JPH07110379A - Thundercloud observation system - Google Patents

Thundercloud observation system

Info

Publication number
JPH07110379A
JPH07110379A JP5254220A JP25422093A JPH07110379A JP H07110379 A JPH07110379 A JP H07110379A JP 5254220 A JP5254220 A JP 5254220A JP 25422093 A JP25422093 A JP 25422093A JP H07110379 A JPH07110379 A JP H07110379A
Authority
JP
Japan
Prior art keywords
thundercloud
echo
altitude
information
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5254220A
Other languages
Japanese (ja)
Inventor
Nobuo Kazama
信男 風間
Takao Suzuki
隆雄 鈴木
Hideki Hashimoto
秀樹 橋本
Yuko Sato
祐子 佐藤
Ryuichi Muto
隆一 武藤
Yoichi Oba
洋一 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP5254220A priority Critical patent/JPH07110379A/en
Publication of JPH07110379A publication Critical patent/JPH07110379A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

PURPOSE:To provide a thundercloud observation system capable of accurately detecting thundercloud regardless of seasons and judging the probability of thunder occurrence. CONSTITUTION:Each echo intensity in echo intensity information is converted into moisture amount in a moisture amount converter part 1. After transforming to rectangular coordinate in a CAPPI (constant altitude plan position indicator) conversion part 2, integration processing in the vertical direction is done in a VIL (vertical direction integral moisture amount) calculation part 3 and the amount is compared with a thundercloud judgment reference level in an integral moisture amount comparator 4. When an integral amount over the thunder judgment reference level is detected, it is judged to be thundercloud. On the other hand, echo top altitude over a reference value of echo intensity in the echo intensity information is obtained in an echo top altitude calculation part 6 and it is converted into echo top temperature based on aerological information in the echo top altitude calculation part 6 to compare it with a freezing judgment reference value in an echo top temperature comparison part 8. When the echo top temperature is detected to be below the freezing judgment reference value, a high probability of thunder occurrence is judged.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、主に気象レーダから
のレーダエコー情報を基に雷雲を判別し、発雷の可能性
を求める雷雲観測システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates mainly to a thundercloud observation system for determining a thundercloud based on radar echo information from a weather radar and determining the possibility of a lightning strike.

【0002】[0002]

【従来の技術】周知のように、雷雲の成長は発達期、成
熟期、衰退期に大別される。図3にその成長過程の様子
を示す。尚、図3において、横軸は経過時間、縦軸は高
度、図中の数字はレーダエコーの強度[dBz]を示し
ている。エコー強度は水分量に比例する。
2. Description of the Related Art As is well known, the growth of thunderclouds is roughly classified into a developmental period, a maturation period and a decline period. FIG. 3 shows the state of the growth process. In FIG. 3, the horizontal axis represents elapsed time, the vertical axis represents altitude, and the numbers in the figure represent radar echo intensity [dBz]. Echo intensity is proportional to water content.

【0003】何らかの理由により、地表付近に暖かい大
気(暖気)が、上空に冷たい大気(寒気)が位置する状
態(不安定な状態)になると、地表付近の暖気は軽いの
で上昇しようとし、上空の寒気は重いので下降しようと
するため、対流が発生する。このとき、上昇する気流が
水分を含んでいれば、この水分が上空の低温域へ行くこ
とで凝結して水または氷晶となり、雲が発生する。
For some reason, if the warm atmosphere (warm air) near the surface of the earth becomes a state (unstable state) where the cold atmosphere (cold air) is located above the ground surface, the warm air near the surface of the earth is light and tries to rise. Since the cold air is heavy, it tries to descend and convection occurs. At this time, if the rising airflow contains water, the water moves to a low temperature region in the sky to be condensed into water or ice crystals, and a cloud is generated.

【0004】上昇流が特に強い場合には、水分量も多い
ため、雲は急速に発達する。このような場合には雷雲と
なる割合が高い。このように、特に上昇流が卓越する期
間は発達期として位置付けられている。
When the upflow is particularly strong, the water content is high and the cloud develops rapidly. In such cases, the rate of thunderclouds is high. In this way, the period in which the updraft is predominant is positioned as the developmental period.

【0005】時間と共に上方の水分は密となり、次第に
核が形成され、成熟期に入って上昇気流は弱くなる。核
の頂点が氷結高度に達すると、氷の粒子が形成される。
その粒子は衝突等によって電荷を帯びるようになり、そ
の電荷は次第に蓄積されていく。ある程度、電荷がたま
ると放電現象が生じて空雷が発生するようになる。
With the passage of time, the water above becomes dense and gradually forms nuclei, and the updraft becomes weaker in the maturation stage. When the top of the nucleus reaches the freezing height, ice particles are formed.
The particles become charged due to collisions, etc., and the charges are gradually accumulated. When electric charges are accumulated to some extent, a discharge phenomenon occurs and a lightning strike occurs.

【0006】さらに上昇気流が弱まると、衰退期に入っ
て下降流に転じ、上方では収束、下方では発散の現象が
生じる。すると、水分領域が下がって電荷を帯びた核が
地表に近付いていく。この結果、核と地表との間の電位
差のために落雷発生が濃厚となる。水分領域がほぼ地表
面に下がりきることで、雷雲は消滅する。
When the ascending air current further weakens, it enters a declining period and turns into a descending air flow, and the phenomenon of convergence occurs in the upper part and the phenomenon of divergence occurs in the lower part. Then, the water region drops and the charged nucleus approaches the surface of the earth. As a result, lightning strikes are concentrated due to the potential difference between the nucleus and the surface. The thundercloud disappears when the moisture region almost falls to the ground surface.

