段状に打設することで形成することができ、複数の水平面と波に対向する複数の直立壁面が形成される。この図示例では、3段の段部4が形成されており、1段目の段部4−1と2段目の段部4−2の間に干潮水位(L.W.L)が位置し、2段目の段部4−2と3段目の段部4−3の間に満潮水位(H.W.L)が位置するようにする。1段目の段部4−1と2段目の段部4−2の奥行き長さは、波の波長等から適宜決定し、3段目の段部4−3の奥行き長さは、乗り越えた波を破壊して波エネルギーを減衰させることができる充分な長さを確保する。
【0017】
この段部4が形成された鋼板セル構造物1の配列間隔dは、消波堤の機能を持たせるためには、波高,周期,水深等にもよるが、一般的にd/D=0.05〜0.3 の範囲に設定するのが好ましい。なお、図示例では一列に配設した場合を示したが、波進行方向に間隔をおいて複数列で配設するようにしてもよい。
【0018】
以上のような構成において、図2に示すように、▲1▼ 階段の1段目の直立壁Aと2段目の直立壁Bで反射した波WaとWbにそれぞれ位相差が生じ、これら反射波Wa,Wbが互いに打ち消し合い、▲2▼ 波Wが段部4を乗り越える際に破砕に伴うエネルギー消費が生じ、▲3▼ 鋼板セル構造物1,1間に侵入した波Wが段部4−1,4−2に横方向から流れ込み、互いにぶつかり合うことにより消波がなされる。以上の3つの消波能力の相乗効果により、異形ブロック等の消波工なみの高い消波能力が得られる(反射率0.5以下)。さらに、鋼板セル構造物1,1間の隙間により透過性を確保しながら、前述の作用効果により波Wの透過性を低く抑えることができるため、港内の静穏度を確保することができる(透過率0.5以下)。
【0019】
【実験例】
図3に示す鋼板セル構造物1の水理模型(縮尺:1/41.7) を用い、表1の波浪条件で従来と本発明の消波実験を行ったところ、表3に示すような結果が得られた。表2は本発明の階段部の構造諸元である。
【0020】
【表1】

