JPH07111775B2 - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH07111775B2
JPH07111775B2 JP59253058A JP25305884A JPH07111775B2 JP H07111775 B2 JPH07111775 B2 JP H07111775B2 JP 59253058 A JP59253058 A JP 59253058A JP 25305884 A JP25305884 A JP 25305884A JP H07111775 B2 JPH07111775 B2 JP H07111775B2
Authority
JP
Japan
Prior art keywords
thin film
magnetic recording
magnetic
recording medium
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59253058A
Other languages
Japanese (ja)
Other versions
JPS61131225A (en
Inventor
正之 砂井
陽一郎 田中
弘喜 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59253058A priority Critical patent/JPH07111775B2/en
Priority to US06/750,270 priority patent/US4701374A/en
Priority to EP85308219A priority patent/EP0183427B1/en
Priority to DE8585308219T priority patent/DE3575627D1/en
Publication of JPS61131225A publication Critical patent/JPS61131225A/en
Publication of JPH07111775B2 publication Critical patent/JPH07111775B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は磁気記録媒体に係り、特に垂直磁気異方性を
有する記録磁性層を備えた磁気記録媒体に関する。
Description: TECHNICAL FIELD The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium having a recording magnetic layer having perpendicular magnetic anisotropy.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近年、情報処理技術の発達に伴ってメモリ装置が担う情
報量は飛躍的に増加し、フロッピーディスク等の磁気記
録媒体に対する大容量化の要求もますます高まってい
る。この要求に応えるため、高密度記録の可能な磁気記
録媒体、特に最近では膜面に垂直な方向の磁化を利用し
て記録を行なう垂直磁気記録用の磁気記録媒体の研究・
開発が活発になされている。垂直磁気記録用の磁気記録
媒体は垂直磁気異方性を有する記録磁性層を備えた媒体
であり、現在実用されている面内記録用の磁気記録媒体
の多くを構成している塗布型媒体よりも、記録磁性層と
してCo−cr系合金等の金属薄膜をスパッタや蒸着により
形成した金属薄膜型媒体、あるいはBaフェライトやSrフ
ェライト等のマグネトプラムバイト型結晶構造を有する
酸化物薄膜型媒体が高密度記録により適した媒体として
有望視されている。
In recent years, with the development of information processing technology, the amount of information carried by a memory device has dramatically increased, and there has been an increasing demand for larger capacity of magnetic recording media such as floppy disks. In order to meet this demand, research on magnetic recording media capable of high-density recording, in particular, magnetic recording media for perpendicular magnetic recording, which records by utilizing magnetization perpendicular to the film surface.
Development is active. A magnetic recording medium for perpendicular magnetic recording is a medium having a recording magnetic layer having perpendicular magnetic anisotropy, and is more than a coating type medium that constitutes most of the magnetic recording media for in-plane recording currently in practical use. In addition, a metal thin film type medium in which a metal thin film such as a Co-cr alloy is formed by sputtering or vapor deposition as a recording magnetic layer, or an oxide thin film type medium having a magnetoplumbite type crystal structure such as Ba ferrite or Sr ferrite is high. It is regarded as a promising medium for density recording.

ところで、塗布型媒体では磁性粉をバインダ等と混ぜて
基体上に塗布することにより記録磁性層が形成されるた
め、記録磁性層が弾力性を持っており、また磁性層中に
潤滑剤を混入させることも可能であり、それによって媒
体と磁気ヘッド間の接触を良好に維持し、媒体およびヘ
ッドの耐久性を十分に得ることができる。
By the way, in the coating type medium, since the recording magnetic layer is formed by mixing magnetic powder with a binder or the like and coating it on the substrate, the recording magnetic layer has elasticity, and a lubricant is mixed in the magnetic layer. It is also possible to maintain good contact between the medium and the magnetic head and to obtain sufficient durability of the medium and the head.

これに対し、金属薄膜型媒体や酸化物薄膜型媒体におい
ては記録磁性層が弾力性をほとんど持たないため、フェ
ライト製などの硬い材質の磁気ヘッドが媒体上を走行す
ると、媒体表面やヘッドの表面にスクラッチ等の損傷が
生じ易くなる。その場合には、媒体およびヘッドの耐久
性が損われるばかりでなく、媒体やヘッドの摩耗粉の付
着により媒体・ヘッド間の実効的な距離が増大してスペ
ーシング・ロスが大きくなり、周波数特性の劣化や、再
生時の出力低下および出力変動の要因となる。
On the other hand, in a metal thin film type medium or an oxide thin film type medium, since the recording magnetic layer has almost no elasticity, when a magnetic head made of a hard material such as ferrite runs on the medium, the medium surface or the surface of the head It is easy for scratches and other damage to occur. In that case, not only the durability of the medium and the head is impaired, but also the effective distance between the medium and the head is increased due to the adherence of the abrasion powder of the medium and the head, and the spacing loss is increased. Cause deterioration of the output, decrease in output during playback, and output fluctuation.

そこで、金属薄膜型媒体や酸化物薄膜型媒体の場合に
は、記録磁性層の上にこれを保護するための硬質材料か
らなる保護層を形成することが考えられる。保護層の具
体例としては酸化シリコン,酸化アルミニウムおよび窒
化チタン等の薄膜が従来提案されている。しかし、これ
らの硬質保護層は材質が脆性であり、磁気ヘッドとの接
触によってやはり摩耗が生じ易く、その摩耗粉が媒体や
ヘッドを損傷させてしまうので、上述した問題に対する
解決策としては不十分である。
Therefore, in the case of a metal thin film type medium or an oxide thin film type medium, it is conceivable to form a protective layer made of a hard material on the recording magnetic layer to protect it. As specific examples of the protective layer, thin films of silicon oxide, aluminum oxide, titanium nitride and the like have been conventionally proposed. However, these hard protective layers are fragile in material, and also easily wear due to contact with the magnetic head, and the abrasion powder damages the medium and the head, so it is not sufficient as a solution to the above-mentioned problems. Is.

この場合、保護層を厚く形成すれば少なくとも記録磁性
層の摩耗防止には有効と考えられるが、垂直磁気記録特
性の点から好ましくない。すなわち、垂直磁気記録方式
は本質的に記録密度が面内磁気記録方式よりもはるかに
高く、記録波長を短くできるのであるが、そのためには
ヘッド・媒体間の実効的な距離を極度に小さく抑える必
要があり、従って保護層の厚みも制限される。このよう
に保護層の厚さを垂直磁気記録特性を損わない程度に抑
えると、耐久性の向上効果はあまり期待できなくなる。
In this case, a thick protective layer is considered to be effective in preventing at least the wear of the recording magnetic layer, but it is not preferable in terms of perpendicular magnetic recording characteristics. That is, the perpendicular magnetic recording method has a recording density much higher than that of the in-plane magnetic recording method, and the recording wavelength can be shortened. For that purpose, the effective distance between the head and the medium is extremely small. The thickness of the protective layer is therefore limited. If the thickness of the protective layer is suppressed to such an extent that the perpendicular magnetic recording characteristics are not impaired, the effect of improving durability cannot be expected so much.

〔発明の目的〕[Object of the Invention]

この発明の目的は、垂直磁気記録特性を損うことなく、
媒体自身および媒体に接触して走行する磁気ヘッドの耐
久性を著しく高めることができる磁気記録媒体を提供す
ることにある。
An object of the present invention is to maintain the perpendicular magnetic recording characteristics,
It is an object of the present invention to provide a magnetic recording medium that can remarkably enhance the durability of the medium itself and the magnetic head that travels in contact with the medium.

〔発明の概要〕[Outline of Invention]

この発明に係る磁気記録媒体は、垂直磁気異方性を有す
る記録磁性層上に、シリコン、窒素および酸素を含有
し、かつ波長をλ/としたとき、1/λ(波数)が850-1c
m以上、1050-1cm以下の範囲で赤外線の吸収極大を示す
非晶質薄膜を形成したことを特徴とする。
The magnetic recording medium according to the present invention contains silicon, nitrogen and oxygen on the recording magnetic layer having perpendicular magnetic anisotropy, and has a wavelength of λ /, where 1 / λ (wave number) is 850 −1. c
It is characterized in that an amorphous thin film showing an infrared absorption maximum in a range of m or more and 1050 -1 cm or less is formed.

〔発明の効果〕〔The invention's effect〕

この発明によれば、酸素を適量含むSi−N−O系薄膜を
保護層として形成したことにより、耐久性に優れ、しか
も良好な垂直磁気記録特性を持つ磁気記録媒体を得るこ
とができる。
According to the present invention, since the Si—N—O type thin film containing an appropriate amount of oxygen is formed as the protective layer, it is possible to obtain a magnetic recording medium having excellent durability and good perpendicular magnetic recording characteristics.

すなわち、このような酸素を適量含むSi−N−O系薄膜
はビッカース硬度が約1300kg/m2程度であり、非常に硬
質であるため、記録磁性層を磁気ヘッドとの接触による
損傷から確実に保護することが可能である。しかも、こ
のSi−N−O系薄膜は酸化シリコン,酸化アルミニウム
あるいは窒化チタン等の薄膜に比べ耐摩耗性が優れてい
る。従って、このSi−N−O系薄膜上を磁気ヘッドが連
続走行しても摩耗粉の発生は非常に少なく、媒体自身お
よびヘッドの摩耗・損傷は大幅に減少する。さらに、こ
のSi−N−O系薄膜は材質的に極めてち密であるため、
記録磁性層を外気から良く遮断し、耐腐蝕性を著しく向
上させる効果がある。この効果は、特に上記Si−N−O
系薄膜が非晶質の場合に、より顕著である。このSi−N
−O系薄膜は、さらに上述した耐摩耗性および耐腐蝕性
が良好であるという特徴から、その膜厚が比較的薄くと
も媒体および磁気ヘッドの耐久性を向上させることが可
能である。このため、前述のように摩耗粉の発生が少な
く摩耗粉による実効的な媒体・ヘッド間の実効的距離の
増大が少ないことと相まって、媒体・ヘッド間のスペー
シングロスを小さくでき、周波数特性の向上を図るとと
もに再生時の出力低下および出力変動を小さくし、垂直
磁気記録特性を飛躍的に高めることが可能となる。すな
わち、耐久性と垂直磁気記録特性の両方を同時に満足す
る磁気記録媒体を提供することができる。
That is, since the Si—N—O type thin film containing an appropriate amount of oxygen has a Vickers hardness of about 1300 kg / m 2 and is extremely hard, the recording magnetic layer is surely protected from damage due to contact with the magnetic head. It is possible to protect. Moreover, the Si—N—O type thin film has excellent wear resistance as compared with a thin film of silicon oxide, aluminum oxide, titanium nitride or the like. Therefore, even if the magnetic head continuously runs on this Si—N—O type thin film, the generation of abrasion powder is very small, and the abrasion and damage of the medium itself and the head are greatly reduced. Furthermore, since this Si-NO thin film is extremely dense in material,
It has an effect of blocking the recording magnetic layer from the outside air and remarkably improving the corrosion resistance. This effect is particularly exerted on the above-mentioned Si-NO
It is more remarkable when the system thin film is amorphous. This Si-N
Since the -O-based thin film has the excellent wear resistance and corrosion resistance described above, it is possible to improve the durability of the medium and the magnetic head even if the film thickness is relatively thin. Therefore, as described above, the generation of wear particles is small and the increase in the effective distance between the medium and the head due to the wear particles is small, and the spacing loss between the medium and the head can be reduced, and the frequency characteristic It is possible to improve the characteristics and reduce the output decrease and the output fluctuation during the reproduction, and it is possible to dramatically improve the perpendicular magnetic recording characteristics. That is, it is possible to provide a magnetic recording medium that satisfies both durability and perpendicular magnetic recording characteristics at the same time.

さらに、この発明では特に、保護層であるSi−N−O系
非晶質薄膜を1/λが850-1cm以上、1050-1cm以下の範囲
で赤外線の吸収極大を示すように構成したことにより、
耐久性が顕著に向上するという効果がある。すなわち、
一般に非晶質薄膜の結合状態は、膜を構成する成分の組
成成分比(この発明における保護層の場合、Si−Nおよ
びOの組成成分比)では特定することができないが、赤
外線の吸収極大を示す波長によって表すことができ、こ
の赤外線の吸収極大を示す波長によって、保護層である
Si−N−O系非晶質薄膜の結合状態を知ることができ
る。そして、Si−N−O系非晶質薄膜のような非晶質薄
膜を保護層として用いた場合、その結合状態によって耐
摩耗性つまり磁気記録媒体としての耐久性が大きく左右
される。
Further, in the present invention, particularly, the Si—N—O type amorphous thin film which is the protective layer is constituted so as to exhibit the infrared absorption maximum in the range of 1 / λ of 850 −1 cm or more and 1050 −1 cm or less. By
This has the effect of significantly improving durability. That is,
In general, the bonding state of an amorphous thin film cannot be specified by the composition ratio of the constituents of the film (in the case of the protective layer of the present invention, the composition ratio of Si-N and O), but the absorption maximum of infrared rays is maximized. Can be represented by a wavelength that indicates the absorption layer of infrared rays.
It is possible to know the bonding state of the Si—N—O type amorphous thin film. When an amorphous thin film such as a Si—N—O type amorphous thin film is used as the protective layer, the abrasion resistance, that is, the durability as a magnetic recording medium is greatly influenced by the bonding state.

そこで、発明者らは保護層としてのSi−N−O系非晶質
薄膜の赤外線の吸収極大を示す波長、すなわち結合状態
を種々変化させて耐久性を調べたところ、1/λが850-1c
m以上、1050-1cm以下の範囲で赤外線の吸収極大を示す
ようにSi−N−O系非晶質薄膜を構成した場合に、Si−
N−O系非晶質薄膜とは組成の異なる薄膜や、赤外線の
吸収極大を示す波長がこの範囲内にないSi−N−O系非
晶質薄膜に比較して、耐久性が著しく向上することを見
出だしたものである。
Therefore, it was examined Si-N-O based wavelength showing an absorption maximum in the infrared amorphous thin film, i.e., the bonding state while varying the durability as a protective layer, 1 / lambda is 850 - 1 c
When the Si—N—O type amorphous thin film is formed so as to exhibit the infrared absorption maximum in the range of m or more and 1050 −1 cm or less,
The durability is remarkably improved as compared with a thin film having a composition different from that of the N—O type amorphous thin film or a Si—N—O type amorphous thin film having a wavelength of infrared absorption maximum not within this range. It was a finding.

〔発明の実施例〕Example of Invention

第1図はこの発明の一実施例の磁気記録媒体を示す断面
図である。図において基体1は樹脂製のフィルム状基体
であり、この基体1の両面上に記録磁性層として例えば
直流マグネトロンスパッタリングにより厚さ0.5μmのC
o−Cr系合金薄膜2がそれぞれ形成されている。このCo
−Cr系合金薄膜2は膜面に垂直方向に磁化容易軸を持つ
ように配向されている。すなわち、Co−Cr系合金薄膜2
は垂直磁気異方性を有している。そして、Co−Cr系合金
薄膜2上に保護層として20〜500Å、より好ましくは50
〜400Å程度の厚さの酸素を適量含むSi−N−O系薄膜
3がそれぞれ形成されている。
FIG. 1 is a sectional view showing a magnetic recording medium according to an embodiment of the present invention. In the figure, a substrate 1 is a resin film substrate, and a recording magnetic layer is formed on both surfaces of the substrate 1 by, for example, DC magnetron sputtering to form a C film having a thickness of 0.5 μm.
Each of the o-Cr alloy thin films 2 is formed. This Co
The --Cr alloy thin film 2 is oriented so that it has an easy axis of magnetization in the direction perpendicular to the film surface. That is, Co-Cr alloy thin film 2
Has perpendicular magnetic anisotropy. And, as a protective layer on the Co-Cr alloy thin film 2, 20-500Å, more preferably 50
The Si—N—O based thin films 3 each containing an appropriate amount of oxygen with a thickness of about 400 Å are formed.

Si−N−O系薄膜3は例えば窒化シリコンターゲットを
用いた高周波スパッタリングにより形成される。この場
合、スパッタ用真空室を予め10-7Torr程度まで真空に引
き、残留した不純物ガスを十分に取除いた後、アルゴン
ガスおよび酸素ガスを10-2程度まで導入してスパッタを
行なった。なお、Si−N−O系薄膜3の形成にはその
他、シリコンターゲットを用いた反応性スパッタリング
を使用することもできる。このSi−N−O系薄膜3中の
シリコン,窒素,酸素およびその他の不純物の割合は、
成膜速度,スパッタガス圧の酸素分圧等によって制御さ
れる。こうして形成されたSi−N−O系薄膜3は一般に
非晶質であり、Co−Cr系合金薄膜2とのなじみ,密着性
が良く、かつ非常に硬質で摩耗しにくい。従って、フロ
ッピーディスクのように磁気ヘッドが媒体に連続的に接
触して走行する場合でも、極めて高い耐久性が得られ
る。
The Si—N—O type thin film 3 is formed by high frequency sputtering using a silicon nitride target, for example. In this case, the sputtering vacuum chamber was evacuated to about 10 -7 Torr in advance, the residual impurity gas was sufficiently removed, and then argon gas and oxygen gas were introduced up to about 10 -2 to perform sputtering. In addition, reactive sputtering using a silicon target can also be used for forming the Si—N—O based thin film 3. The proportions of silicon, nitrogen, oxygen and other impurities in the Si—N—O type thin film 3 are
It is controlled by the film forming speed, the oxygen partial pressure of the sputtering gas pressure, and the like. The Si—N—O type thin film 3 thus formed is generally amorphous, has good compatibility and adhesion with the Co—Cr type alloy thin film 2, and is very hard and hard to wear. Therefore, even when the magnetic head continuously contacts the medium like a floppy disk and runs, extremely high durability can be obtained.

第1表はCo−Cr系合金薄膜上に高周波スパッタリングに
より種々の保護層を形成した磁気記録媒体について、耐
久性を調べた実験結果を示したものである。但し、実験
は上述した構成の磁気記録媒体をフロッピーディスクの
形態に作製し、このディスクを毎分300回転で回転走行
させながら、フェライト磁気ヘッドをディスク上の同一
トラックに接触させて行なった。ここで、耐久性は媒体
(ディスク)およびヘッドの少なくとも一方が著しい損
傷を受けるまでの走行回数(パス)である。著しい損傷
とは媒体の場合、保護層および記録層の少なくとも一部
がけずれて、基体の表面が露出した状態をいう。また、
第1表で実施例1〜5および比較例1,2は、いずれもSi
−N−O系薄膜を保護層としているが、その赤外線吸収
極大を示す波長の逆数1/λ(波数)を種々変えたものに
ついて耐久性を調べた。この1/λはSi−N−O系薄膜の
結合状態に依存し、磁気記録媒体の耐久性、つまりSi−
N−O系薄膜の耐摩耗性は、この結合状態によって大き
く左右されることになる。なお、薄膜3のシリコン,窒
素および酸素の割合は、酸素を含む窒化シリコン薄膜を
Co−Cr合金薄膜上に形成すると同時に、シリコンウェハ
上にも同一条件で形成し、ラザフォード後方散乱分析,
赤外吸収スペクトル,オージェ電子分析により決定し
た。
Table 1 shows the results of an experiment for examining the durability of magnetic recording media in which various protective layers were formed on a Co-Cr alloy thin film by high frequency sputtering. However, in the experiment, the magnetic recording medium having the above-mentioned structure was produced in the form of a floppy disk, and the ferrite magnetic head was brought into contact with the same track on the disk while the disk was rotated at 300 rpm. Here, the durability is the number of times of travel (pass) until at least one of the medium (disk) and the head is significantly damaged. In the case of a medium, the term “significant damage” refers to a state in which at least a part of the protective layer and the recording layer are displaced and the surface of the substrate is exposed. Also,
In Table 1, Examples 1 to 5 and Comparative Examples 1 and 2 are all made of Si.
Although the -NO system thin film was used as the protective layer, the durability was examined for various layers having different reciprocal 1 / λ (wave number) of the wavelength showing the infrared absorption maximum. This 1 / λ depends on the bonding state of the Si—N—O type thin film, and the durability of the magnetic recording medium, that is, Si−
The wear resistance of the N—O type thin film is greatly influenced by this bonded state. The ratio of silicon, nitrogen and oxygen of the thin film 3 is the same as that of a silicon nitride thin film containing oxygen.
At the same time as being formed on the Co-Cr alloy thin film, it was also formed on the silicon wafer under the same conditions.
It was determined by infrared absorption spectrum and Auger electron analysis.

第1表から明らかなように、この発明に基づきシリコン
Si、窒素Nおよび酸素Oを含有し、かつ1λが850-1cm
以上、1050-1cm以下の範囲で赤外線の吸収極大を示すよ
うに構成された非晶質薄膜を保護層として形成した磁気
記録媒体は、耐久性において優れた特性を示し、また従
来より保護層として提案されている窒化シリコン,酸化
アルミニウム,炭化タングステン,窒化ボロン,窒化チ
タン等の薄膜に比べ、より薄い膜厚でありながら耐久性
の著しい向上がみられる。なお、Si−N−O系薄膜はシ
リコン,窒素および酸素のほかに付随的な不純物を含ん
でいてもよいことは言うまでもない。
As is clear from Table 1, silicon based on the present invention is used.
Contains Si, nitrogen N and oxygen O, and 1 λ is 850 -1 cm
As described above, the magnetic recording medium formed as the protective layer of the amorphous thin film configured to exhibit the infrared absorption maximum in the range of 1050 -1 cm or less shows excellent characteristics in durability, As compared with the thin films of silicon nitride, aluminum oxide, tungsten carbide, boron nitride, titanium nitride, etc., which have been proposed as above, the durability is remarkably improved although the film thickness is thinner. Needless to say, the Si—N—O-based thin film may contain incidental impurities in addition to silicon, nitrogen, and oxygen.

また、上記実施例によれば記録磁性層が特にCo−Cr系合
金薄膜2であり、この上にSi−N−O系薄膜3が形成さ
れている構造であるため、Co−Cr系合金薄膜2中のCr成
分がSi−N−O系薄膜3との接着性向上に寄与するの
で、中間層を介在させることなくSi−N−O系薄膜3の
良好な密着性を得ることができる。従って、前述のよう
にSi−N−O系薄膜3自体の膜厚が薄くてよいことと相
まって、媒体・ヘッド間の実効的距離をより効果的に小
さくできることになり、垂直磁気記録においてもスペー
シング・ロスが非常に小さく、良好な記録再生特性が得
られるという利点がある。
Further, according to the above embodiment, the recording magnetic layer is the Co—Cr based alloy thin film 2, and the Si—N—O based thin film 3 is formed on the recording magnetic layer. Therefore, the Co—Cr based alloy thin film is formed. Since the Cr component in 2 contributes to the improvement of the adhesiveness with the Si—N—O type thin film 3, good adhesion of the Si—N—O type thin film 3 can be obtained without interposing an intermediate layer. Therefore, as described above, in combination with the fact that the Si—N—O based thin film 3 itself may be thin, the effective distance between the medium and the head can be reduced more effectively, and even in perpendicular magnetic recording There is an advantage that pacing loss is very small and good recording and reproducing characteristics can be obtained.

第2図はこの発明の他の実施例の磁気記録媒体を示すも
ので、非磁性基体11上に蒸着法により下地軟磁性層12
と、記録磁性層としてのCo−Cr系合金薄膜13が積層形成
され、その上に保護層としてSi−N−O系薄膜14がスパ
ッタリングにより形成されている。下地軟磁性層12は例
えばパーマロイ薄膜,Co−Zr系合金薄膜またはセンダス
ト合金薄膜等が使用される。
FIG. 2 shows a magnetic recording medium according to another embodiment of the present invention, in which a soft magnetic underlayer 12 is formed on a non-magnetic substrate 11 by vapor deposition.
And a Co—Cr based alloy thin film 13 as a recording magnetic layer is laminated and a Si—N—O based thin film 14 as a protective layer is formed thereon by sputtering. For the soft magnetic underlayer 12, for example, a permalloy thin film, a Co—Zr alloy thin film, a sendust alloy thin film, or the like is used.

このような構成の磁気記録媒体においても、前記実施例
で説明した磁気記録媒体と同様に優れた垂直磁気記録特
性と、高い耐久性が得られる。
Also in the magnetic recording medium having such a structure, excellent perpendicular magnetic recording characteristics and high durability can be obtained as in the magnetic recording medium described in the above embodiment.

第3図はこの発明のさらに別の実施例の磁気記録媒体を
示すもので、第1図に示した磁気記録媒体におけるSi−
N−O系薄膜3上に、潤滑層4として例えばフロロカー
ボン系の液体潤滑層が塗布・形成されている。
FIG. 3 shows a magnetic recording medium according to still another embodiment of the present invention. In the magnetic recording medium shown in FIG.
As the lubricating layer 4, for example, a fluorocarbon-based liquid lubricating layer is applied and formed on the NO thin film 3.

この実施例の磁気記録媒体においては、特にSi−N−O
系非晶質薄膜3がフロロカーボン系潤滑剤からなる潤滑
層4のぬれ性,保護能力が優れているため、潤滑層4を
垂直磁気記録特性を損わない程度に薄く、かつ均一な厚
みに塗布することができる。また、Si−N−O系薄膜3
と潤滑層4との結合力も十分に得られる。
In the magnetic recording medium of this embodiment, especially Si--N--O
Since the system amorphous thin film 3 is excellent in the wettability and the protective ability of the lubricating layer 4 made of a fluorocarbon lubricant, the lubricating layer 4 is applied to a thin and uniform thickness so as not to impair the perpendicular magnetic recording characteristics. can do. In addition, Si-NO-based thin film 3
A sufficient bonding force between the lubricating layer 4 and the lubricating layer 4 can be obtained.