【0007】このような雷雲を検出し、発雷を予測する
従来の雷雲観測システムでは、「雷雲のレーダエコーは
普通の雨雲のエコーに比べて高度が高くかつ強い。」と
いう考え方に基づいて雷雲を判別している。すなわち、
エコー強度とエコー高度の情報だけを用いて、例えば次
表のような判別基準を作っている。尚、夏の雷雲と冬の
雷雲の判別方法の違いは、それぞれの判定値を変えるだ
けで、基本的な判別条件とその組み合わせは同じであ
る。
In a conventional thundercloud observation system that detects such a thundercloud and predicts lightning, a thundercloud is based on the idea that "the radar echo of a thundercloud is higher and stronger than the echo of an ordinary rain cloud." Is determined. That is,
For example, the discrimination standard as shown in the following table is created using only the information on the echo intensity and the echo altitude. The difference between the methods of distinguishing between thunderclouds in summer and thunderclouds in winter is that the judgment values are different and the basic judgment conditions and their combinations are the same.

【0008】[0008]

【表1】 [Table 1]

【0009】しかしながら、従来のシステムでは、夏の
雷雲は普通の雨雲よりかなり高くまで発達するので、比
較的判別が容易で検出率が高いが、特に日本海側に発生
する冬の雷雲は高度があまり高くならないため、周囲の
雲との区別がつきにくく、検出率が低かった。また、夏
の雷雲判別にあっても、判別基準が雷雲生成及び盛衰メ
カニズムをとらえたものではなかったため、誤検出が多
かった。
However, in the conventional system, the thundercloud in summer develops much higher than the ordinary rain cloud, so that it is relatively easy to distinguish and the detection rate is high, but the thundercloud in winter especially on the Sea of Japan side has a high altitude. Since it was not too high, it was difficult to distinguish it from the surrounding clouds, and the detection rate was low. In addition, even in summer thundercloud discrimination, there were many false detections because the discrimination criterion did not capture the mechanism of thundercloud generation and ups and downs.

【0010】[0010]

【発明が解決しようとする課題】以上述べたように、従
来の雷雲観測システムでは、エコー強度とエコー高度の
情報だけを用いて雷雲を判別しているため、誤検出が多
く、特に冬季雷雲の判別精度が非常に低かった。
As described above, in the conventional thundercloud observation system, since the thundercloud is discriminated using only the information of the echo intensity and the echo altitude, there are many false detections, especially in the winter thundercloud. The discrimination accuracy was very low.

【0011】この発明は上記の課題を解決するためにな
されたもので、雷雲生成及び盛衰メカニズムに即し、季
節を問わずに雷雲を精度よく検出でき、発雷可能性の程
度をも判定することのできる雷雲観測システムを提供す
ることを目的とする。
The present invention has been made in order to solve the above problems, and is capable of accurately detecting a thundercloud regardless of the season and determining the degree of lightning strike in accordance with the mechanism of thundercloud generation and rise and fall. The purpose is to provide a thundercloud observation system capable of

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
にこの発明に係る第1の雷雲観測システムは、レーダ情
報として極座標系のエコー強度情報を入力し、単位メッ
シュそれぞれのエコー強度を水分量に換算して極座標系
の水分量情報に換算する水分量換算手段と、この手段で
得られた極座標系の水分量情報を直交座標系に変換する
座標系変換手段と、この手段で得られた直交座標系の水
分量情報について鉛直方向の積算処理を行う積算処理手
段と、この手段による積算水分量を雷雲判定基準値と比
較する積算水分量比較手段と、前記エコー強度情報から
エコー強度が基準レベル以上のエコー頂高度を求めるエ
コー頂高度算出手段と、高度と温度の関係を示す高層気
象情報を入力し、この情報から前記エコー頂高度をエコ
ー頂温度に換算するエコー頂温度換算手段と、この手段
で得られたエコー頂温度と氷結判定基準値とを比較する
エコー頂温度比較手段と、前記積算水分量比較手段及び
エコー頂温度比較手段の各比較結果に基づいて、雷雲で
あることを判定すると共に、発雷の可能性の大きさを判
定する判定手段とを具備し、前記判定手段は、前記積算
水分量比較手段で雷雲判定基準値以上の積算水分量が検
出されたとき、雷雲であると判定し、前記エコー頂温度
比較手段でエコー頂温度が氷結判定基準値以下であるこ
とが検出されたとき、発雷の可能性が高いと判定するよ
うにしたことを特徴とする。
To achieve the above object, a first thundercloud observation system according to the present invention inputs polar echo echo intensity information as radar information, and uses the echo intensity of each unit mesh as the moisture content. And a coordinate system conversion means for converting the water content information of the polar coordinate system obtained by this means into an orthogonal coordinate system, and a water content conversion means for converting it into a rectangular coordinate system. An integration processing means for performing integration processing in the vertical direction on the water content information in the Cartesian coordinate system, an integrated water content comparison means for comparing the integrated water content by this means with a thundercloud judgment reference value, and an echo intensity as a reference from the echo intensity information. Input the echo top height calculation means for obtaining the echo top height above the level and high-level meteorological information indicating the relationship between the altitude and temperature, and convert the echo top height to the echo top temperature from this information. Based on the comparison result of the echo top temperature conversion means, the echo top temperature comparison means for comparing the echo top temperature obtained by this means with the freezing determination reference value, the integrated moisture content comparison means and the echo top temperature comparison means. And a determination means for determining the possibility of lightning as well as determining that it is a thundercloud, and the determination means is the integrated moisture content comparison means for integrating the moisture content equal to or greater than the thundercloud determination reference value. When it is detected, it is determined that it is a thundercloud, and when it is detected that the echo top temperature is below the freezing determination reference value by the echo top temperature comparison means, it is determined that there is a high possibility of lightning. It is characterized by having done.