Figure 0004067705
【0021】
【表2】
Figure 0004067705
【0022】
【表3】
Figure 0004067705
【0023】
なお、以上は沖合等に設置する消波堤に適用した場合について説明したが、これに限らず、港湾や河川の護岸などにも適用することができる。
【0024】
【発明の効果】
本発明は、以上のような構成からなるので、次のような効果を奏することができる。
【0025】
(1) 鋼板セル構造物の上部工に階段状の段部を形成し、この鋼板セル構造物を適当な間隔をおいて配設することにより、従来の鋼板セル型の消波堤よりも高く、異形ブロック等の消波工なみの高い消波能力を得ることができる。
すなわち、3段の段部において、1段目の段部と2段目の段部間に干潮水位(L.W.L)が位置し、2段目の段部と3段目の段部の間に満潮水位(H.W.L)が位置するようにし、1段目の直立壁と2段目の直立壁で反射した波にそれぞれ位相差が生じることで、反射波が互いに打ち消し合い、波が階段を乗り越える際、砕波に伴うエネルギー消費が生じ、複数の鋼板セル構造物を間隔をおいて並べることで、階段部に流れ込んだ波が互いにぶつかり合うことによる消波が生じ、以上の3つの消波能力の相乗効果により、従来の鋼板セル型の消波堤よりも高い消波能力を得ることができる。
【0026】
(2) 直立する鋼板セル型であるため、大水深でも安定して、安価に消波構造物を構築することができる。
【0027】
(3) 従来の鋼板セル型の消波堤と同様に透過性を持たせることができるが、前述の高い消波能力により、透過率を従来の鋼板セル型の消波堤よりも低く抑えることができ、港内等の静穏度を向上させることができる。
【図面の簡単な説明】
【図1】本発明の鋼板セル構造物および鋼板セル型の消波堤の1例を示したものであり、(a) は鋼板セル構造物の斜視図、(b) は鋼板セル型の消波堤の平面図、(c) は鋼板セル型の消波堤の側面図である。
【図2】本発明の鋼板セル構造物による消波効果を示したものであり、(a) は段部の反射波による消波効果を示す側面図、(b) は段部の砕破による消波効果を示す側面図、(c) は段部への流れ込みによる消波効果を示す平面図である。
【図3】本発明の鋼板セル構造物の具体的数値例を示した側面図である。
【図4】鋼板セル型の消波堤を(a) 従来と(b) 本発明で比較した平面図および正面図である。
【符号の説明】
1…鋼板セル構造物
2…セル殻
3…中詰材
4…段部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel plate cell type structure installed in a harbor or a river, and a breakwater using the same.
[0002]
[Prior art and problems to be solved by the invention]
Wave forces act on structures in the sea and rivers. Some uses of structures reduce the wave itself. An example is a breakwater.
[0003]
A breakwater is a structure that keeps the tranquility inside the port by rebounding the waves outside the port from the breakwater. In addition, depending on the location, the breakwater may be required to have a structure that not only repels waves outside the port but also eliminates them. In such a case, conventionally, a structure for diffusing wave energy such as a wave-dissipating work such as a deformed block has been used.
[0004]
However, in recent years, the location of breakwaters has also become deep, and the use of deformed blocks has become uneconomical. Instead, breakwaters with slits and sloped or stepped structures were installed only near the water surface. This is a type of breakwater that reduces and dissipates wave energy with slits and stairs. The present invention also belongs to this type.
[0005]
Among these prior arts, the following are proposed as techniques close to the present invention. One is a wave-dissipating structure described in Japanese Patent Application Laid-Open No. 7-317041, which has a plurality of submerged horizontal plates installed in a staircase shape descending toward the offshore side, Is placed higher than the low tide water level and breaks the waves, but the wave permeability is too large to ensure the tranquility of the harbor, making it unsuitable for breakwaters. In addition, when installing in a large depth or in a large sea area, a large support frame or the like is eventually required, which is less practical in terms of economy.
[0006]
The second is a hydrophilic high tide revetment described in JP-A-4-62217. In this technology, a floating body is installed at an appropriate distance from the existing revetment, a stairway or slope is provided near the seaside of this floating body to get close to the water, and a revetment is provided on the land side of the floating body. It can destroy high waves during storm surges while passing through the deck of the floating body and attenuate most of the wave energy. However, this type of revetment is a type of mooring a floating body in front of the existing revetment, and is not suitable for a breakwater that is newly constructed offshore.
[0007]
The third is a transmission type breakwater made of a steel cell structure described in Japanese Patent Application Laid-Open No. 63-63807 by the present applicant. This is a structure in which cylindrical steel cell structures are arranged in one or a plurality of rows at a predetermined interval, and all or a part of the top heights thereof are lowered to an extent that causes overtopping. However, the upper part of the steel cell structure is basically flat, so it has a certain degree of wave-dissipating ability, but the reflectivity is relatively large and the wave-dissipating ability is not sufficient. It does not reach the wave-dissipating ability of slits and stairs.
[0008]
The present invention has been made to solve the above-mentioned problems, and the purpose thereof is a steel plate that can be stably and economically installed even at a large depth, and has both water permeability and wave-dissipating ability. It is an object of the present invention to provide a steel plate cell type structure capable of further improving the wave-dissipating capability and improving the quietness in a port or the like and a wave breaker using the same.
[0009]
[Means for Solving the Problems]
The present invention provides a cylindrical steel plate cell structure constituted by filling a cell shell with a filling material and sealing the upper portion with concrete or the like, with a plurality of intervals in the direction orthogonal to the wave traveling direction. In the arranged transmission breakwater, in the upper part of the cell shell, it is composed of a horizontal surface and an upright wall surface, and forms a three-step stepped step portion that becomes a downward slope toward the offshore front surface, A low tide water level (LWL) is located between the first step and the second step located on the offshore front, and between the second step and the third step. high tide water level (H.W.L) is you, characterized in that so as to be positioned.
Steel plate cell structures, sand cell shell, stone, filled with a filling material in such a concrete is constructed by sealing with concrete or the like an upper, the upper portion of such a steel cell structure, Three steps are integrally formed with a low front side (offshore side) and a high back side (port side).
[0010]
The steel plate cell structure having such a stepped portion is arranged (waved with a predetermined interval without being continuously constructed so that the stepped portion has a downward slope toward the front side offshore as described above. traveling direction and arranged in a direction perpendicular) and that make up the wave-dissipating bank of steel cell-type. There may be one row with respect to the wave traveling direction, or a plurality of rows with intervals in the wave traveling direction.
[0011]
In steel cell type wave dissipating bank like on than to form a stepped portion of the three stages composed of a horizontal surface and upstanding wall surface superstructure of steel structural cell, the the steel cell structure suitable intervals (1) Phase differences occur in the waves reflected by the first and second upright walls of the staircase, so that the reflected waves cancel each other (see Fig. 2 (a) )), (2) When the wave goes over the stairs, energy consumption accompanying the breaking wave occurs (see Fig. 2 (b)), (3) Stairs by arranging multiple steel plate cell structures at intervals Waves that have flown into each other cause waves to collide with each other (see Fig. 2 (c)), and due to the synergistic effect of the above three wave-dissipating capabilities, the wave-dissipating capability is higher than that of conventional steel plate cell-type wave breakers Can be obtained.
[0012]
In addition, in the conventional submerged horizontal plate method and floating revetment method, it is difficult to install at a large depth in terms of structure and economy. However, if the upright steel plate cell type of the present invention is used, 10 to 30 m), it is possible to construct a wave-dissipating structure stably and inexpensively. Furthermore, although it can be made to be permeable like the conventional steel plate cell type breakwater, the above-mentioned high wave extinguishing ability can keep the transmittance lower than that of the conventional steel plate cell type breakwater. It is possible to improve the quietness in the harbor.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on the illustrated embodiment. This embodiment is an example in which the present invention is applied to a breakwater. FIG. 1 shows an example of a steel plate cell structure and a steel plate cell type breakwater according to the present invention. FIG. 2 shows the wave-dissipating effect of the steel plate cell structure. FIG. 3 shows a specific numerical example of the steel plate cell structure. FIG. 4 shows a comparison between the present invention and a steel plate cell type breakwater.