第2表はCo−Cr系合金薄膜上に形成される保護層および
潤滑層の材質の種々の組合せと、耐久性の関係を調べた
結果を示すものである。
Table 2 shows the results of examining the relationship between durability and various combinations of materials of the protective layer and the lubricating layer formed on the Co—Cr alloy thin film.

この第2表に示すように、酸素を適量含有させたSi−N
−O系薄膜上に潤滑層として特にフロロカーボン系潤滑
層を形成したこの発明に基く磁気記録媒体では、保護層
であるSi−N−O系薄膜および潤滑層を垂直磁気記録に
適した薄い厚さに抑えながら、酸化アルミニウム膜や炭
化タングステン膜等を保護層として用いた従来の磁気記
録媒体(比較例3〜9)、あるいは、赤外線の吸収極大
を示す1/λが850-1cm以上、1050-1cm以下の範囲内にな
いSi−N−O系薄膜上に潤滑層を形成した媒体(比較例
1,2)に比べて耐久性の著しい改善を示すことが明らか
である。
As shown in Table 2, Si-N containing an appropriate amount of oxygen
In the magnetic recording medium according to the present invention in which a fluorocarbon lubricating layer is formed as a lubricating layer on the --O thin film, the Si--N--O thin film and the lubricating layer which are protective layers have a thin thickness suitable for perpendicular magnetic recording. While suppressing the above, a conventional magnetic recording medium using an aluminum oxide film, a tungsten carbide film or the like as a protective layer (Comparative Examples 3 to 9), or 1 / λ showing an infrared absorption maximum of 850 -1 cm or more, 1050 -Medium in which a lubricating layer is formed on a Si-NO-based thin film that is not within the range of -1 cm or less (Comparative Example
It is clear that the durability is markedly improved as compared with 1, 2).

この発明は上述した実施例に限定されるものではなく、
その要旨を逸脱ない範囲で種々変形実施することが可能
である。例えば実施例では記録磁性層としてCo−Cr系合
金薄膜を例示したが、垂直磁気異方性を有するものであ
れば、Co−Cr系合金薄膜以外のものでもよく、またこの
ような金属薄膜に限らず金属酸化物薄膜でもよい。さら
に、実施例では基体の両面に記録磁性層および保護層、
さらには潤滑層が形成されている磁気記録媒体について
述べたが、これらが片面にのみ形成されている媒体にも
本発明を適用することができる。
The present invention is not limited to the above embodiment,
Various modifications can be made without departing from the spirit of the invention. For example, although Co-Cr alloy thin film was illustrated as the recording magnetic layer in the examples, other than Co-Cr alloy thin film may be used as long as it has perpendicular magnetic anisotropy. Not limited to this, a metal oxide thin film may be used. Further, in the embodiment, the recording magnetic layer and the protective layer are provided on both surfaces of the substrate,
Further, although the magnetic recording medium in which the lubricating layer is formed has been described, the present invention can be applied to a medium in which these are formed only on one surface.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例に係る磁気記録媒体の断面
図、第2図はこの発明の他の実施例に係る磁気記録媒体
の断面図、第3図はこの発明のさらに別の実施例に係る
磁気記録媒体の断面図である。 1……樹脂製フィルム状基体、2……Co−Cr系合金薄膜
(記録磁性層)、3……Si−N−O系薄膜、4……潤滑
層、11……非磁性基体、12……Co−Cr系合金薄膜(記録
磁性層)、13……Si−N−O系薄膜。
1 is a sectional view of a magnetic recording medium according to an embodiment of the present invention, FIG. 2 is a sectional view of a magnetic recording medium according to another embodiment of the present invention, and FIG. 3 is another embodiment of the present invention. 3 is a cross-sectional view of a magnetic recording medium according to an example. FIG. 1 ... Resinous film substrate, 2 ... Co-Cr alloy thin film (magnetic recording layer), 3 ... Si-NO system thin film, 4 ... Lubrication layer, 11 ... Non-magnetic substrate, 12 ... ... Co-Cr alloy thin film (recording magnetic layer), 13 ... Si-NO thin film.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】垂直磁気異方性を有する記録磁性層を備え
た磁気記録媒体において、前記記録磁性層上に、シリコ
ン、窒素および酸素を含有し、かつ波長をλとしたとき
1/λが850-1cm以上、1050-1cm以下の範囲で赤外線の吸
収極大を示す非晶質薄膜を形成したことを特徴とする磁
気記録媒体。
1. A magnetic recording medium provided with a recording magnetic layer having perpendicular magnetic anisotropy, wherein the recording magnetic layer contains silicon, nitrogen and oxygen and the wavelength is λ.
A magnetic recording medium comprising an amorphous thin film having an infrared absorption maximum in a range of 1 / λ of 850 -1 cm or more and 1050 -1 cm or less.
【請求項2】前記記録磁性層がCo−Cr系合金薄膜である
ことを特徴とする特許請求の範囲第1項記載の磁気記録
媒体。
2. The magnetic recording medium according to claim 1, wherein the recording magnetic layer is a Co—Cr alloy thin film.
【請求項3】前記磁気記録媒体がフロッピーディスクで
あることを特徴とする特許請求の範囲第1項記載の磁気
記録媒体。
3. The magnetic recording medium according to claim 1, wherein the magnetic recording medium is a floppy disk.
【請求項4】前記非晶質薄膜の上にさらに潤滑層を形成
したことを特徴とする特許請求の範囲第1項記載の磁気
記録媒体。
4. The magnetic recording medium according to claim 1, further comprising a lubricating layer formed on the amorphous thin film.
JP59253058A 1984-11-30 1984-11-30 Magnetic recording medium Expired - Lifetime JPH07111775B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59253058A JPH07111775B2 (en) 1984-11-30 1984-11-30 Magnetic recording medium
US06/750,270 US4701374A (en) 1984-11-30 1985-07-01 Magnetic recording medium
EP85308219A EP0183427B1 (en) 1984-11-30 1985-11-12 Magnetic recording medium
DE8585308219T DE3575627D1 (en) 1984-11-30 1985-11-12 MAGNETIC RECORDING CARRIER.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253058A JPH07111775B2 (en) 1984-11-30 1984-11-30 Magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS61131225A JPS61131225A (en) 1986-06-18
JPH07111775B2 true JPH07111775B2 (en) 1995-11-29