【0013】この発明に係る第2の雷雲観測システム
は、ドップラーレーダ情報を受け取って対流域とその高
度を検出する対流域検出手段と、この手段で検出された
対流域の高度情報に基づいて雷雲の盛衰を判定する雷雲
盛衰判定手段とを具備し、前記雷雲盛衰判定手段は、前
記対流域検出手段で検出された対流域の高度と雷雲判別
基準高度とを比較して、その比較結果に基づいて雷雲が
発達期にあるか衰退期にあるかを判定するようにしたこ
とを特徴とする。
A second thundercloud observation system according to the present invention includes a convection zone detecting means for receiving Doppler radar information to detect a convection zone and its altitude, and a thundercloud based on altitude information of the convection zone detected by this means. Thundercloud ups and downs determining means for determining ups and downs, the thundercloud ups and downs determining means compares the altitude of the convection zone detected by the convection area detecting means with a thundercloud discrimination reference altitude, and based on the comparison result. It is characterized in that it determines whether the thundercloud is in the developing period or the declining period.

【0014】この発明に係る第3の雷雲観測システム
は、ドップラーレーダ情報を受け取って上昇流と下降流
を検出する鉛直流検出手段と、この手段の検出結果に基
づいて雷雲の盛衰を判定する雷雲盛衰判定手段とを具備
し、前記雷雲盛衰判定手段は、前記鉛直流検出手段で上
昇流が検出されたとき雷雲は発達期にあると判定し、下
降流が検出されたとき雷雲は衰退期にあると判定するよ
うにしたことを特徴とする。
A third thundercloud observation system according to the present invention is a vertical direct current detecting means for receiving Doppler radar information to detect an upflow and a downflow, and a thundercloud for judging the ups and downs of the thundercloud based on the detection result of this means. A thundercloud ups and downs determination means, the thundercloud ups and downs determination means determines that the thundercloud is in a developmental period when an upflow is detected by the vertical direct current detection means, and a thundercloud during a declined period when a downflow is detected. It is characterized in that it is determined that there is.

【0015】この発明に係る第4の雷雲観測システム
は、ドップラーレーダ情報を受け取って上昇流と下降流
を検出する鉛直流検出手段と、前記ドップラーレーダ情
報を受け取って対流域とその高度を検出する対流域検出
手段と、前記鉛直流検出手段及び前記対流域検出手段の
検出結果に基づいて雷雲の盛衰を判定する雷雲盛衰判定
手段とを具備し、前記雷雲盛衰判定手段は、前記鉛直流
検出手段で上昇流が検出されたとき雷雲は発達期にある
と判定し、下降流が検出されたとき雷雲は衰退期にある
と判定し、この手段で鉛直流が検出されないときは、前
記対流域検出手段で検出された対流域の高度と雷雲判別
基準高度と比較して、その比較結果に基づいて雷雲が発
達期にあるか衰退期にあるかを判定するようにしたこと
を特徴とする。
A fourth thundercloud observation system according to the present invention receives a Doppler radar information to detect an upflow and a downflow, and a vertical direct current detecting means to receive the Doppler radar information to detect a convection zone and its altitude. A convection zone detecting means, and a thundercloud ups and downs determining means for determining ups and downs of a thundercloud based on the detection results of the vertical direct current detecting means and the convection zone detecting means, wherein the thundercloud ups and downs determining means is the vertical direct current detecting means. When an updraft is detected in, the thundercloud is judged to be in the developing period, when a downdraft is detected, it is judged that the thundercloud is in the declining period, and when vertical flow is not detected by this means, the convection area is detected. It is characterized in that the altitude of the convection area detected by the means is compared with the reference altitude of the thundercloud, and whether the thundercloud is in the developing period or the declining period is determined based on the comparison result.

【0016】[0016]

【作用】第1の雷雲観測システムでは、エコー強度情報
の単位メッシュそれぞれのエコー強度を水分量に換算
し、直交座標系に変換した後、鉛直方向の積算処理を行
い、雷雲判定基準値と比較して、雷雲判定基準値以上の
積算水分量が検出されたときは、「雷雲は普通の雨雲と
比較して水分量が多い。」という条件に基づいて雷雲で
あると判定する。一方、エコー強度情報のエコー強度が
基準レベル以上のエコー頂高度を求め、高層気象情報を
基にエコー頂温度に換算し、氷結判定基準値と比較し
て、エコー頂温度が氷結判定基準値以下であることが検
出されたときは、「発雷には氷の粒子が必要である。」
という条件に基づいて発雷の可能性が高いと判定する。
[Operation] In the first thundercloud observation system, the echo intensity of each unit mesh of echo intensity information is converted into the amount of water and converted into the Cartesian coordinate system, and then the vertical integration process is performed to compare with the thundercloud judgment reference value. Then, when the accumulated amount of water equal to or greater than the thundercloud determination reference value is detected, it is determined to be a thundercloud based on the condition that "the amount of water in a thundercloud is higher than that of an ordinary rain cloud." On the other hand, the echo apex height of the echo intensity of the echo intensity information is higher than the reference level, converted to the echo apex temperature based on the high-level meteorological information, and compared with the ice determination reference value, and the echo apex temperature is below the ice determination reference value. When it is detected that "the lightning requires ice particles."
It is determined that there is a high probability of a lightning strike based on the above condition.

【0017】第2の雷雲観測システムでは、ドップラー
レーダ情報から対流域とその高度を検出し、対流域検出
高度と雷雲判別基準高度との比較結果から、「雷雲の発
達期には地表付近の大気が収束し、高層で発散する。」
という条件を満たすときは雷雲は発達期にあると判定
し、「雷雲の衰退期には高層の大気が収束し、地表付近
の大気が発散する。」という条件を満たすときは雷雲は
衰退期にあると判定する。
In the second thundercloud observation system, the convective zone and its altitude are detected from the Doppler radar information, and from the result of comparison between the convective zone detected altitude and the thundercloud discrimination reference altitude, "at the time of thundercloud development Converge and diverge at higher levels. ”
When the condition is satisfied, it is determined that the thundercloud is in the developmental period, and when the condition that "the upper atmosphere converges and the atmosphere near the surface diverges during the period when the thundercloud declines," the thundercloud enters the period when it declines. Judge that there is.