[0014]
In FIG. 1, a steel plate cell structure 1 includes a cell shell 2 made of, for example, a cylindrical steel plate of about 15 to 30 m, and a filling material 3 such as sand, stone, concrete filled in the cell shell 2. The steel plate cell structure 1 is formed with a stepped step portion 4 having a downward slope toward the front side (offshore side) to enhance the wave-dissipating capability, and the steel plate on which the step portion 4 is formed. The cell structures 1 are arranged at a predetermined interval d in a direction perpendicular to the wave traveling direction to construct a steel plate cell type wave breakwater having both high wave breaking ability and permeability.
[0015]
There are various construction methods for the steel plate cell structure 1, and the construction method is not limited to a specific method, but a rooted steel plate cell construction method can be given as an example. In this method, the cell shell 2 manufactured in the yard is towed, and a driving device composed of a number of vibro hammers is interlocked at a predetermined installation location, and then immediately placed on the bottom of the sea, and immediately sand, stone, concrete, etc. This is a method of stabilizing the cell shell 2 by introducing the filling material 3 into the cell shell 2. Cover and seal the top edge with concrete or the like. In addition, a construction method in which a cylindrical caisson with a concrete bottom plate is installed on the bottom of the sea may be used.
[0016]
The step portion 4 can be formed by forming a stepped notch in advance in the upper portion of the cell shell 2 and placing concrete or the like in this portion in a stepped manner, facing a plurality of horizontal surfaces and waves. A plurality of upstanding wall surfaces are formed. In this illustrated example, a three-step step portion 4 is formed, and a low tide water level (LW.L) is located between the first step portion 4-1 and the second step portion 4-2. The high tide water level (HWL) is positioned between the second step 4-2 and the third step 4-3. The depth length of the first step 4-1 and the second step 4-2 is determined as appropriate based on the wavelength of the wave, and the depth length of the third step 4-3 is overcome. the wave destroyed you ensure sufficient length that can attenuate the wave energy.
[0017]
The arrangement interval d of the steel plate cell structures 1 in which the stepped portions 4 are formed depends on the wave height, period, water depth, etc. in order to give the function of a breakwater, but generally d / D = 0.05. It is preferable to set in the range of ~ 0.3. In the illustrated example, the case of arranging in a line is shown, but it may be arranged in a plurality of lines at intervals in the wave traveling direction.
[0018]
In the configuration as described above, as shown in FIG. 2, there is a phase difference between the waves Wa and Wb reflected by the upright wall A of the first step and the upright wall B of the second step as shown in FIG. Waves Wa and Wb cancel each other, and (2) energy consumption accompanying crushing occurs when the wave W gets over the stepped portion 4, and (3) the wave W that has entered between the steel plate cell structures 1 and 1 becomes the stepped portion 4 -1 and 4-2 flow from the side and collide with each other, so that the waves are extinguished. Due to the synergistic effect of the above three wave-dissipating capabilities, it is possible to obtain a wave-dissipating capability that is as high as a wave-dissipating work such as a deformed block (reflectance of 0.5 or less). Furthermore, since the permeability of the wave W can be kept low by the above-mentioned effects while securing the permeability by the gap between the steel plate cell structures 1 and 1, the calmness in the harbor can be secured (permeation). Rate 0.5 or less).
[0019]
[Experimental example]
Using the hydraulic model (scale: 1 / 41.7) of the steel plate cell structure 1 shown in FIG. 3, the conventional and the present invention wave-dissipating experiments were conducted under the wave conditions shown in Table 1, and the results shown in Table 3 were obtained. Obtained. Table 2 shows the structural specifications of the staircase portion of the present invention.
[0020]
[Table 1]
Figure 0004067705
[0021]
[Table 2]
Figure 0004067705
[0022]
[Table 3]
Figure 0004067705
[0023]
In addition, although the case where it applied to the breakwater installed offshore etc. was demonstrated above, it is applicable not only to this but to the seawall of a port or a river.
[0024]
【The invention's effect】
Since this invention consists of the above structures, there can exist the following effects.
[0025]
(1) A stepped step is formed in the superstructure of the steel plate cell structure, and this steel plate cell structure is disposed at an appropriate interval so that it is higher than the conventional steel plate cell type breakwater. It is possible to obtain a high wave-dissipating capability similar to that of a wave-dissipating work such as a deformed block.
That is, in the third stage, the low tide water level (LWL) is located between the first stage and the second stage, and the second stage and the third stage. The high tide level (HWL) is positioned between the two and the reflected waves cancel each other by causing phase differences between the waves reflected by the first and second upright walls. When the wave goes over the stairs, energy consumption accompanying the breaking wave occurs, and by arranging a plurality of steel plate cell structures at intervals, the waves flowing into the stairs part collide with each other, resulting in the wave breaking. Due to the synergistic effect of the three wave-dissipating capabilities, it is possible to obtain a higher wave-dissipating capability than a conventional steel plate cell-type wave-dissipating bank.
[0026]
(2) Since it is an upright steel plate cell type, it is possible to construct a wave-dissipating structure stably at a low depth and at a low cost.
[0027]
(3) Although it can be made permeable like the conventional steel plate cell type breakwater, the above-mentioned high wave-dissipating ability keeps the transmittance lower than the conventional steel plate cell type breakwater. Can improve the quietness of the harbor.
[Brief description of the drawings]
FIG. 1 shows an example of a steel plate cell structure and a steel plate cell type breakwater according to the present invention, where (a) is a perspective view of the steel plate cell structure, and (b) is a steel plate cell type power dissipation. (C) is a side view of a steel plate cell type breakwater.
FIGS. 2A and 2B show the wave-dissipating effect of the steel plate cell structure according to the present invention, in which FIG. 2A is a side view showing the wave-dissipating effect due to the reflected wave of the step part, and FIG. FIG. 5C is a side view showing the wave effect, and FIG. 5C is a plan view showing the wave-absorbing effect caused by flowing into the stepped portion.
FIG. 3 is a side view showing specific numerical examples of the steel plate cell structure of the present invention.
FIGS. 4A and 4B are a plan view and a front view of a steel plate cell type breakwater compared with (a) a conventional type and (b) the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Steel plate cell structure 2 ... Cell shell 3 ... Filling material 4 ... Step part

