JPH07113134A - Production of sintered titanium alloy - Google Patents

Production of sintered titanium alloy

Info

Publication number
JPH07113134A
JPH07113134A JP25614093A JP25614093A JPH07113134A JP H07113134 A JPH07113134 A JP H07113134A JP 25614093 A JP25614093 A JP 25614093A JP 25614093 A JP25614093 A JP 25614093A JP H07113134 A JPH07113134 A JP H07113134A
Authority
JP
Japan
Prior art keywords
powder
particle size
less
titanium
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP25614093A
Other languages
Japanese (ja)
Inventor
Kazuhiro Takahashi
一浩 高橋
Tatsuo Yamazaki
達夫 山崎
Hideki Fujii
秀樹 藤井
Takao Horitani
貴雄 堀谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25614093A priority Critical patent/JPH07113134A/en
Publication of JPH07113134A publication Critical patent/JPH07113134A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce a sintered titanium alloy, which is free from component segregation and remaining of coarse pores and has high density and in which coarsening of crystalline particles is inhibited and higher mechanical properties are provided, under general compacting and sintering conditions at the time of producing a sintered titanium alloy by a material powder mixing method using an ultralow chlorine titanium powder prepared by a hydrogenation- dehydrogenation process. CONSTITUTION:A powder for alloying elements addition is regulated so that a powder of 3-8mum average particle diameter comprises 20-40wt.% and the balance consists of a powder of 8-15mum average particle diameter. In addition, a titanium powder of 45-150mum particle diameter comprises 40-70% of the whole weight of the powderes used and the balance consists of a titanium powder of 10-45mum particle diameter, by which the high density sintered titanium alloy can be obtained. Further, as the powder of 8-15mum average particle diameter for alloying elements addition, a powder containing at least one kind among Y, Er, and B by the amount equivalent to 0.03-0.5wt.% of this alloy is used. By this method, the growth of crystalline particles can be inhibited and high mechanical properties can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末冶金法による焼結
チタン合金の製造方法に関する。さらに詳しくは素粉末
混合法による焼結チタン合金の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sintered titanium alloy by powder metallurgy. More specifically, the present invention relates to a method for producing a sintered titanium alloy by the elementary powder mixing method.

【0002】[0002]

【従来の技術】粉末冶金法は材料から最終形状に近い形
の製品を直接製造するニアーネットシェイプ技術の一つ
で、加工性や成形性あるいは被削性に乏しいチタン合金
製品を製造する方法として適している。特に、素粉末混
合法はチタン粉末と合金元素添加用粉末を混合して容器
に充填し、これを圧力3〜8ton/cm2 で成形して圧粉体
とした後、真空中で1100〜1300℃で1〜8時間
の焼結と合金化熱処理を同時に行う方法であり、焼結前
に軟質のチタン粉末が大部分を占めるため、良好な成形
性を有し室温において精密な形状の圧粉体を得ることが
できるという利点がある。ここでチタン粉末として、ナ
トリウム還元法で製造するスポンジチタンの副産物であ
るハンタースポンジファイン(HSF)や、溶解後に水
素化し粉砕し脱水素処理する、いわゆる水素化脱水素法
により製造した極低塩素チタン粉末(HDH粉末)が使
われる。
2. Description of the Related Art Powder metallurgy is one of the near-net shape technologies for directly manufacturing a product having a shape close to the final shape from a material, and is a method for manufacturing a titanium alloy product having poor workability, formability or machinability. Are suitable. Particularly, in the elementary powder mixing method, titanium powder and alloying element-adding powder are mixed and filled in a container, which is molded at a pressure of 3 to 8 ton / cm 2 to obtain a green compact, and then 1100-1300 in vacuum. This is a method in which sintering and alloying heat treatment are performed simultaneously at 1 ° C for 1 to 8 hours, and since soft titanium powder occupies the majority before sintering, it has good formability and has a precise shape at room temperature. There is an advantage that you can get a body. Here, as the titanium powder, Hunter Sponge Fine (HSF), which is a by-product of titanium sponge produced by the sodium reduction method, or ultra-low chlorine titanium produced by the so-called hydrodehydrogenation method, which is hydrogenated and pulverized after being dissolved and then dehydrogenated Powder (HDH powder) is used.

【0003】しかし、素粉末混合法は上記のような高温
・長時間の焼結を行っても焼結密度が不十分で内部ポア
が残存しているため、疲労強度が低いという欠点があ
る。これを解決する方法として、焼結後さらに熱間静水
圧成形(HIP)を行い内部ポアを完全に消滅させ疲労
強度を向上させる方法があるものの、製造コストが著し
く高くなる。
However, the elementary powder mixing method has a drawback that the fatigue strength is low because the sintering density is insufficient and the internal pores remain even after the above-described sintering at high temperature for a long time. As a method of solving this, there is a method of further performing hot isostatic pressing (HIP) after sintering to completely eliminate the internal pores and improve the fatigue strength, but the manufacturing cost is significantly increased.

【0004】これに対して特公平2−50172号公報
には、平均粒径40〜177μmのチタン粉末と、粉砕
により高エネルギーを付与した平均粒径0.5〜20μ
mの合金形成粒子(合金元素添加用粉末)を使用し、粉
末の表面エネルギーを高くすることにより、焼結段階で
理論値に対して99.0%以上の密度を得る方法が記載
されている。しかし、この方法はハンタースポンジファ
イン(HSF)などの酸素を0.1重量%以下しか含有
しない軟質のチタン粉末を使用した場合には、一般的な
成形・焼結条件で99.0%以上の高密度化が可能であ
るが、製造工程上0.1重量%を超える酸素を不可避的
に含有するため硬質で成形性に劣る水素化脱水素法によ
り製造した極低塩素チタン粉末(HDH粉末)を使用し
た場合には、一般的な成形・焼結条件での高密度化は困
難であった。またHDH粉末は塩素を20ppm 以下しか
含んでおらず、塩素による結晶粒粗大化を抑制する効果
がないため塩素を0.05〜0.2重量%含むHSFを
使用した場合と異なり、焼結時に組織が粗大化し機械的
特性、特に疲労特性の劣化をもたらすという欠点もあっ
た。
On the other hand, Japanese Patent Publication No. 2-50172 discloses a titanium powder having an average particle size of 40 to 177 μm and an average particle size of 0.5 to 20 μm to which high energy is imparted by pulverization.
A method for obtaining a density of 99.0% or more with respect to a theoretical value at the sintering stage by using alloy forming particles of m (powder for adding alloy element) and increasing the surface energy of the powder is described. . However, when soft titanium powder containing 0.1 wt% or less of oxygen such as Hunter Sponge Fine (HSF) is used, this method produces 99.0% or more under general molding and sintering conditions. Ultra-low chlorine titanium powder (HDH powder) manufactured by the hydrodehydrogenation method, which can be densified, but is hard and inferior in moldability because it inevitably contains more than 0.1% by weight of oxygen in the manufacturing process. However, it was difficult to increase the density under general molding and sintering conditions. Also, HDH powder contains less than 20 ppm of chlorine and has no effect of suppressing crystal grain coarsening due to chlorine, so that it is different from the case of using HSF containing 0.05 to 0.2% by weight of chlorine during sintering. There is also a defect that the structure becomes coarse and mechanical properties, particularly fatigue properties are deteriorated.