【0018】第3の雷雲観測システムでは、ドップラー
レーダ情報から上昇流と下降流を検出し、上昇流が検出
されたときは「雷雲の発達期には強い上昇流が発生す
る。」という条件に基づいて雷雲は発達期にあると判定
し、下降流が検出されたときは「雷雲の発達期には強い
下降流が発生する。」という条件に基づいて雷雲は衰退
期にあると判定する。
In the third thundercloud observation system, the upflow and the downflow are detected from the Doppler radar information, and when the upflow is detected, "a strong upflow occurs during the development period of the thundercloud." The thundercloud is determined to be in the developing period based on the above, and when the downflow is detected, the thundercloud is determined to be in the declining period based on the condition "strong downflow occurs during the thundercloud developing period."

【0019】第4の雷雲観測システムでは、ドップラー
レーダ情報から上昇流、下降流を検出すると共に、対流
域とその高度を検出し、上昇流が検出されたときは「雷
雲の発達期には強い上昇流が発生する。」という条件に
基づいて雷雲は発達期にあると判定し、下降流が検出さ
れたときは「雷雲の発達期には強い下降流が発生す
る。」という条件に基づいて雷雲は衰退期にあると判定
し、鉛直流が検出されないときは、対流域の高度情報を
利用して、その高度と雷雲判別基準高度との比較結果か
ら、「雷雲の発達期には地表付近の大気が収束し、高層
で発散する。」という条件を満たすときは雷雲は発達期
にあると判定し、「雷雲の衰退期には高層の大気が収束
し、地表付近の大気が発散する。」という条件を満たす
ときは雷雲は衰退期にあると判定する。
In the fourth thundercloud observation system, the upflow and downflow are detected from the Doppler radar information, and the convection zone and its altitude are detected. It is determined that the thundercloud is in the developing period based on the condition that an updraft occurs, and when a downflow is detected, it is based on the condition that a strong downflow occurs during the thundercloud development period. If it is determined that the thundercloud is in the decline period, and if no vertical direct current is detected, the altitude information of the convection area is used to compare the altitude with the thundercloud discrimination reference altitude. When the condition of "the atmosphere converges and diverges in the upper layer." Is satisfied, it is determined that the thundercloud is in the developing period, and "the upper atmosphere converges and the atmosphere near the surface diverges when the thundercloud declines." When the condition is met, the thundercloud is in the decline period. Determined that that.

【0020】[0020]

【実施例】以下、図面を参照してこの発明に係る実施例
を詳細に説明する。図1は第1の実施例の雷雲観測シス
テムの処理機能を示すブロック図である。ハードウェア
構成は汎用コンピュータで実現できるので、ここではそ
の説明を省略する。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing the processing functions of the thundercloud observation system of the first embodiment. Since the hardware configuration can be realized by a general-purpose computer, its description is omitted here.

【0021】図1において、レーダ情報として気象レー
ダ(図示せず)から送られてくるエコー強度情報は、方
位、仰角、距離を要素とする極座標系で表されている。
このエコー強度情報は水分量換算部1に送られる。この
水分量換算部1は単位メッシュそれぞれのエコー強度を
水分量に換算するもので、ここで換算された水分量情報
はCAPPI(定高度PPI:Plan Position Indicato
r )変換部2に送られる。
In FIG. 1, echo intensity information sent from a weather radar (not shown) as radar information is represented by a polar coordinate system having azimuth, elevation and distance as elements.
This echo intensity information is sent to the water content conversion unit 1. The water content conversion unit 1 converts the echo intensity of each unit mesh into a water content. The converted water content information is CAPPI (constant altitude PPI: Plan Position Indicato).
r) sent to the converter 2.

【0022】このCAPPI変換部2は、極座標系の水
分量情報を方位、距離、高度を要素とする直交座標系に
変換するもので、その座標系変換情報はVIL(鉛直方
向積算水分量)算出部3に送られる。
The CAPPI conversion unit 2 converts the water content information in the polar coordinate system into an orthogonal coordinate system having azimuth, distance and altitude as elements, and the coordinate system conversion information is VIL (vertical direction integrated water content) calculation. Sent to department 3.

【0023】このVIL算出部3は直交座標系に変換さ
れた水分量情報について鉛直方向の積算処理を行うもの
で、その算出結果は積算水分量比較部4に送られる。こ
の積算水分量比較部4は鉛直方向に積算された水分量を
雷雲判定基準値と比較し、積算水分量が基準値以上とな
ることを検出するもので、その検出結果は雷雲検出判定
部5に送られる。
The VIL calculator 3 performs a vertical integration process on the water content information converted into the orthogonal coordinate system, and the calculation result is sent to the integrated water content comparison unit 4. The integrated water content comparison unit 4 compares the vertically integrated water content with a thundercloud determination reference value, and detects that the integrated water content is greater than or equal to the reference value. The detection result is the thundercloud detection determination unit 5 Sent to.

【0024】一方、上記エコー強度情報はエコー頂高度
算出部6に送られる。このエコー頂高度算出部6はエコ
ー強度情報からエコー強度が基準レベル以上となる範囲
の一番高い部分(エコー頂)の高度を求めるもので、こ
こで得られたエコー頂高度はエコー頂温度換算部7に送
られる。
On the other hand, the echo intensity information is sent to the echo apex height calculating section 6. The echo apex height calculation unit 6 obtains the height of the highest portion (echo apex) in the range where the echo intensity is equal to or higher than the reference level from the echo intensity information. Sent to department 7.

【0025】このエコー頂温度換算部7は高度と温度の
関係を示す高層気象情報(現在、気象庁より12時間お
きに提供されている)を入力し、この情報からエコー頂
高度をエコー頂温度に換算するもので、換算されたエコ
ー頂温度はエコー頂温度比較部8に送られる。
The echo top temperature conversion unit 7 inputs the high-level meteorological information (currently provided by the Meteorological Agency every 12 hours) indicating the relationship between the altitude and the temperature, and from this information, the echo top altitude is used as the echo top temperature. It is converted, and the converted echo peak temperature is sent to the echo peak temperature comparison unit 8.

【0026】このエコー頂温度比較部8はエコー頂温度
と氷結判定基準値とを比較し、エコー頂温度がその基準
値以下になることを検出するもので、この検出結果は上
記雷雲検出判定部5に送られる。
The echo top temperature comparison unit 8 compares the echo top temperature with a freezing determination reference value and detects that the echo top temperature becomes equal to or lower than the reference value. The detection result is the thundercloud detection determination unit. Sent to 5.

【0027】この雷雲検出判定部5は前記積算水分量比
較部4及びエコー頂温度比較部8の各比較結果に基づい
て、雷雲であることを判定すると共に、発雷の可能性の
大きさを判定するものである。
The thundercloud detection / judgment unit 5 judges that it is a thundercloud based on the comparison results of the integrated water content comparison unit 4 and the echo top temperature comparison unit 8, and determines the possibility of lightning. It is a judgment.

【0028】上記構成において、以下その処理内容につ
いて説明する。まず、水分量換算部1では、エコー強度
情報を入力すると、単位メッシュ毎にエコー強度を水分
量に換算する。この換算結果は極座標系で表されている
ので、CAPPI変換部2で直交座標系に変換してVI
L算出部3に送る。これによって鉛直方向積算処理が可
能となる。
In the above configuration, the processing contents will be described below. First, in the water content conversion unit 1, when the echo intensity information is input, the echo intensity is converted into the water content for each unit mesh. Since this conversion result is expressed in a polar coordinate system, the CAPPI conversion unit 2 converts it into a rectangular coordinate system and
It is sent to the L calculation unit 3. This allows vertical direction integration processing.

【0029】ここで、雷雲は普通の雨雲と比較して鉛直
方向に成長し、多量の水分が集中しているという特徴を
有する。そこで、VIL算出部3で単位メッシュ毎の鉛
直方向積算水分量を求め、積算水分量比較部4で各メッ
シュ域の積算水分量を雷雲判定基準値と比較する。雷雲
検出判定部5では、その比較結果から基準値より大とな
った水分量のメッシュ域の有無を判別することで、雷雲
の存在を検出する。
Here, the thundercloud has a feature that it grows vertically and a large amount of water is concentrated as compared with a normal rain cloud. Therefore, the VIL calculation unit 3 obtains the vertical direction integrated water content for each unit mesh, and the integrated water content comparison unit 4 compares the integrated water content in each mesh region with the thundercloud determination reference value. The thundercloud detection determination unit 5 detects the presence of a thundercloud by determining the presence or absence of a mesh area having a water content larger than the reference value from the comparison result.

【0030】一方、雷雲が発雷するためには氷の粒子が
発生して電荷を帯びることが条件となることが知られて
いる。そこで、エコー頂高度算出部6でエコー強度情報
からエコー強度が基準レベル以上となる範囲の一番高い
部分(エコー頂)の高度を求め、エコー頂温度換算部7
で高層気象情報を基にエコー頂温度に換算し、エコー頂
温度比較部8で氷結判定基準値と比較する。雷雲検出判
定部5では、エコー頂温度が基準値以下になっていると
きは、氷の粒子が形成されていると予想されるから、発
雷の可能性が大であると判定する。
On the other hand, it is known that in order for a thundercloud to strike, ice particles are generated and charged. Therefore, the echo apex altitude calculation unit 6 obtains the altitude of the highest portion (echo apex) in the range where the echo intensity is equal to or higher than the reference level from the echo intensity information, and the echo apex temperature conversion unit 7
Then, the echo top temperature is converted into the echo top temperature based on the high-level meteorological information, and the echo top temperature comparison unit 8 compares it with the freezing determination reference value. When the echo peak temperature is equal to or lower than the reference value, the thundercloud detection determination unit 5 determines that ice particles are formed, and thus determines that the possibility of lightning is high.

【0031】このように、上記構成による雷雲観測シス
テムは、雷雲生成及び盛衰メカニズムを考慮し、エコー
強度とエコー高度の情報のみならず、垂直方向積算水分
量を求めて判定材料としているので、雷雲を精度よく検
出できる。
As described above, the thundercloud observation system having the above-described configuration uses not only the information on the echo intensity and the echo altitude but also the vertical cumulative water content in consideration of the thundercloud generation and ups and downs mechanisms, so that the thundercloud is determined. Can be accurately detected.

【0032】また、エコー頂温度を求めて氷結の有無を
判別しているので、発雷可能性の程度をも判定すること
ができる。さらに、観測時の高層気象情報に基づいて高
度/温度換算を行っているので、季節を問わずに判定す
ることができ、特に冬季観測における検出精度を飛躍的
に向上させることができる。
Further, since the presence or absence of freezing is determined by obtaining the echo top temperature, it is possible to determine the degree of lightning possibility. Furthermore, since the altitude / temperature conversion is performed based on the high-rise weather information at the time of observation, it is possible to make a determination regardless of the season, and it is possible to dramatically improve the detection accuracy especially in the winter observation.

【0033】図2は第2の実施例の雷雲観測システムの
処理機能を示すブロック図である。ここでもハードウェ
ア構成は汎用コンピュータで実現できるので、その説明
を省略する。
FIG. 2 is a block diagram showing the processing functions of the thundercloud observation system of the second embodiment. Since the hardware configuration can be realized by a general-purpose computer here as well, description thereof will be omitted.

【0034】図2において、レーダ情報としてドップラ
ーレーダ(図示せず)から送られてくるドップラー情報
は対流域検出部11及び鉛直流検出部12に送られる。
対流域検出部11はドップラー情報から収束域、発散域
を検出するものである。また、鉛直流検出部12はドッ
プラー情報から上昇流、下降流を検出するものである。
各検出部11,12の検出結果は雷雲盛衰判定部13に
送られる。
In FIG. 2, Doppler information sent from a Doppler radar (not shown) as radar information is sent to the convection zone detection unit 11 and the vertical direct current detection unit 12.
The convection area detection unit 11 detects a convergence area and a divergence area from the Doppler information. Further, the vertical direct current detector 12 detects an upflow and a downflow from the Doppler information.
The detection results of the detection units 11 and 12 are sent to the thundercloud ups and downs determination unit 13.

【0035】この雷雲盛衰判定部13は、検出部11,
13からの検出結果を基に、雷雲の存在を検出すると共
に、その雷雲が発達期にあるのか衰退域にあるのかを判
定するものである。
The thundercloud ups and downs determination unit 13 includes a detection unit 11,
Based on the detection result from 13, the existence of a thundercloud is detected, and it is determined whether the thundercloud is in the developing period or in the decline area.

【0036】上記構成において、以下その処理内容につ
いて説明する。前述したように、雷雲は普通の雨雲と比
較して強い対流が生じており、この雷雲をドップラーレ
ーダでとらえると、対流がドップラー現象となって現れ
る。そこで、対流域検出部11でドップラー情報から収
束域、発散域を検出する。この場合、収束域より発散域
の方が検出しやすいので、発散域のみを検出するように
してもよい。また、鉛直流検出部12でドップラー情報
から上昇流、下降流を検出する。
In the above configuration, the processing contents will be described below. As described above, a thundercloud has a stronger convection than an ordinary rain cloud, and when this thundercloud is captured by a Doppler radar, the convection appears as a Doppler phenomenon. Therefore, the convection area detection unit 11 detects the convergence area and the divergence area from the Doppler information. In this case, since the divergence region is easier to detect than the convergence region, only the divergence region may be detected. Further, the vertical direct current detector 12 detects an upflow and a downflow from the Doppler information.

【0037】ここで、雷雲の発達期には、ある高度より
下方で収束、上方で発散の現象が生じている。また、衰
退期にはある高度より上方で収束、下方で発散の現象が
生じている。雷雲盛衰判定部13では、対流域検出部1
1で収束域、発散域が検出されたとき、雷雲が存在して
いると判定し、それぞれ雷雲判別基準高度と比較して収
束域が下、発散域が上にあるときは検出した雷雲が発達
期にあると判定し、収束域が上、発散域が下にあるとき
は、検出した雷雲が衰退期にあると判定する。
Here, during the development period of the thundercloud, the phenomenon of convergence occurs below a certain altitude and divergence above. Also, during the decline period, there is a phenomenon of convergence above a certain altitude and divergence below. In the thundercloud ups and downs determination unit 13, the convection area detection unit 1
When the convergence area and divergence area are detected in 1, it is determined that a thundercloud exists, and when the convergence area is lower and the divergence area is higher than the thundercloud discrimination reference altitude, the detected thundercloud develops. If the convergence range is above and the divergence range is below, it is determined that the detected thundercloud is in the decline period.

【0038】尚、発散域のみ検出された場合にも、簡易
な方法ではあるが、基準高度と比較することで、雷雲の
発達期、衰退期を判別可能である。一方、雷雲の発達期
には上昇流、衰退期には下降流が生じている。そこで、
雷雲盛衰判定部13では、鉛直流検出部12で上昇流が
検出された場合には、検出した雷雲が発達期にあると判
定し、下降流が検出された場合には、検出した雷雲が衰
退期にあると判定する。さらに、衰退期にあると判定し
た場合には、核が地表に近付いていると考えられるの
で、落雷の可能性が大であると評価する。
Even if only the divergent area is detected, it is a simple method, but it is possible to determine the developmental period and the declining period of the thundercloud by comparing with the reference altitude. On the other hand, updrafts occur during the thundercloud development period and downdrafts during the decline period. Therefore,
The thundercloud ups and downs determination unit 13 determines that the detected thundercloud is in the developmental period when the vertical direct current detection unit 12 detects the upflow, and the downward detection of the detected thundercloud when the downflow is detected. It is judged that it is in a period. Furthermore, if it is determined that the nuclear power plant is in the decline period, it is considered that the nucleus is close to the surface of the earth, so it is evaluated that the possibility of a lightning strike is high.

【0039】このように、上記構成による雷雲観測シス
テムは、雷雲盛衰時特有の対流現象をドップラー情報か
らとらえ、収束/発散と上昇/下降の検出判別結果から
2重に発達期、衰退期を判別しているので、雷雲の検出
精度を向上させることができる。
As described above, the thundercloud observation system having the above-mentioned configuration captures the convection phenomenon peculiar to thundercloud rise and fall from the Doppler information, and double-decides the developmental period and the declined period from the detection determination result of convergence / divergence and ascent / descent. Therefore, the detection accuracy of the thundercloud can be improved.

【0040】また、衰退期が判別できるので、発雷のみ
ならず落雷発生を精度よく予測でき、警報発生等に極め
て有効な情報を提供することができる。尚、上記第2の
実施例では、対流域検出と鉛直流検出の組み合わせで構
成したが、比較的に検出しやすい対流域のみで検出・判
定するようにしても、簡易ではあるが有効である。ま
た、上記第1、第2の実施例はそれぞれ独立している
が、両者の判定結果を合わせることで、さらに精度を向
上させることができることはいうまでもない。その他、
この発明の要旨を変更することなく種々変形しても同様
に実施可能である。
Further, since the period of decline can be discriminated, it is possible to accurately predict not only lightning but also lightning strike occurrence, and it is possible to provide extremely effective information for alarm generation and the like. In the second embodiment, the convection zone detection and the vertical direct current detection are combined, but it is simple but effective even if the detection / determination is performed only in the relatively easy convection zone. . Further, although the first and second embodiments are independent of each other, it goes without saying that the accuracy can be further improved by combining the determination results of both. Other,
The present invention can be similarly implemented even if various modifications are made without changing the gist of the present invention.

【0041】[0041]

【発明の効果】以上のようにこの発明によれば、雷雲生
成及び盛衰メカニズムに即し、季節を問わずに雷雲を精
度よく検出でき、発雷可能性の程度をも判定することの
できる雷雲観測システムを提供することができる。
As described above, according to the present invention, it is possible to accurately detect a thundercloud regardless of the season and to judge the degree of lightning possibility according to the mechanism of generation and rise and fall of the thundercloud. An observation system can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る雷雲観測システムの第1の実施
例の機能構成を示すブロック図である。
FIG. 1 is a block diagram showing a functional configuration of a first embodiment of a thundercloud observation system according to the present invention.

【図2】この発明に係る雷雲観測システムの第2の実施
例の機能構成を示すブロック図である。
FIG. 2 is a block diagram showing a functional configuration of a second embodiment of a thundercloud observation system according to the present invention.

【図3】雷雲の成長過程を説明するための概念図であ
る。
FIG. 3 is a conceptual diagram for explaining a thundercloud growth process.

【符号の説明】[Explanation of symbols]

1…水分量換算部、2…CAPPI変換部、3…VIL
算出部、4…積算水分量比較部、5…雷雲検出判定部、
6…エコー頂高度算出部、7…エコー頂温度換算部、8
…エコー頂温度比較部、11…対流域検出部、12…鉛
直流検出部、13…雷雲盛衰判定部。
1 ... Water content conversion unit, 2 ... CAPPI conversion unit, 3 ... VIL
Calculation unit, 4 ... Integrated moisture amount comparison unit, 5 ... Thundercloud detection determination unit,
6 ... Echo top height calculation unit, 7 ... Echo top temperature conversion unit, 8
... Echo top temperature comparison unit, 11 ... Convection region detection unit, 12 ... Vertical DC detection unit, 13 ... Thundercloud ups and downs determination unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 秀樹 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝小向工場内 (72)発明者 佐藤 祐子 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝小向工場内 (72)発明者 武藤 隆一 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝小向工場内 (72)発明者 大場 洋一 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝小向工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideki Hashimoto, Inventor 1 Komukai Toshiba Town, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Komu Factory, Toshiba Corporation (72) Yuko Sato Komukai Toshiba, Yuko-ku, Kawasaki City, Kanagawa Prefecture Town No. 1 Incorporation company Toshiba Komukai factory (72) Inventor Ryuichi Muto No. 1 Komukai Toshiba town, Kouki-ku, Kawasaki-shi, Kanagawa Prefecture Incorporation company Toshiba Komukai factory (72) Inventor Yoichi Oba Kawasaki, Kanagawa prefecture Komukai-Toshiba-cho 1-ku, Toshiba Corporation Komukai factory