Claims (1)

セル殻(2)内に中詰材(3)を充填し、上部をコンクリート等で封止して構成される円柱状の鋼板セル構造物(1)を、波進行方向と直交する方向に間隔をおいて、複数、配列してなる透過式消波堤において、前記セル殻(2)の上部に、水平面と直立壁面とで構成され、沖側前面に向かって下り勾配となる3段の階段状の段部(4)を形成し、沖側前面に位置する1段目の段部(4−1)と2段目の段部(4−2)間に干潮水位(L.W.L)が位置し、2段目の段部(4−2)と3段目の段部(4−3)の間に満潮水位(H.W.L)が位置するようにしたことを特徴とする鋼板セル型構造物からなる透過式消波堤。 The cylindrical steel plate cell structure (1) configured by filling the cell shell (2) with the filling material (3) and sealing the upper part with concrete or the like is spaced in the direction perpendicular to the wave traveling direction. In the case of a plurality of arranged transmission breakwaters, a three-step staircase composed of a horizontal surface and an upright wall at the upper part of the cell shell (2) and having a downward slope toward the front side offshore. The low tide water level (LW.L) is formed between the first step (4-1) and the second step (4-2) located on the front side of the offshore side. ) Is located, and the high tide level (HWL) is located between the second step (4-2) and the third step (4-3). Transmission type breakwater made of steel plate cell type structure .
JP19300699A 1999-07-07 1999-07-07 Transmission type breakwater made of steel plate cell type structure Expired - Fee Related JP4067705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19300699A JP4067705B2 (en) 1999-07-07 1999-07-07 Transmission type breakwater made of steel plate cell type structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19300699A JP4067705B2 (en) 1999-07-07 1999-07-07 Transmission type breakwater made of steel plate cell type structure