Family

ID=17245897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253058A Expired - Lifetime JPH07111775B2 (en) 1984-11-30 1984-11-30 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH07111775B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5593794A (en) * 1995-01-23 1997-01-14 Duracell Inc. Moisture barrier composite film of silicon nitride and fluorocarbon polymer and its use with an on-cell tester for an electrochemical cell
US9940953B1 (en) * 2016-10-25 2018-04-10 Seagate Technology Llc Si-based overcoat for heat assisted magnetic recording media

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5573931A (en) * 1978-11-29 1980-06-04 Hitachi Ltd High-recording-density magnetic disk
JPS57167132A (en) * 1981-04-08 1982-10-14 Hitachi Maxell Ltd Production for magnetic recording medium
JPS60145525A (en) * 1984-01-10 1985-08-01 Canon Inc Magnetic recording medium

Also Published As

Publication number Publication date
JPS61131225A (en) 1986-06-18

Similar Documents

Publication Publication Date Title
EP0239028B1 (en) Magnetic recording medium
US4761334A (en) Magnetic recording medium
US4701374A (en) Magnetic recording medium
US4786553A (en) Magnetic recording medium
JPH07111775B2 (en) Magnetic recording medium
US4748073A (en) Perpendicular magnetic recording medium with multilayered protective layer
JPS61131231A (en) Magnetic recording medium
US20050042481A1 (en) Information recording medium with improved perpendicular magnetic anisotropy
JPH0612568B2 (en) Magnetic recording medium
JPS61131224A (en) Magnetic recording medium
JPH065574B2 (en) Magnetic recording medium
JPH0578088B2 (en)
JPH0654538B2 (en) Magnetic recording medium
JP2625652B2 (en) Memory device
JP2513688B2 (en) Magnetic recording media
JPS6177130A (en) Magnetic recording medium
JPH0268712A (en) Thin film magnetic recording medium
JP2861081B2 (en) Magnetic recording media
JPS63104215A (en) Magnetic recording medium
JPS61131222A (en) Magnetic recording medium
JPS61120341A (en) Magnetic recording medium
JPS63102014A (en) Magnetic recording medium
JPH03263613A (en) Magnetic recording medium and its device
JPS6177131A (en) Magnetic recording medium
JPH04157619A (en) Magnetic disk

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term