【0005】これに加え、さらに特公平2−50172
号公報記載の方法では、平均粒径が0.5〜3μmと非
常に細かい合金元素添加用粉末を使用すると焼結後の密
度は高いものの粉末が凝集を起こし成分偏析を生じ、そ
の結果、機械的特性、特に疲労強度が低下するという問
題点があった。また、平均粒径が15μm以上の合金元
素添加用粉末を使用すると、焼結後の密度は高いもの
の、局所的に粗大な空孔が残存し、機械的特性、特に疲
労強度を低下させるという問題点があった。
In addition to this, Japanese Patent Publication No. 2-50172
In the method described in Japanese Patent Laid-Open Publication No. 2003-242242, when a very fine powder for adding an alloy element having an average particle size of 0.5 to 3 μm is used, although the density after sintering is high, the powder agglomerates to cause component segregation, resulting in mechanical failure. However, there is a problem in that the physical properties, particularly the fatigue strength, are reduced. In addition, when the alloying element-added powder having an average particle size of 15 μm or more is used, although the density after sintering is high, coarse pores locally remain, and mechanical properties, particularly fatigue strength are lowered. There was a point.

【0006】一方1980年 American Institute of Minin
g, Metallurgical, and PetroleumEngineers, Inc. 発
行の「Titanium '80 Science and Technology 」1185頁
に記載されているようにTiまたはTi−6Al−4V
溶製材にErあるいはYを約1重量%以下添加すると、
これらの酸化物が合金中に生成し、これが粒成長を抑制
するため組織が微細化されるという知見がある。この知
見を素粉末混合法に応用しY,Er,Y2 3 ,Er2
3 あるいはTiB2 ,B4 C,BNなどのB含有化合
物を単独で添加すると、チタン粉末や合金元素添加用粉
末の接触を阻害したり粉末表面の移動をピン止めするた
め、HDH粉末の焼結特性をさらに劣化させ、その結
果、疲労強度がさらに低下するという欠点があった。
Meanwhile, 1980 American Institute of Minin
g., Metallurgical, and PetroleumEngineers, Inc. "Titanium '80 Science and Technology", page 1185, Ti or Ti-6Al-4V.
When Er or Y is added to the ingot at about 1% by weight or less,
It is known that these oxides are generated in the alloy and suppress the grain growth, so that the structure is refined. Applying this knowledge to the elementary powder mixing method, Y, Er, Y 2 O 3 , Er 2
When O 3 or a B-containing compound such as TiB 2 , B 4 C or BN is added alone, the contact of the titanium powder or the alloying element-adding powder is hindered and the movement of the powder surface is pinned. There is a drawback that the binding properties are further deteriorated, and as a result, the fatigue strength is further reduced.

【0007】[0007]

【発明が解決しようとする課題】そこで本発明は、水素
化脱水素法により製造した0.1重量%を超える酸素を
含有する極低塩素チタン粉末を用いた素粉末混合法で、
焼結チタン合金を製造する方法において、従来と同様の
一般的な成形・焼結条件で成分偏析や局所的に残存する
粗大な空孔がなく高密度で高い機械的特性を有する焼結
チタン合金を製造する方法を提供することを目的とす
る。さらには結晶粒の粗大化を抑制し、より高い機械的
特性を有する焼結チタン合金を製造する方法を提供する
ことを目的とする。
SUMMARY OF THE INVENTION Therefore, the present invention is an elementary powder mixing method using an ultra-low chlorine titanium powder containing oxygen of more than 0.1 wt% produced by the hydrodehydrogenation method.
In the method for producing a sintered titanium alloy, a sintered titanium alloy having high density and high mechanical properties without segregation of components and coarse pores locally remaining under the same general molding and sintering conditions as in the past It aims at providing the method of manufacturing. Further, it is an object of the present invention to provide a method for producing a sintered titanium alloy having higher mechanical properties by suppressing coarsening of crystal grains.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
本発明は、(1)水素化脱水素法により製造した0.1
重量%を超える酸素を含有する極低塩素チタン粉末を用
いた素粉末混合法で、焼結チタン合金を製造する方法に
おいて、使用する合金元素添加用粉末の20重量%以上
40重量%未満が平均粒径3μm以上8μm未満であ
り、残りの合金元素添加用粉末が平均粒径8μm以上1
5μm未満であることを特徴とする、焼結チタン合金の
製造方法であり、(2)使用する粉末全重量の40%以
上70%以下が粒径45μm以上150μm以下のチタ
ン粉末であり、残りのチタン粉末が粒径10μm以上4
5μm未満であることを特徴とする、(1)記載の焼結
チタン合金の製造方法であり、(3)平均粒径8μm以
上15μm未満の合金元素添加用粉末として、当該焼結
チタン合金の0.03重量%以上0.5重量%以下に相
当する量のY,Er,Bの少なくとも1種類を含有する
粉末を使用することを特徴とする、(1)および(2)
記載の焼結チタン合金の製造方法である。
In order to achieve the above object, the present invention provides (1) 0.1 produced by a hydrodehydrogenation method.
20% by weight or more and less than 40% by weight of the alloying element-containing powder used in the method for producing a sintered titanium alloy by an elemental powder mixing method using an ultra-low chlorine titanium powder containing oxygen in an amount of more than 50% by weight. The particle size is 3 μm or more and less than 8 μm, and the remaining alloy element-adding powder has an average particle size of 8 μm or more and 1
A method for producing a sintered titanium alloy, characterized in that it is less than 5 μm, and (2) 40% or more and 70% or less of the total weight of the powder used is titanium powder having a particle size of 45 μm or more and 150 μm or less, and the remaining Titanium powder has a particle size of 10 μm or more 4
A method for producing a sintered titanium alloy according to (1), characterized in that the particle size is less than 5 μm, and (3) 0% of the sintered titanium alloy is used as a powder for adding an alloy element having an average particle size of 8 μm or more and less than 15 μm. (1) and (2), characterized in that a powder containing at least one of Y, Er and B in an amount corresponding to 0.03% by weight or more and 0.5% by weight or less is used.
It is a method for producing a sintered titanium alloy as described.

【0009】ここで、合金元素添加用粉末とは、Tiあ
るいは合金元素のうち2元素以上を含む母合金粉末、あ
るいは合金化元素の単一金属粉末である。また合金元素
添加用粉末に含有されるY,Er,Bは単体でもよい
し、酸化物などの化合物、例えばY2 3 ,Er
2 3 ,B4 Cなどでもよい。なお、本発明において、
チタン合金中にはTiと合金元素および0.4重量%以
下の酸素の他、0.4重量%未満のFe(非Fe含有合
金の場合),N,C,Hなどの不純物を不可避的に含ん
でもよい。
Here, the alloy element addition powder is a mother alloy powder containing two or more elements of Ti or alloy elements, or a single metal powder of alloying elements. Further, Y, Er, B contained in the powder for adding the alloying element may be a simple substance, or a compound such as an oxide such as Y 2 O 3 , Er.
2 O 3 , B 4 C or the like may be used. In the present invention,
In addition to Ti and alloying elements and oxygen of 0.4 wt% or less, titanium alloys inevitably contain less than 0.4 wt% of Fe (for non-Fe-containing alloys), N, C, H and other impurities. May be included.

【0010】[0010]

【作用】以下、本発明を詳細に説明する。本発明者等
は、酸素を0.1重量%より多く含むためHSFより成
形性に劣るものの安定供給が可能なHDH粉末を使用
し、焼結段階で高密度で成分偏析や局所的に残存する粗
大な空孔がなく、高い機械的特性を有する焼結チタン合
金を得るため、合金元素添加用粉末およびHDH粉末の
粒度分布と酸素量や焼結材の組織制御などに関して研究
を重ねた。その結果、使用粉末の粒度分布を最適化する
ことにより、焼結材の密度を著しく高め、且つ成分偏析
をなくし粗大な空孔を残存させず高い機械的特性が達成
できることを見いだした。さらには結晶粒成長を抑制す
る物質の添加方法を工夫することにより、組織の粗大化
を抑制し、さらに高い機械的特性が達成できることを見
いだした。
The present invention will be described in detail below. The present inventors have used HDH powder which contains oxygen in an amount of more than 0.1% by weight and is inferior in formability to HSF but can be stably supplied, and segregates components locally or locally remains at a high density in the sintering stage. In order to obtain a sintered titanium alloy having no coarse pores and high mechanical properties, research was repeated on the particle size distribution of the powder for adding the alloying element and the HDH powder, the oxygen content, and the structure control of the sintered material. As a result, it has been found that by optimizing the particle size distribution of the powder used, the density of the sintered material is significantly increased, the segregation of the components is eliminated, and coarse mechanical pores are not left, so that high mechanical properties can be achieved. Further, they have found that by devising a method of adding a substance that suppresses crystal grain growth, coarsening of the structure can be suppressed and higher mechanical properties can be achieved.

【0011】本発明1(請求項1の発明)では、酸素を
0.1重量%より多く含むHDH粉末を使用する素粉末
混合法において、使用する合金元素添加用粉末の20重
量%以上40重量%未満を平均粒径3μm以上8μm未
満にし、残りの合金元素添加用粉末を平均粒径8μm以
上15μm未満にすることとした。このように特定の粒
度に制御した合金元素添加用粉末を特定の割合で添加す
ることにより、粉末間の空隙を埋め充填効果が上がり、
成形性に劣るHDH粉末の欠点を十分に補い、高密度の
焼結材が成分偏析や粗大な空孔がない状態で得られ、そ
の結果、高い機械的特性が達成できる。
In the present invention 1 (the invention of claim 1), in an elementary powder mixing method using HDH powder containing oxygen in an amount of more than 0.1% by weight, 20% by weight or more and 40% by weight or more of the alloying element addition powder used. %, The average particle size is 3 μm or more and less than 8 μm, and the remaining alloy element addition powder has an average particle size of 8 μm or more and less than 15 μm. In this way, by adding the alloying element addition powder controlled to a specific particle size at a specific ratio, the voids between the powders are filled up and the filling effect is increased,
The defects of HDH powder, which is inferior in formability, can be sufficiently compensated, and a high-density sintered material can be obtained without component segregation and coarse pores, and as a result, high mechanical properties can be achieved.

【0012】ここで合金元素添加用粉末の平均粒径を3
μm以上15μm未満にしたのは、3μm未満では粉末
が凝集し成分偏析を起こし、15μm以上では局所的に
粉末が充填していない部分が生じ粗大な空孔が残存し、
その結果、機械的特性が劣化するためである。平均粒径
3μm以上8μm未満の合金元素添加用粉末を使用合金
元素添加用粉末の20重量%以上40重量%未満にした
のは、20重量%未満では粗い合金元素添加用粉末の割
合が増加し、粉末間の空隙を埋めることによる充填率向
上の効果が十分ではなく、40重量%以上では微細な粉
末が多くなり混合時にこれらが凝集し成分偏析を起こ
す、その結果、機械的特性が劣化するためである。
Here, the average particle size of the alloying element addition powder is set to 3
When the particle size is less than 3 μm, the powder agglomerates to cause component segregation, and when the particle size is 15 μm or more, a part where the powder is not filled locally occurs and coarse pores remain.
As a result, the mechanical characteristics deteriorate. The powder for adding alloying elements having an average particle size of 3 μm or more and less than 8 μm was set to 20% by weight or more and less than 40% by weight of the powder for adding alloying elements because the ratio of the coarse powder for adding alloying elements was increased when it was less than 20% by weight. However, the effect of improving the filling rate by filling the voids between the powders is not sufficient, and if it is 40% by weight or more, the amount of fine powders increases, and these agglomerate during mixing to cause component segregation, resulting in deterioration of mechanical properties. This is because.

【0013】本発明2(請求項2の発明)は、酸素含有
量が高いためHSFより成形性に劣るHDH粉末の粒度
を、使用粉末全重量(素粉末混合法でチタン合金を製造
する場合に使用する全粉末重量)の40%以上70%以
下が粒径40μm以上150μm未満、残部が粒径10
μm以上45μm未満、に制限することとした。これに
より、合金元素添加用粉末の粒度分布制限による上記の
ような充填率向上の効果に加え、さらにチタン粉末にお
いても空隙を埋める充填効果が向上し、さらに高密度な
焼結材が得られる。その結果、高い機械的特性が達成で
きる。ここでHDH粉末の粒径を10μm以上150μ
m以下にしたのは、10μm未満にすると、チタンの微
細粉末は活性なため安全上取扱いが困難となるためであ
る。150μmより粒径が大きいと粉末の充填率が低下
し十分な焼結密度が得られず機械的特性が低いためであ
る。さらに、粒径45μm以上150μm以下のHDH
粉末の使用量を使用粉末全重量の40%以上70%以下
にしたのは、40%未満では粒径が45μm未満のチタ
ン粉末の割合が相対的に増加し、製品の酸素量が上昇し
機械的特性が急激に低下するためであり、70%より多
いと粗大な粉末が多くなり焼結密度が低下し機械的特性
が劣化するためである。
According to the second aspect of the present invention (the invention of claim 2), the particle size of HDH powder, which has a high oxygen content and is inferior in formability to HSF, is determined by the total weight of powder used (when a titanium alloy is produced by a raw powder mixing method). 40% or more and 70% or less of the total weight of powder used) has a particle size of 40 μm or more and less than 150 μm, and the rest has a particle size of 10
It was decided to limit the thickness to at least μm and less than 45 μm. As a result, in addition to the effect of improving the filling rate as described above by limiting the particle size distribution of the alloying element-added powder, the filling effect of filling voids in the titanium powder is also improved, and a higher density sintered material can be obtained. As a result, high mechanical properties can be achieved. Here, the particle size of the HDH powder is 10 μm or more and 150 μm
The reason for setting the particle size to m or less is that if the particle size is less than 10 μm, the fine titanium powder is so active that it is difficult to handle for safety. This is because if the particle size is larger than 150 μm, the filling rate of the powder is lowered and a sufficient sintered density cannot be obtained, resulting in poor mechanical properties. Furthermore, HDH with a particle size of 45 μm or more and 150 μm or less
The amount of the powder used is set to 40% or more and 70% or less of the total weight of the powder used because the ratio of titanium powder having a particle size of less than 45 μm is relatively increased when the amount is less than 40%, and the oxygen content of the product is increased to increase the mechanical strength. This is because the mechanical properties deteriorate rapidly, and if it exceeds 70%, the amount of coarse powder increases, the sintering density decreases, and the mechanical properties deteriorate.

【0014】本発明3(請求項3の発明)は、平均粒径
8μm以上15μm未満の合金元素添加用粉末として、
当該合金の0.03重量%以上0.5重量%以下に相当
するY,Er,Bの少なくとも1種類を含有する粉末を
使用することとした。これは焼結密度向上に加え、組織
を微細化することにより機械的特性、特に疲労特性をさ
らに向上させることを目的とするものである。
The present invention 3 (the invention of claim 3) is a powder for adding an alloy element having an average particle size of 8 μm or more and less than 15 μm,
It was decided to use a powder containing at least one of Y, Er, and B corresponding to 0.03% by weight or more and 0.5% by weight or less of the alloy. This is intended to further improve mechanical properties, particularly fatigue properties, by making the structure finer in addition to improving the sintering density.

【0015】しかし、従来の技術の項で説明したよう
に、Y,Er,Bあるいはこれらの化合物を直接添加す
ると焼結密度が著しく低下する。そこで本発明では、焼
結密度を低下することなく結晶粒粗大化を抑制し組織を
微細化にするため、予め合金元素添加用粉末の内部に結
晶粒成長を抑制する物質を含有させて使用することとし
た。すなわちY,Er,Bあるいはこれらの化合物の周
囲を、合金元素が被っている状態の合金元素添加用粉末
を使用することにより、Y,Er,Bあるいはこれらを
含む化合物がチタン粉末同士あるいはチタン粉末と合金
元素の接触を阻害することなく、焼結中の粉末表面の移
動を妨げることなく、焼結密度の向上を達成できる。し
かし、一方ではY,Er,Bあるいはこれらの化合物は
結晶粒界の移動を阻害し組織粗大化を抑制する。
However, as described in the section of the prior art, when Y, Er, B or their compounds are directly added, the sintered density is remarkably reduced. Therefore, in the present invention, in order to suppress the crystal grain coarsening and reduce the structure fineness without lowering the sintered density, a substance that suppresses the crystal grain growth is used in advance in the alloy element addition powder. I decided. That is, when Y, Er, B or a compound containing these compounds is used as a powder for adding an alloy element in a state in which the alloy element covers the Y, Er, B or a compound containing these, titanium powders containing titanium, titanium, etc. It is possible to improve the sintering density without hindering the contact between the alloy element and the alloy element and without disturbing the movement of the powder surface during sintering. However, on the other hand, Y, Er, B or these compounds inhibit the movement of crystal grain boundaries and suppress the coarsening of the structure.

【0016】ここで、Y,Er,Bの少なくとも1種類
を予め含有した合金元素添加用粉末の平均粒径は8μm
以上15μm未満である必要がある。それは平均粒径が
8μm未満になると粉末製造時の粉砕工程や粉末混合時
にY,Er,Bあるいはこれらの化合物が欠落し、直接
添加した場合と同様になり焼結特性を劣化させるためで
あり、15μm以上にすると上記のような欠落はないも
のの局所的に粉末が充填していない部分ができ粗大な空
孔が残存し機械的特性が劣化するためである。またY,
Er,Bの添加量を当該チタン合金の0.03重量%以
上0.5重量%以下にしたのは、0.03重量%未満で
は添加量が少ないため組織微細化の効果が認められない
ためであり、0.5重量%以下で既に十分な効果が得ら
れており0.5重量%より多く添加するとY,Er,B
あるいはこれらの化合物の大きな塊ができ破壊の起点と
なり機械的特性を劣化させるためである。
Here, the average particle diameter of the alloying element-containing powder containing at least one of Y, Er, and B in advance is 8 μm.
It should be above 15 μm. This is because if the average particle size is less than 8 μm, Y, Er, B or these compounds are lost during the pulverizing step during powder production or during powder mixing, and the sintering characteristics deteriorate as in the case of direct addition. This is because when the thickness is 15 μm or more, the above-mentioned lack is not caused, but a portion where the powder is not filled locally is formed, and coarse pores remain and the mechanical properties are deteriorated. Also Y,
The amount of addition of Er and B is set to 0.03% by weight or more and 0.5% by weight or less of the titanium alloy because the addition amount is less than 0.03% by weight and the effect of microstructure refinement is not recognized. If 0.5% by weight or less, a sufficient effect has already been obtained, and if more than 0.5% by weight is added, Y, Er, B
Alternatively, it is because a large lump of these compounds is formed, which becomes a starting point of fracture and deteriorates mechanical properties.

【0017】[0017]

【実施例】以下、実施例によって本発明をさらに詳しく
説明する。試験に供した試料は以下の工程で作製した。
すなわち、所定の割合の粉末を混合し、成形用容器に充
填し、4.9ton/cm2の圧力で冷間静水圧成形(CI
P)を行い圧粉体を作製した後、1×10-3Paの真空中
で1250℃、2時間の焼結を行い直径約15mm、長さ
約150mmの円柱状試験片を作製した。この焼結チタン
合金に対して、焼結密度(相対密度)測定、β粒径測
定、引張試験による伸び測定、回転曲げ疲労試験による
疲労強度測定を行った。また一部の試料については含有
酸素量測定を行った。ここで、相対密度とは、同一な組
成の合金を溶解法により製造した場合に得られる試料の
密度を100%とした場合の密度であり、疲労強度は繰
り返し数が107 回に達しても破断しない負荷応力で評
価した。
The present invention will be described in more detail with reference to the following examples. The sample used for the test was prepared by the following steps.
That is, powders in a predetermined ratio are mixed and filled in a molding container, and cold isostatic pressing (CI) is performed at a pressure of 4.9 ton / cm 2.
After P) was performed to produce a green compact, sintering was performed at 1250 ° C. for 2 hours in a vacuum of 1 × 10 −3 Pa to produce a cylindrical test piece having a diameter of about 15 mm and a length of about 150 mm. Sintered density (relative density) measurement, β particle size measurement, elongation measurement by a tensile test, and fatigue strength measurement by a rotating bending fatigue test were performed on this sintered titanium alloy. The oxygen content of some samples was measured. Here, the relative density is the density when the density of the sample obtained when the alloys of the same composition are manufactured by the melting method is 100%, and the fatigue strength is 10 7 even if the number of repetitions reaches 10 7. The load stress that does not break was evaluated.

【0018】まず最初に、従来例(試験番号1〜6)に
ついて説明する。チタン粉末として、粒径10μm以上
45μm未満の粉末と粒径45μm以上150μm以下
の粉末を重量比で15:85の割合で混合したHSFと
HDH粉末の2種類を使用し、表1に示すようなチタン
粉末と合金元素添加用粉末を混合し上記の条件でTi−
6Al−4V焼結チタン合金を作製した。ここでHSF
は0.1重量%以下の酸素を含有し、HDH粉末は粒径
10μm以上45μm未満の粉末が0.3重量%、粒径
45μm以上150μm以下の粉末が0.15重量%の
酸素を含有している。
First, conventional examples (test numbers 1 to 6) will be described. Two types of titanium powder, HSF and HDH powder, in which a powder having a particle size of 10 μm or more and less than 45 μm and a powder having a particle size of 45 μm or more and 150 μm or less are mixed at a weight ratio of 15:85, are used, as shown in Table 1. Titanium powder and alloying element addition powder are mixed and Ti-
6Al-4V sintered titanium alloy was produced. HSF here
Contains 0.1% by weight or less of oxygen, the HDH powder contains 0.3% by weight of powder having a particle size of 10 μm or more and less than 45 μm, and 0.15% by weight of powder of particle size of 45 μm or more and 150 μm or less. ing.

【0019】HSFを使用した場合(表1の試験番号
1,2,3)とHDH粉末を使用した場合(表1の試験
番号4,5,6)を比較する。チタン粉末にHSFを使
用し、平均粒径が10μmの合金元素添加用粉末を使用
した試験番号1は、焼結密度が高く、伸び、疲労強度と
もにHIP処理をした材料並みの値を示したが、チタン
粉末にHDH粉末を使用し平均粒径が10μmの合金元
素添加用粉末を使用した試験番号4は、焼結密度が9
8.5%と低く、伸びと疲労強度も低い。これはHDH
粉末がHSFに比べ含有酸素量が高く成形性に劣るため
でる。また平均粒径が2μmの合金元素添加用粉末を使
用し各々チタン粉末としてHSF,HDH粉末を使用し
た試験番号2,5は、いずれも充填率が向上し99.5
%以上の高い焼結密度に達している。しかし、いずれも
成分偏析が生じているため、伸びと疲労強度が低い。ま
た平均β粒径が、試験番号5は試験番号2の4倍以上と
大きい。これは結晶粒粗大化を抑制する効果のある塩素
の含有量がHSFで0.1重量%、HDH粉末で20pp
m 以下と大きな差があり、HDH粉末を使用した試験番
号5では組織微細化の効果がなかったためである。
The case where HSF is used (test numbers 1, 2, 3 in Table 1) and the case where HDH powder is used (test numbers 4, 5, 6 in Table 1) are compared. Test No. 1 in which HSF was used as the titanium powder and the alloy element-added powder having an average particle size of 10 μm had a high sintered density, and both elongation and fatigue strength were similar to those of the HIP-treated material. Test No. 4, in which HDH powder was used for titanium powder and alloy element addition powder having an average particle size of 10 μm was used, the sintered density was 9
It is as low as 8.5% and has low elongation and fatigue strength. This is HDH
This is because the powder has a higher oxygen content than HSF and is inferior in moldability. Further, in Test Nos. 2 and 5 in which powders for adding alloying elements having an average particle diameter of 2 μm were used and HSF and HDH powders were used as titanium powders respectively, the filling rate was improved to 99.5.
Has reached a high sintered density of over%. However, in both cases, segregation of the components occurs, so the elongation and fatigue strength are low. Further, the average β-particle size of Test No. 5 is as large as four times or more that of Test No. 2. This has a chlorine content of 0.1% by weight for HSF and 20 pp for HDH powder, which has the effect of suppressing crystal grain coarsening.
This is because there is a large difference with m or less, and the test refining test using HDH powder did not have the effect of refining the structure.

【0020】チタン粉末にHSFを使用し平均粒径が1
7μmの合金元素添加用粉末を使用した試験番号3は、
焼結密度は向上しているものの、合金元素添加用粉末が
粗いため局所的に粗大な空孔が残存しており、伸びと疲
労強度がともに低い値を示している。チタン粉末にHD
H粉末を使用し平均粒径が17μmの合金元素添加用粉
末を使用した試験番号6は、HSFと比較しHDH粉末
の成形性が劣るとともに、合金元素添加用元素が粗いた
め、焼結密度が向上せず、伸びと疲労強度が低い。
HSF is used for titanium powder and the average particle size is 1
Test number 3 using the powder for adding alloy elements of 7 μm is
Although the sintered density was improved, the coarse powder of the alloying element addition locally left large voids, and both elongation and fatigue strength were low. HD to titanium powder
Test No. 6, which uses H powder and uses an alloy element addition powder having an average particle size of 17 μm, is inferior in moldability to HDH powder as compared with HSF, and has a coarse alloy element addition element. Does not improve and has low elongation and fatigue strength.

【0021】次に、本発明1について説明する。チタン
粉末として粒径10μm以上45μm未満で0.3重量
%の酸素を含有するHDH粉末と粒径45μm以上15
0μm以下で0.15重量%の酸素を含有するHDH粉
末を重量比で15:85の割合で混合し使用した。この
チタン粉末に対して表2に示すような合金元素添加用粉
末を混合し、Ti−6Al−4VおよびTi−5Al−
2.5Fe焼結チタン合金を作製した。
Next, the present invention 1 will be described. As titanium powder, HDH powder having a particle size of 10 μm or more and less than 45 μm and containing 0.3% by weight of oxygen, and a particle size of 45 μm or more and 15
HDH powder containing 0. 5 um or less and 0.15 wt% oxygen was mixed and used at a weight ratio of 15:85. Powders for adding alloy elements as shown in Table 2 were mixed with this titanium powder, and Ti-6Al-4V and Ti-5Al- were mixed.
A 2.5Fe sintered titanium alloy was prepared.

【0022】Ti−6Al−4V(表2の試験番号7〜
15)において、平均粒径が2μmの合金元素添加用粉
末を使用した試験番号7は、99.5%の焼結密度に達
しているものの、成分偏析を生じているため、伸びと疲
労強度が低い。また平均粒径が17μmの合金元素添加
用粉末を使用した試験番号10は、焼結密度が98.9
%に達しているものの局所的に粗大な空孔が残存してお
り、伸びと疲労強度が低い。合金元素添加用粉末におい
て平均粒径8μm未満の粉末の使用量が15%と本発明
1に規定された量より少ない試験番号11は、相対的に
平均粒径8μm以上の粉末が多いため粉末間の空隙を十
分に埋めることができずに焼結密度が98.7%と低
く、伸びと疲労強度も低い値である。また平均粒径8μ
m未満の粉末の使用量が45%と本発明1に規定された
量より多い試験番号15は、微細な粉末が多くなったた
め凝集を起こし成分偏析を生じ、伸びと疲労強度が低
い。
Ti-6Al-4V (Test No. 7 of Table 2)
In No. 15), the test number 7 using the alloying element-added powder having the average particle diameter of 2 μm reached the sintering density of 99.5%, but the segregation of the components caused the elongation and the fatigue strength to increase. Low. Test No. 10 using the alloying element-added powder having an average particle size of 17 μm has a sintered density of 98.9.
%, But coarse voids remain locally, and the elongation and fatigue strength are low. In the powder for alloying element addition, the use amount of the powder having an average particle size of less than 8 μm is 15%, which is less than the amount specified in the present invention 1, the test number 11 is relatively large in the amount of powder having an average particle size of 8 μm or more. It is not possible to sufficiently fill the voids and the sintered density is as low as 98.7%, and the elongation and fatigue strength are also low values. The average particle size is 8μ
In Test No. 15, in which the amount of powder less than m is 45%, which is larger than the amount specified in Invention 1, a large amount of fine powder causes agglomeration and segregation of components, and elongation and fatigue strength are low.

【0023】それに対して本発明1の実施例である試験
番号8,9,12,13,14は、最適な粒度分布の合
金元素添加用粉末を使用し成分偏析なく粉末間の空隙を
埋める効果により、いずれも99%以上の焼結密度に達
しており、14%以上の伸びと300MPa 以上の疲労強
度を示している。
On the other hand, in Test Nos. 8, 9, 12, 13, and 14, which are the examples of the present invention 1, the effect of filling the voids between the powders by using the alloying element-adding powder having the optimum particle size distribution without segregation of the components. As a result, in all cases, the sintered density reached 99% or higher, and the elongation reached 14% or higher and the fatigue strength reached 300 MPa or higher.

【0024】Ti−5Al−2.5Fe(表2の試験番
号16〜20)についても同様な結果が得られた。すな
わち合金元素添加用粉末の割合が本発明1に規定された
量の範囲外である試験番号16,20は、各々、充填率
低下による焼結密度の不足と粉末凝集による成分偏析が
原因で、伸びと疲労強度が低い値を示している。一方、
本発明1の実施例である試験番号17,18,19は、
最適な粒度分布の合金元素添加用粉末を使用し成分偏析
なく粉末間の空隙を埋める効果によりいずれも99.2
%以上の焼結密度に達しており、17%以上の伸びと3
40MPa以上の疲労強度を示している。
Similar results were obtained with Ti-5Al-2.5Fe (test numbers 16 to 20 in Table 2). That is, Test Nos. 16 and 20 in which the ratio of the powder for alloying element addition is outside the range specified in the present invention 1 are caused by insufficient segregation density due to a decrease in filling rate and segregation of components due to powder aggregation. The values of elongation and fatigue strength are low. on the other hand,
Test Nos. 17, 18, and 19, which are examples of the present invention 1,
All of them are 99.2 due to the effect of filling the voids between the powders without segregation of the components by using the powders for adding alloy elements with the optimum particle size distribution.
% Of sintered density is reached, and elongation of 17% or more and 3
It shows a fatigue strength of 40 MPa or more.

【0025】次に、本発明2について説明する。すなわ
ち表3に示す割合で、HDH粉末と種々の合金元素添加
用粉末をTi−6Al−4VおよびTi−5Al−2.
5Feとなるよう混合し、先述の条件で試験片を作製し
た。ここで使用しているHDH粉末の酸素量は粒径10
μm以上45μm未満の粉末では0.30重量%、45
μm以上150μm以下の粉末では0.15重量%、1
50μmより大きく180μm以下の粉末では0.12
重量%であり、塩素量はいずれも20ppm 以下である。
表4に各々の焼結密度、含有酸素量、平均β粒径、伸
び、疲労強度を示す。
Next, the present invention 2 will be described. That is, HDH powder and powders for adding various alloy elements were added in the proportions shown in Table 3 to Ti-6Al-4V and Ti-5Al-2.
It mixed so that it might become 5Fe, and the test piece was produced on the conditions mentioned above. The amount of oxygen in the HDH powder used here has a particle size of 10
0.30% by weight in the case of powder having a particle size of at least μm and less than 45 μm, 45
0.15% by weight for powders having a size of μm to 150 μm, 1
0.12 for powders greater than 50 μm and less than 180 μm
The amount of chlorine is 20 ppm or less.
Table 4 shows the respective sintered densities, oxygen contents, average β particle diameters, elongations, and fatigue strengths.

【0026】粒径45μm以上150μm以下のHDH
粉末の割合が、本発明2に規定された量の上限値以上の
75%である試験番号21,29は粒径45μm以上1
50μm以下の粗いHDH粉末の割合が多いため、充填
率が低く、そのため焼結密度も低く伸びと疲労強度が低
い。粒径45μm以上150μm以下のHDH粉末の割
合が、本発明2に規定された量の下限値以下の35%で
ある試験番号28,31は粒径10μm以上45μm未
満の微細なHDH粉末の割合が多いため、焼結密度は9
9.7%と高いものの機械的特性の低下をもたらす含有
酸素量が0.35重量%以上と高くなり、伸びと疲労強
度が低い値を示している。
HDH having a particle size of 45 μm or more and 150 μm or less
Test Nos. 21 and 29 in which the ratio of the powder is 75% or more of the upper limit value of the amount specified in the present invention 2 is 45 μm or more 1
Since the proportion of coarse HDH powder having a particle size of 50 μm or less is large, the filling rate is low, and therefore the sintering density is low and the elongation and fatigue strength are low. The ratio of HDH powder having a particle size of 45 μm or more and 150 μm or less is 35%, which is less than or equal to the lower limit value of the amount defined in the present invention 2. Test Nos. 28 and 31 have a ratio of fine HDH powder having a particle size of 10 μm or more and less than 45 μm. Sintered density is 9 because there are many
Although it is as high as 9.7%, the oxygen content that causes deterioration of mechanical properties is as high as 0.35% by weight or more, and elongation and fatigue strength are low.

【0027】平均粒径が150μmより大きく180μ
m以下のHDH粉末を5%添加した試験番号24は、粗
大な粉末間の空隙が十分に充填されず焼結密度が低く、
伸びと疲労強度も低い。チタン粉末の粒径と割合が本発
明2に規定された範囲内で合金元素添加用粉末の平均粒
径が本発明1に規定された範囲以下または以上である試
験番号25,26は、各々粉末凝集による成分偏析と粗
い粉末による粗大空孔の残留が原因で、伸びと疲労強度
が低い値を示している。
The average particle size is larger than 150 μm and 180 μm
Test No. 24, in which 5% of HDH powder of m or less was added, the voids between the coarse powders were not sufficiently filled and the sintered density was low,
Elongation and fatigue strength are also low. Test Nos. 25 and 26 in which the average particle diameter of the powder for alloying element addition is less than or equal to the range specified in the present invention 1 within the range specified by the present invention 2 in the particle size and the ratio of the titanium powder are respectively powders. The elongation and fatigue strength are low due to the segregation of components due to aggregation and the retention of large pores due to coarse powder.

【0028】一方、本発明2の実施例に相当する試験番
号22,23,27,30は、本発明1の合金元素添加
用粉末の粒度分布を最適化にする効果に加え、チタン粉
末の粒径と割合を本発明2に規定した範囲内にして酸素
量の増加を抑え且つ粉末間の空隙を埋める効果がさらに
向上したため、99.5%以上の高い焼結密度に達して
おり17%以上の高い伸びと320MPa 以上の高い疲労
強度が得られた。
On the other hand, test Nos. 22, 23, 27 and 30 corresponding to the examples of the present invention 2 have the effect of optimizing the particle size distribution of the alloy element addition powder of the present invention 1 as well as the particles of titanium powder. Since the diameter and the ratio were set within the ranges specified in the present invention 2 to suppress the increase of the oxygen amount and to further improve the effect of filling the voids between the powders, a high sintered density of 99.5% or more was reached and 17% or more. High elongation and high fatigue strength of 320 MPa or more were obtained.

【0029】次に、本発明3について説明する。表5お
よび表6(表5の続き)に示した種類および量の合金元
素添加用粉末と使用粉末全重量の50%を粒径45μm
以上150μm以下で0.15重量%の酸素を含有する
HDH粉末、残部を粒径10μm以上45μm未満で
0.30重量%の酸素を含有するHDH粉末にして混合
し、先述の条件で、Ti−6Al−4VまたはTi−5
Al−2.5FeにY,Er,Bあるいはこれらの化合
物が分散した焼結チタン合金を作製した。
Next, the present invention 3 will be described. Powders for alloying element addition of the types and amounts shown in Tables 5 and 6 (continuation of Table 5) and 50% of the total weight of the powders used were made to have a particle size of 45 μm
HDH powder containing 0.15% by weight or less of oxygen at 150 μm or less and the balance HDH powder containing 0.30% by weight of oxygen at a particle size of 10 μm or more and less than 45 μm, and mixed. 6Al-4V or Ti-5
A sintered titanium alloy in which Y, Er, B or a compound thereof was dispersed in Al-2.5Fe was produced.

【0030】ここで表5の試験番号32〜35は各々、
Y,Y2 3 ,Er2 3 ,B4 Cの粉末を直接添加し
た場合で、従来法に相当する。一方、表5,6の試験番
号36〜52は、Y,Er,Bが所定の量になるように
合金元素添加用物質(60Al-40V, TiAl, TiFe)とY,Y2
3 ,Er2 3 ,B4 C粉末を混合し、真空アーク溶
解後、破砕して作製した合金元素添加用粉末(60Al-40V
-Y, 60Al-40V-Y2 O3, 60Al-40V-Er2 O3 ,60Al-40V-
B4 C ,TiAl-Y2 O3 , TiFe-Y2 O 3 )を使用した場合
である。
The test numbers 32 to 35 in Table 5 are, respectively,
It corresponds to the conventional method when powders of Y, Y 2 O 3 , Er 2 O 3 and B 4 C are directly added. On the other hand, test Nos. 36 to 52 in Tables 5 and 6 show that the alloying element-added substances (60Al-40V, TiAl, TiFe) and Y, Y 2 are used so that Y, Er, and B have predetermined amounts.
Powder for adding alloy elements (60Al-40V) prepared by mixing O 3 , Er 2 O 3 , and B 4 C powders, melting them under vacuum arc, and crushing.
-Y, 60Al-40V-Y 2 O 3 , 60Al-40V-Er 2 O 3 , 60Al-40V-
B is a 4 C, TiAl-Y 2 O 3, TiFe-Y 2 O 3) when used.

【0031】Y,Y2 3 ,Er2 3 ,B4 Cの粉末
を直接添加した試験番号32〜35は、いずれもこれら
の粉末がチタン粉末やチタン合金母材組成の合金元素添
加用粉末(60Al-40V)の接触を阻害したり粉末の表面移
動をピン止めし、HDH粉末の焼結特性をさらに劣化さ
せたため、96%以下の低い焼結密度しか得られず、伸
び、疲労強度ともに著しく低い。
Test Nos. 32 to 35 in which powders of Y, Y 2 O 3 , Er 2 O 3 and B 4 C were directly added were all used for addition of titanium powder or alloying elements of titanium alloy base material composition. Since the contact of powder (60Al-40V) was hindered and the surface movement of powder was pinned to further deteriorate the sintering characteristics of HDH powder, only a low sintered density of 96% or less was obtained, and elongation and fatigue strength were obtained. Both are extremely low.

【0032】一方、Y,Y2 3 ,Er2 3 ,B4
を添加した平均粒径10μmの合金元素添加用粉末を使
用した試験番号40〜43,45〜48,50,51は
Y,Er,Bあるいはこれらの化合物を添加していない
試験番号23,30(表4)と比較して、焼結密度は9
9.5%以上と同等であり、平均β粒径が約5分の1以
下になっている。そのため伸び、疲労強度がより高くな
っており、特に疲労強度はTi−6Al−4Vで380
MPa 以上、Ti−5Al−2.5Feで440MPa 以上
と極めて高い。これはY,Er,Bあるいはこれらの化
合物がチタン粉末や合金元素の接触を阻害せず、粉末表
面の移動を妨げることなく、結晶粒界の移動を阻害し組
織の粗大化を抑制した効果である。
On the other hand, Y, Y 2 O 3 , Er 2 O 3 , B 4 C
Test Nos. 40 to 43, 45 to 48, 50, and 51 using the powder for adding alloy elements having an average particle size of 10 μm added with Y, Er, B, or Test Nos. 23 and 30 to which these compounds are not added ( Compared with Table 4), the sintered density is 9
It is equivalent to 9.5% or more, and the average β particle size is about 1/5 or less. Therefore, the elongation and the fatigue strength are higher, and the fatigue strength is 380 at Ti-6Al-4V.
MPa or more, Ti-5Al-2.5Fe is 440 MPa or more, which is extremely high. This is the effect that Y, Er, B or their compounds do not hinder the contact of titanium powder or alloy elements, do not hinder the movement of the powder surface, hinder the movement of grain boundaries and suppress the coarsening of the structure. is there.

【0033】しかし、Y,Y2 3 ,Er2 3 ,B4
Cを添加した平均粒径6μmの合金元素添加用粉末を使
用した試験番号36〜39,44は、平均粒径が6μm
と細かいため粉砕および混合工程においてY,Er,B
あるいはこれらの化合物が欠落しY,Y2 3 ,Er2
3 ,B4 Cを直接添加した場合と同じ状態となり、直
接添加した場合と同様の原因により、焼結密度が98.
5%と低く、伸び、疲労強度ともに低い値しか得られな
かった。
However, Y, Y 2 O 3 , Er 2 O 3 and B 4
Test Nos. 36 to 39 and 44 using the alloying element-added powder having an average particle size of 6 μm containing C have an average particle size of 6 μm.
Since it is fine, Y, Er, B in the crushing and mixing process
Alternatively, if these compounds are missing, Y, Y 2 O 3 , Er 2
The state is the same as when O 3 and B 4 C are directly added, and the sintered density is 98.
It was as low as 5% and both elongation and fatigue strength were low.

【0034】また試験番号49は、Y,Er,Bあるい
はこれらの化合物を添加していない試験番号23と比較
して、焼結密度、平均β粒径、伸び、疲労強度ともにほ
とんど変わらず、Y2 3 添加の効果がほとんど認めら
れなかった。これはYの添加量が本発明3に規定した量
の下限値以下である0.02重量%と低かったためであ
る。また試験番号52は、β粒径は微細になっているも
のの伸び、疲労強度は低い値しか得られなかった。これ
はYの添加量が本発明3に規定した量の上限値以上であ
る0.55重量%と高いため、Y2 3 の粗大な塊が生
成し、破壊の起点になり機械的特性を劣化させた結果で
ある。
Test No. 49 shows almost no change in sintered density, average β-grain size, elongation and fatigue strength as compared with Test No. 23 in which Y, Er, B or a compound thereof is not added. The effect of adding 2 O 3 was hardly recognized. This is because the amount of Y added was as low as 0.02% by weight, which is less than or equal to the lower limit of the amount specified in Invention 3. In Test No. 52, the β particle size was fine, but the elongation and fatigue strength were low. This is because the amount of Y added is as high as 0.55% by weight, which is equal to or more than the upper limit of the amount specified in the present invention 3, so that a coarse lump of Y 2 O 3 is generated, which becomes a starting point of fracture and mechanical properties are increased. This is the result of deterioration.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】[0040]

【表6】 [Table 6]

【0041】[0041]

【発明の効果】以上説明したように本発明を適用するこ
とにより、水素化脱水素法により製造した0.1重量%
を超える酸素を含有する極低塩素チタン粉末を用いた素
粉末混合法で、焼結チタン合金を製造する方法におい
て、従来と同様の一般的な成形・焼結条件で成分偏析や
局所的に残存する粗大な空孔がなく、高密度で高い機械
的特性を有する焼結チタン合金を製造することができ
る。さらには結晶粒の粗大化を抑制し、より高い機械的
特性を有する焼結チタン合金を製造することができる。
As described above, 0.1% by weight produced by the hydrodehydrogenation method by applying the present invention.
In a method for producing a sintered titanium alloy by an elemental powder mixing method using an ultra-low chlorine titanium powder containing more than 90% oxygen, component segregation and local residue remain under the same general molding and sintering conditions as before. It is possible to produce a sintered titanium alloy having high density and high mechanical properties, without the presence of coarse pores. Furthermore, it is possible to suppress the coarsening of crystal grains and manufacture a sintered titanium alloy having higher mechanical properties.

フロントページの続き (72)発明者 堀谷 貴雄 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内Front Page Continuation (72) Inventor Takao Horiya 20-1 Shintomi, Futtsu City, Chiba Nippon Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 水素化脱水素法により製造した0.1重
量%を超える酸素を含有する極低塩素チタン粉末を用い
た素粉末混合法で、焼結チタン合金を製造する方法にお
いて、使用する合金元素添加用粉末の20重量%以上4
0重量%未満が平均粒径3μm以上8μm未満で、残り
の合金元素添加用粉末が平均粒径8μm以上15μm未
満であることを特徴とする、焼結チタン合金の製造方
法。
1. A method for producing a sintered titanium alloy by an elementary powder mixing method using an ultra-low chlorine titanium powder containing oxygen exceeding 0.1% by weight produced by a hydrodehydrogenation method. 20% by weight or more of the powder for adding alloy elements 4
A method for producing a sintered titanium alloy, characterized in that less than 0% by weight has an average particle size of 3 μm or more and less than 8 μm, and the remaining powder for alloying element addition has an average particle size of 8 μm or more and less than 15 μm.
【請求項2】 使用する粉末全重量の40%以上70%
以下が粒径45μm以上150μm以下のチタン粉末
で、残りのチタン粉末が粒径10μm以上45μm未満
であることを特徴とする、請求項1記載の焼結チタン合
金の製造方法。
2. 40% to 70% of the total weight of the powder used
The method for producing a sintered titanium alloy according to claim 1, wherein the following is a titanium powder having a particle size of 45 μm or more and 150 μm or less, and the remaining titanium powder has a particle size of 10 μm or more and less than 45 μm.
【請求項3】 平均粒径8μm以上15μm未満の合金
元素添加用粉末として、当該焼結チタン合金の0.03
重量%以上0.5重量%以下に相当する量のY,Er,
Bの少なくとも1種類を含有する粉末を使用することを
特徴とする、請求項1および2記載の焼結チタン合金の
製造方法。
3. As a powder for adding an alloy element having an average particle size of 8 μm or more and less than 15 μm, 0.03 of the sintered titanium alloy is used.
The amount of Y, Er,
The method for producing a sintered titanium alloy according to claim 1 or 2, wherein a powder containing at least one kind of B is used.
JP25614093A 1993-10-13 1993-10-13 Production of sintered titanium alloy Withdrawn JPH07113134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25614093A JPH07113134A (en) 1993-10-13 1993-10-13 Production of sintered titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25614093A JPH07113134A (en) 1993-10-13 1993-10-13 Production of sintered titanium alloy

Publications (1)

Publication Number Publication Date
JPH07113134A true JPH07113134A (en) 1995-05-02

Family

ID=17288462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25614093A Withdrawn JPH07113134A (en) 1993-10-13 1993-10-13 Production of sintered titanium alloy

Country Status (1)

Country Link
JP (1) JPH07113134A (en)

Similar Documents

Publication Publication Date Title
JP5855565B2 (en) Titanium alloy mixed powder containing ceramics, densified titanium alloy material using the same, and method for producing the same
EP0484931B1 (en) Sintered powdered titanium alloy and method for producing the same
US7767138B2 (en) Process for the production of a molybdenum alloy
US20130071284A1 (en) Titanium alloy complex powder containing copper powder, chromium powder or iron powder, titanium alloy material consisting of this powder, and process for production thereof
EP0675209A1 (en) High strength aluminum-based alloy
JP3223538B2 (en) Sintered titanium alloy and method for producing the same
JP5692940B2 (en) α + β-type or β-type titanium alloy and method for producing the same
US3141235A (en) Powdered tantalum articles
JPH0741882A (en) Production of sintered titanium alloy
JP3354468B2 (en) Method for producing particle-dispersed sintered titanium matrix composite
JPH07113134A (en) Production of sintered titanium alloy
EP0801138A2 (en) Producing titanium-molybdenum master alloys
JPH0598384A (en) Tungsten carbide base sintered hard alloy having high strength and high hardness
JPS62224602A (en) Production of sintered aluminum alloy forging
JP2003055747A (en) Sintered tool steel and production method therefor
US20050118052A1 (en) Stabilized grain size refractory metal powder metallurgy mill products
JPH0688153A (en) Production of sintered titanium alloy
JPH0250172B2 (en)
JPS5891140A (en) High tensile metal alloy material and production thereof
JP6699209B2 (en) Aggregate of sponge titanium particles for producing titanium powder and method for producing the same
EP0534155B1 (en) Compacted and consolidated aluminum-based alloy material and production process thereof
JPS63109139A (en) Titanium carbide sintered alloy for cutting tool parts
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JPH06306514A (en) Production of sintered titanium alloy
JPH06100969A (en) Production of ti-al intermetallic compound sintered body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226