Publications (2)

Publication Number Publication Date
JP2001020247A JP2001020247A (en) 2001-01-23
JP4067705B2 true JP4067705B2 (en) 2008-03-26

Family

ID=16300643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19300699A Expired - Fee Related JP4067705B2 (en) 1999-07-07 1999-07-07 Transmission type breakwater made of steel plate cell type structure

Country Status (1)

Country Link
JP (1) JP4067705B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4636270B2 (en) * 2006-04-27 2011-02-23 日本電気株式会社 Virtual library device and virtual tape ejection and loading method
JP6012165B2 (en) * 2011-11-28 2016-10-25 三菱重工業株式会社 Sloshing prevention structure

Also Published As

Publication number Publication date
JP2001020247A (en) 2001-01-23

Similar Documents

Publication Publication Date Title
JP3576974B2 (en) Wave-dissipating blocks for coastal structures
US5536112A (en) Breakwater generating apparatus and process for controlling coastal erosion
JP2007262890A (en) Structure for controlling permeable sea area and construction method thereof
CN211646245U (en) High-pile wharf and breakwater structure
JP2008014136A (en) Permeable type sea area controlling structure
JP4067705B2 (en) Transmission type breakwater made of steel plate cell type structure
RU195367U1 (en) Prefabricated waterworks module
TW201329315A (en) Breakwater with compound wave-absorbing chamber
TWI457488B (en) A caudal - type breakwater with a circular arc
CN214993533U (en) Ecological channel revetment with keep off unrestrained structure that disappears
CN210827305U (en) Diversion breakwater based on pile foundation structure
JP3405605B2 (en) Sea area control method using submerged piles
CN105200957B (en) Pi-shaped pile foundation open-typepermeable bulwark with arc slab and design method of bulwark
CN109208534B (en) Pile foundation open type breakwater and construction method thereof
JP3055895B2 (en) Wave control structure and construction method
JPH1150426A (en) Wave absorbing structure breakwater using the same, and construction method of wave absorbing structure
JPS5883711A (en) Construction work of offshore breakwater
RU2200789C1 (en) Permeable wave suppressing facility
JPH07113216A (en) Tsunami breakwater
JPH0823129B2 (en) Double slope breakwater
JPS6221915A (en) Control structure for tidal waves
JP3259240B2 (en) Embankment type steel plate cell revetment and breakwater with wave breaking function
KR100554612B1 (en) Bank protection structure
JP2000204529A (en) Low top-end type caisson wave-absorbing structure
JPH0762329B2 (en) Wave-breaking and breakwater structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071114

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees