JPH07111312A - Semiconductor capacitive element - Google Patents

Semiconductor capacitive element

Info

Publication number
JPH07111312A
JPH07111312A JP5253929A JP25392993A JPH07111312A JP H07111312 A JPH07111312 A JP H07111312A JP 5253929 A JP5253929 A JP 5253929A JP 25392993 A JP25392993 A JP 25392993A JP H07111312 A JPH07111312 A JP H07111312A
Authority
JP
Japan
Prior art keywords
conductive film
film
lower conductive
diffusion region
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5253929A
Other languages
Japanese (ja)
Inventor
Koji Hashimoto
浩二 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP5253929A priority Critical patent/JPH07111312A/en
Publication of JPH07111312A publication Critical patent/JPH07111312A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the capacitance higher without increasing the occupied area of a semiconductor chip and also without increasing the size of an element. CONSTITUTION:A groove M, reaching a diffusion region 2 from a lower conductive film 4, is formed, the surface of the groove is covered by an insulating film 10 to be used for a capacitor, and a capacitor structure, in which the lower conductive film 4 is pinched by the upper conductive film 5 and the diffusion region 2, is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体デバイスや半導
体集積回路装置等に用いる半導体容量素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor capacitor element used in semiconductor devices, semiconductor integrated circuit devices and the like.

【0002】[0002]

【従来の技術】従来、この種半導体容量素子において
は、図6に示す構造のものが使用されている。同図にお
いて、シリコン基板21上のフィールド酸化膜22に設
けられた下側導電膜23とその上層の上側導電膜25と
によって、下側導電膜23表面を覆うキャパシタ用絶縁
膜24を挟み込んだ容量素子を構成している。
2. Description of the Related Art Conventionally, in this type of semiconductor capacitor element, the structure shown in FIG. 6 has been used. In the figure, a capacitance in which a capacitor insulating film 24 covering the surface of the lower conductive film 23 is sandwiched by a lower conductive film 23 provided on the field oxide film 22 on the silicon substrate 21 and an upper conductive film 25 above it. It constitutes the element.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記構
造にかかる素子容量は、平坦形の下側導電膜23上のキ
ャパシタ用絶縁膜24の、上側導電膜25との重なり面
積で決まるため、大きな容量を得る場合には、面積が大
きくなり素子サイズの拡大を招来したり、半導体チップ
内での容量素子の占有面積が大きくなってしまうという
問題があった。
However, since the element capacitance of the above structure is determined by the overlapping area of the capacitor insulating film 24 on the flat lower conductive film 23 with the upper conductive film 25, a large capacitance is obtained. In order to obtain the above, there is a problem that the area becomes large and the element size is expanded, or the area occupied by the capacitive element in the semiconductor chip becomes large.

【0004】そこで、この容量面積の拡大のために、D
RAMセル等のスタック構造キャパシタにおいては、ポ
リシリコン膜表層に微細なしわを形成する手法が提案さ
れている(特開平2ー203557号公報参照)。これ
によれば、ポリシリコン膜形成の後、光励起CVD法に
よる光の干渉縞を利用したりしてシリコン表面に微細な
凹凸を生じさせている。しかし、この場合シリコン膜表
面の凹凸形成により表面積を拡大するにとどまってお
り、大容量化を図るには限界があった。
Therefore, in order to expand this capacitance area, D
In a stack structure capacitor such as a RAM cell, a method of forming fine wrinkles on the surface layer of a polysilicon film has been proposed (see Japanese Patent Application Laid-Open No. 2-203557). According to this, after the polysilicon film is formed, microscopic unevenness is generated on the silicon surface by utilizing the interference fringes of light by the photoexcited CVD method. However, in this case, the surface area is increased only by forming the irregularities on the surface of the silicon film, and there is a limit to increase the capacity.

【0005】本発明は、上記従来の問題を解決し、素子
サイズを大きくすることなく大容量化を図ることのでき
る半導体容量素子を提供することを目的とするものであ
る。
An object of the present invention is to solve the above-mentioned conventional problems and to provide a semiconductor capacitive element capable of achieving a large capacity without increasing the element size.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、半導体基板上に下側導電膜を形成し、か
つその下側導電膜下に拡散領域を設け、その下側導電膜
とその拡散領域を刻設して溝を形成するとともに、前記
下側導電膜の表面及び前記溝の内面をキャパシタ用絶縁
膜で覆い、前記キャパシタ用絶縁膜上に上側導電膜を設
けたことを特徴とする。
In order to achieve the above-mentioned object, the present invention forms a lower conductive film on a semiconductor substrate, and provides a diffusion region under the lower conductive film, and the lower conductive film is provided. A groove is formed by engraving the film and its diffusion region, the surface of the lower conductive film and the inner surface of the groove are covered with an insulating film for a capacitor, and an upper conductive film is provided on the insulating film for the capacitor. Is characterized by.

【0007】[0007]

【作用】本発明にかかる半導体容量素子は、拡散領域に
及ぶ溝を形成したことにより、該溝の表面に形成された
キャパシタ用絶縁膜を、上側導電膜と、下側導電膜を介
して拡散領域とで挟み込んだキャパシタ構造であり、上
側導電膜を上部電極とし、該拡散領域を下部電極の一部
とする。
According to the semiconductor capacitive element of the present invention, by forming the groove extending to the diffusion region, the capacitor insulating film formed on the surface of the groove is diffused through the upper conductive film and the lower conductive film. It is a capacitor structure sandwiched by a region, the upper conductive film serves as an upper electrode, and the diffusion region serves as a part of a lower electrode.

【0008】[0008]

【実施例】以下、本発明の実施例を図面によって説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の実施例である半導体容量素
子を示す模式断面図である。
FIG. 1 is a schematic sectional view showing a semiconductor capacitor element according to an embodiment of the present invention.

【0010】シリコン基板1上のフィールド酸化膜3、
3間に拡散領域2が形成されている。拡散領域2とフィ
ールド酸化膜3上にポリシリコンの下側導電膜4が形成
されており、その中央部分において拡散領域2の内部に
至る複数の溝Mが刻設されている。これらの溝M及び下
側導電膜4の表面を覆うようにキャパシタ用絶縁膜10
が形成されている。キャパシタ用絶縁膜10としてシリ
コン窒化(Si34)膜やタンタル酸化(Ta25)膜等
の高誘電体材料を用いる。キャパシタ用絶縁膜10の表
面には溝Mに埋設されるように、ポリシリコンの上側導
電膜5が積層形成されている。上側導電膜5及び下側導
電膜4はシリコン酸化膜6の層間膜で被覆され、その酸
化膜の所定箇所に設けられたスルーホールに、それぞれ
アルミニュムの外部電極7,8に接続している。外部電
極7、8はそれぞれ上部電極、下部電極に対応する。ポ
リシリコン膜を用いず上側導電膜5と外部電極7とをア
ルミニュム層で一体に形成してよい。
The field oxide film 3 on the silicon substrate 1,
The diffusion region 2 is formed between the regions 3. A lower conductive film 4 of polysilicon is formed on the diffusion region 2 and the field oxide film 3, and a plurality of trenches M reaching the inside of the diffusion region 2 are formed in the central portion thereof. The capacitor insulating film 10 covers the surfaces of the groove M and the lower conductive film 4.
Are formed. A high dielectric material such as a silicon nitride (Si 3 N 4 ) film or a tantalum oxide (Ta 2 O 5 ) film is used as the capacitor insulating film 10. An upper conductive film 5 made of polysilicon is laminated on the surface of the capacitor insulating film 10 so as to be buried in the groove M. The upper conductive film 5 and the lower conductive film 4 are covered with an interlayer film of a silicon oxide film 6, and are connected to aluminum external electrodes 7 and 8 through holes provided at predetermined positions of the oxide film, respectively. The external electrodes 7 and 8 correspond to the upper electrode and the lower electrode, respectively. The upper conductive film 5 and the external electrode 7 may be integrally formed of an aluminum layer without using a polysilicon film.

【0011】上記構成において、キャパシタ用絶縁膜1
0は上側導電膜5と、拡散領域2を介して下側導電膜4
とで挟み込んだ容量素子を形成しており、複数の溝Mが
拡散領域2の内部に及んでいるため、下側導電膜4及び
拡散領域2に亘る溝M内面にキャパシタ用絶縁膜10を
薄膜形成することによって、高容量のための十分なキャ
パシタ面積を得ることができる。
In the above structure, the insulating film for a capacitor 1
0 is the upper conductive film 5 and the lower conductive film 4 via the diffusion region 2.
Since a plurality of trenches M extend inside the diffusion region 2, the capacitor insulating film 10 is thinly formed on the inner surface of the trench M extending over the lower conductive film 4 and the diffusion region 2. By forming it, a sufficient capacitor area for high capacity can be obtained.

【0012】次に、上記実施例の容量素子の製造方法を
図1〜図5によって説明する。まず、N型シリコン基板
1の主面に対しゲート酸化とともにフィールド酸化膜3
を熱拡散により形成し、ゲート酸化領域(図示せず)を
エッチング除去して活性領域Bを形成する(図2)。本
発明における基板材にはN型ウエル領域を表層に形成し
たN型シリコン基板を用いてもよい。ついで活性領域B
の表面が酸化されないように、ポリシリコン下側導電膜
4をCVD法によって形成する(図2)。このポリシリ
コン膜4は約4500オングストローム程度の厚さであ
り、これには膜抵抗値を低減させるとともに活性領域B
に拡散領域2を形成するためのリン(P)を含ませてい
る。ポリシリコン下側導電膜4中のPは900〜950
℃の高温で熱拡散され、0.5〜0.6μm程度の拡散
深さのN+型拡散領域2を形成する(図3)。
Next, a method of manufacturing the capacitive element of the above embodiment will be described with reference to FIGS. First, a field oxide film 3 is formed on the main surface of the N-type silicon substrate 1 together with gate oxidation.
Are formed by thermal diffusion, and the gate oxide region (not shown) is removed by etching to form an active region B (FIG. 2). An N-type silicon substrate having an N-type well region formed in the surface layer may be used as the substrate material in the present invention. Then active area B
The polysilicon lower conductive film 4 is formed by the CVD method so that the surface of the is not oxidized (FIG. 2). The polysilicon film 4 has a thickness of about 4500 angstroms, which reduces the film resistance value and reduces the active region B.
Contains phosphorus (P) for forming the diffusion region 2. P in the polysilicon lower conductive film 4 is 900 to 950.
The N + -type diffusion region 2 having a diffusion depth of about 0.5 to 0.6 μm is formed by thermal diffusion at a high temperature of ℃ (FIG. 3).

【0013】上記のリン(P)拡散の後、下側導電膜4
のポリシリコン層のパターニング処理を行う。該膜上に
レジスト膜11を形成し、溝M形成のための開口部Aを
パターニング形成する(図3)。このレジスト膜11を
マスクにして下側導電膜4及び拡散領域2の内部をエッ
チングして複数の溝Mを食刻する(図4)。拡散領域2
内では基板表面から約0.3〜0.4μm程度までエッ
チングしてよい。
After the above phosphorus (P) diffusion, the lower conductive film 4
Patterning of the polysilicon layer is performed. A resist film 11 is formed on the film, and an opening A for forming the groove M is formed by patterning (FIG. 3). Using the resist film 11 as a mask, the insides of the lower conductive film 4 and the diffusion region 2 are etched to etch a plurality of grooves M (FIG. 4). Diffusion area 2
Inside, etching may be performed up to about 0.3 to 0.4 μm from the substrate surface.

【0014】溝Mの形成された下側導電膜4及び拡散領
域2の表面に対しCVD法によってシリコン窒化(Si3
4)膜のキャパシタ用絶縁膜10を形成する(図
5)。シリコン窒化膜は下側導電膜4の表面及び溝Mの
内面を覆うように形成される。このキャパシタ用絶縁膜
10の形成時には、下側導電膜4のポリシリコン膜表面
が酸化されるため、絶縁膜10は微細にはON(Oxide
−Nitride)積層構造となる。シリコン窒化膜形成後
に、膜表面を酸化してONO(Oxide−Nitride−Oxi
de)積層構造にすれば、電流リークのない、耐圧性に優
れた素子を得ることができる。
The surface of the lower conductive film 4 in which the groove M is formed and the surface of the diffusion region 2 are silicon nitride (Si 3
An N 4 ) film insulating film 10 for capacitors is formed (FIG. 5). The silicon nitride film is formed so as to cover the surface of the lower conductive film 4 and the inner surface of the groove M. Since the surface of the polysilicon film of the lower conductive film 4 is oxidized during the formation of the capacitor insulating film 10, the insulating film 10 is finely turned on (Oxide).
-Nitride) It becomes a laminated structure. After the silicon nitride film is formed, the film surface is oxidized to turn ONO (Oxide-Nitride-Oxi).
de) With the laminated structure, it is possible to obtain an element having excellent withstand voltage without current leakage.

【0015】さらに上側導電膜5形成のためのポリシリ
コン膜を積層形成する(図5)。この場合もリン(P)
を含ませて熱拡散して膜抵抗値の低減化を行う。ついで
外部電極の形成を行う。通常の半導体素子の形成と同様
に、層間膜のシリコン酸化膜6を形成し、それにコンタ
クトホールを下側導電膜4及び上側導電膜5上に設け、
アルミニュウムの外部電極7,8を形成する(図1参
照)。
Further, a polysilicon film for forming the upper conductive film 5 is laminated (FIG. 5). Also in this case, phosphorus (P)
To reduce the film resistance value. Then, an external electrode is formed. Similar to the formation of a normal semiconductor element, an inter-layer silicon oxide film 6 is formed, and contact holes are formed in the lower conductive film 4 and the upper conductive film 5,
The aluminum outer electrodes 7 and 8 are formed (see FIG. 1).

【0016】[0016]

【発明の効果】この発明によれば、下側導電膜表面を単
に凹凸加工するに比べ、拡散領域内部に至る溝の内面を
キャパシタ面積として用いるため、素子面積を拡大させ
ることなくより大きな容量化を実現できる。
According to the present invention, since the inner surface of the groove reaching the inside of the diffusion region is used as the capacitor area as compared with the case where the surface of the lower conductive film is simply processed to have unevenness, a larger capacitance can be obtained without increasing the element area. Can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の実施例である半導体容量素子を
示す模式断面図である。
FIG. 1 is a schematic cross-sectional view showing a semiconductor capacitor element which is an embodiment of the present invention.

【図2】図2は上記実施例の容量素子の活性領域形成工
程を示す模式断面図である。
FIG. 2 is a schematic cross-sectional view showing a step of forming an active region of the capacitive element of the above embodiment.

【図3】図3は上記実施例の容量素子の下側電極膜のパ
ターニング工程を示す模式断面図である。
FIG. 3 is a schematic cross-sectional view showing the patterning process of the lower electrode film of the capacitive element of the above embodiment.

【図4】図4は上記実施例の容量素子の溝形成工程を示
す模式断面図である。
FIG. 4 is a schematic cross-sectional view showing a groove forming step of the capacitive element of the above embodiment.

【図5】図5は上記実施例の容量素子のキャパシタ用絶
縁膜形成工程を示す模式断面図である。
FIG. 5 is a schematic cross-sectional view showing a step of forming an insulating film for a capacitor of the capacitive element of the above embodiment.

【図6】図6は従来の半導体容量素子の構造を示す模式
断面図である。
FIG. 6 is a schematic cross-sectional view showing the structure of a conventional semiconductor capacitive element.

【符号の説明】[Explanation of symbols]

1 基板 2 拡散領域 4 下側導電膜 5 上側導電膜 10 キャパシタ用絶縁膜 M 溝 1 Substrate 2 Diffusion Region 4 Lower Conductive Film 5 Upper Conductive Film 10 Capacitor Insulating Film M Groove

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 27/108 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication H01L 27/108

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に下側導電膜を形成し、か
つその下側導電膜下に拡散領域を設け、その下側導電膜
とその拡散領域を刻設して溝を形成するとともに、前記
下側導電膜の表面及び前記溝の内面をキャパシタ用絶縁
膜で覆い、前記キャパシタ用絶縁膜上に上側導電膜を設
けたことを特徴とする半導体容量素子。
1. A lower conductive film is formed on a semiconductor substrate, a diffusion region is provided under the lower conductive film, and the lower conductive film and the diffusion region are engraved to form a groove. A semiconductor capacitor element, wherein a surface of the lower conductive film and an inner surface of the groove are covered with a capacitor insulating film, and an upper conductive film is provided on the capacitor insulating film.
JP5253929A 1993-10-12 1993-10-12 Semiconductor capacitive element Pending JPH07111312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5253929A JPH07111312A (en) 1993-10-12 1993-10-12 Semiconductor capacitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5253929A JPH07111312A (en) 1993-10-12 1993-10-12 Semiconductor capacitive element

Publications (1)

Publication Number Publication Date
JPH07111312A true JPH07111312A (en) 1995-04-25

Family

ID=17257991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5253929A Pending JPH07111312A (en) 1993-10-12 1993-10-12 Semiconductor capacitive element

Country Status (1)

Country Link
JP (1) JPH07111312A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100712491B1 (en) * 2001-06-25 2007-05-02 삼성전자주식회사 Fabrication method for semiconductor device having multi-resistors and high capacitive capacitor
JP2017063188A (en) * 2015-09-25 2017-03-30 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. Interdigitated capacitor in split gate flash technology
WO2017169882A1 (en) * 2016-03-31 2017-10-05 ソニー株式会社 Image pickup element, method for manufacturing image pickup element, and electronic apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100712491B1 (en) * 2001-06-25 2007-05-02 삼성전자주식회사 Fabrication method for semiconductor device having multi-resistors and high capacitive capacitor
US10535676B2 (en) 2015-09-25 2020-01-14 Taiwan Semiconductor Manufacturing Co., Ltd. Inter-digitated capacitor in split-gate flash technology
JP2017063188A (en) * 2015-09-25 2017-03-30 台湾積體電路製造股▲ふん▼有限公司Taiwan Semiconductor Manufacturing Company,Ltd. Interdigitated capacitor in split gate flash technology
US11832448B2 (en) 2015-09-25 2023-11-28 Taiwan Semiconductor Manufacturing Company, Ltd. Inter-digitated capacitor in flash technology
US11088159B2 (en) 2015-09-25 2021-08-10 Taiwan Semiconductor Manufacturing Company, Ltd. Inter-digitated capacitor in flash technology
US10297608B2 (en) 2015-09-25 2019-05-21 Taiwan Semiconductor Manufacturing Co., Ltd. Inter-digitated capacitor in split-gate flash technology
CN108886048A (en) * 2016-03-31 2018-11-23 索尼公司 Photographic device, the manufacturing method of photographic device and electronic device
JPWO2017169882A1 (en) * 2016-03-31 2019-02-14 ソニー株式会社 Image sensor, image sensor manufacturing method, and electronic device
US11189520B2 (en) 2016-03-31 2021-11-30 Sony Corporation Imaging device, method of manufacturing imaging device, and electronic device
CN108886048B (en) * 2016-03-31 2022-12-16 索尼公司 Imaging device, method for manufacturing imaging device, and electronic device
US11791200B2 (en) 2016-03-31 2023-10-17 Sony Group Corporation Imaging device, method of manufacturing imaging device, and electronic device
US11830766B2 (en) 2016-03-31 2023-11-28 Sony Group Corporation Imaging device, method of manufacturing imaging device, and electronic device
WO2017169882A1 (en) * 2016-03-31 2017-10-05 ソニー株式会社 Image pickup element, method for manufacturing image pickup element, and electronic apparatus

Similar Documents

Publication Publication Date Title
KR920005702B1 (en) Transistor varactor for dynamics semiconductor memory and manufacture of the same
US5420449A (en) Capacitor for a semiconductor device
JP3872174B2 (en) Capacitor manufacturing method
KR970007220B1 (en) Stacked type condenser & manufacturing method
US5500384A (en) Method for manufacturing a bit line via hole in a memory cell
JPH09191088A (en) Semiconductor storage device and its manufacture
JPH1065122A (en) Semiconductor device and manufacture thereof
KR930005741B1 (en) Dram cell having a tunnelled capacitor and method of fabricating therefor
KR100319618B1 (en) Capacitor for semiconductor device fabricating method thereof
JPH07111312A (en) Semiconductor capacitive element
KR100303225B1 (en) Semiconductor device and method of producing the same
JPH0321062A (en) Semiconductor storage device
JPH05304269A (en) Semiconductor device
US5459685A (en) Semiconductor memory device having memory cells with enhanced capacitor capacity
JP2830215B2 (en) Method for manufacturing charge transfer device
JP2826239B2 (en) Capacitor
JP3214615B2 (en) Semiconductor storage device
JPH0379072A (en) Semiconductor memory device and manufacturing method
JPS63197368A (en) Semiconductor device and its manufacture
KR0166491B1 (en) Capacitor fabrication method of semiconductor device
JP2969789B2 (en) Method for manufacturing semiconductor memory device
KR100266020B1 (en) Capacitor and method of fabricating the same
JP2753092B2 (en) Method for manufacturing semiconductor memory device
KR100881738B1 (en) Method for fabrication of semiconductor device
JPH07111313A (en) Semiconductor capacitive element