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】レーダ情報として極座標系のエコー強度情
報を入力し、単位メッシュそれぞれのエコー強度を水分
量に換算して極座標系の水分量情報に換算する水分量換
算手段と、 この手段で得られた極座標系の水分量情報を直交座標系
に変換する座標系変換手段と、 この手段で得られた直交座標系の水分量情報について鉛
直方向の積算処理を行う積算処理手段と、 この手段による積算水分量を雷雲判定基準値と比較する
積算水分量比較手段と、 前記エコー強度情報からエコー強度が基準レベル以上の
エコー頂高度を求めるエコー頂高度算出手段と、 高度と温度の関係を示す高層気象情報を入力し、この情
報から前記エコー頂高度をエコー頂温度に換算するエコ
ー頂温度換算手段と、 この手段で得られたエコー頂温度と氷結判定基準値とを
比較するエコー頂温度比較手段と、 前記積算水分量比較手段及びエコー頂温度比較手段の各
比較結果に基づいて、雷雲であることを判定すると共
に、発雷の可能性の大きさを判定する判定手段とを具備
する雷雲観測システム。
1. A moisture content conversion means for inputting echo intensity information of a polar coordinate system as radar information, converting the echo intensity of each unit mesh into a moisture content and converting it to moisture content information of the polar coordinate system, and the means for obtaining the moisture content. The coordinate system conversion means for converting the obtained water content information in the polar coordinate system into the orthogonal coordinate system, the integration processing means for performing the integration processing in the vertical direction with respect to the water content information in the orthogonal coordinate system obtained by this means, and this means An integrated water content comparing means for comparing the integrated water content with a thundercloud judgment reference value, an echo apex altitude calculation means for obtaining an echo apex height at which the echo intensity is equal to or higher than a reference level from the echo intensity information, and a high layer showing a relationship between the altitude and temperature Echo top temperature conversion means for inputting meteorological information and converting the echo top altitude to echo top temperature from this information, and the echo top temperature and freezing judgment reference value obtained by this means. Based on the comparison results of the echo top temperature comparison means to be compared, and the integrated water content comparison means and the echo top temperature comparison means, it is determined that it is a thundercloud and the magnitude of the possibility of lightning is determined. And a thundercloud observation system.
【請求項2】前記判定手段は、 前記積算水分量比較手段で雷雲判定基準値以上の積算水
分量が検出されたとき、雷雲であると判定し、前記エコ
ー頂温度比較手段でエコー頂温度が氷結判定基準値以下
であることが検出されたとき、発雷の可能性が高いと判
定するようにしたことを特徴とする請求項1記載の雷雲
観測システム。
2. The determining means, when the integrated water content comparison means detects an integrated water content equal to or greater than a thundercloud determination reference value, determines that the accumulated water content is a thundercloud, and the echo top temperature comparison means determines that the echo top temperature is The thundercloud observation system according to claim 1, wherein it is determined that the possibility of lightning is high when it is detected that the value is equal to or less than the freezing determination reference value.
【請求項3】ドップラーレーダ情報を受け取って対流域
とその高度を検出する対流域検出手段と、 この手段で検出された対流域の高度情報に基づいて雷雲
の盛衰を判定する雷雲盛衰判定手段とを具備する雷雲観
測システム。
3. A convection zone detecting means for receiving the Doppler radar information to detect the convection zone and its altitude, and a thundercloud ups and downs determination means for judging the ups and downs of the thundercloud based on the altitude information of the convection zone detected by this means. Thundercloud observation system equipped with.
【請求項4】前記雷雲盛衰判定手段は、 前記対流域検出手段で検出された対流域の高度と雷雲判
別基準高度とを比較し、その比較結果に基づいて雷雲が
発達期にあるか衰退期にあるかを判定するようにしたこ
とを特徴とする請求項3記載の雷雲観測システム。
4. The thundercloud ups and downs determination means compares the altitude of the convection area detected by the convection area detection means with a thundercloud discrimination reference altitude, and based on the comparison result, whether the thundercloud is in the developmental period or the decline period. The thundercloud observation system according to claim 3, wherein it is determined whether or not
【請求項5】ドップラーレーダ情報を受け取って上昇流
と下降流を検出する鉛直流検出手段と、 この手段の検出結果に基づいて雷雲の盛衰を判定する雷
雲盛衰判定手段とを具備する雷雲観測システム。
5. A thundercloud observation system comprising a vertical direct current detecting means for receiving Doppler radar information to detect an upflow and a downflow, and thundercloud ups and downs determining means for determining ups and downs of a thundercloud based on the detection result of this means. .
【請求項6】前記雷雲盛衰判定手段は、 前記鉛直流検出手段で上昇流が検出されたとき雷雲は発
達期にあると判定し、下降流が検出されたとき雷雲は衰
退期にあると判定するようにしたことを特徴とする請求
項5記載の雷雲観測システム。
6. The thundercloud ups and downs determination means determines that the thundercloud is in a developmental period when an upflow is detected by the vertical direct current detection means, and determines that the thundercloud is in a declined period when a downflow is detected. The thundercloud observation system according to claim 5, wherein
【請求項7】ドップラーレーダ情報を受け取って上昇流
と下降流を検出する鉛直流検出手段と、 前記ドップラーレーダ情報を受け取って対流域とその高
度を検出する対流域検出手段と、 前記鉛直流検出手段及び前記対流域検出手段の検出結果
に基づいて雷雲の盛衰を判定する雷雲盛衰判定手段とを
具備する雷雲観測システム。
7. A vertical direct current detecting means for receiving Doppler radar information to detect an upflow and a downflow; a convection area detecting means for receiving the Doppler radar information to detect a convection zone and its altitude; Means and a thundercloud ups and downs determination means for determining ups and downs of a thundercloud based on the detection result of the convection area detection means.
【請求項8】前記雷雲盛衰判定手段は、前記鉛直流検出
手段で上昇流が検出されたとき雷雲は発達期にあると判
定し、下降流が検出されたとき雷雲は衰退期にあると判
定し、この手段で鉛直流が検出されないときは、前記対
流域検出手段で検出された対流域の高度と雷雲判別基準
高度とを比較して、その比較結果に基づいて雷雲が発達
期にあるか衰退期にあるかを判定するようにしたことを
特徴とする請求項7記載の雷雲観測システム。
8. The thundercloud ups and downs determination means determines that the thundercloud is in a developmental period when an upflow is detected by the vertical direct current detection means, and determines that the thundercloud is in a declined period when a downflow is detected. However, when vertical flow is not detected by this means, the altitude of the convection area detected by the convection area detection means is compared with the thundercloud discrimination reference altitude, and whether the thundercloud is in the developing stage based on the comparison result. The thundercloud observation system according to claim 7, wherein it is determined whether or not it is in a decline period.
JP5254220A 1993-10-12 1993-10-12 Thundercloud observation system Pending JPH07110379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5254220A JPH07110379A (en) 1993-10-12 1993-10-12 Thundercloud observation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5254220A JPH07110379A (en) 1993-10-12 1993-10-12 Thundercloud observation system

Publications (1)

Publication Number Publication Date
JPH07110379A true JPH07110379A (en) 1995-04-25

Family

ID=17261937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5254220A Pending JPH07110379A (en) 1993-10-12 1993-10-12 Thundercloud observation system

Country Status (1)

Country Link
JP (1) JPH07110379A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839089A (en) * 1994-10-20 1998-11-17 Kabushiki Kaisha Toshiba Thunder cloud observation system
JPH11183641A (en) * 1997-12-24 1999-07-09 Mitsubishi Electric Corp System for observing thundercloud
JP2000131458A (en) * 1998-10-28 2000-05-12 Mitsubishi Electric Corp Observation system for thundercloud
JP2011033528A (en) * 2009-08-04 2011-02-17 Japan Radio Co Ltd Method and system of automatically tracking weather phenomenon
EP3190435A1 (en) * 2016-01-08 2017-07-12 Kabushiki Kaisha Toshiba Estimation apparatus, estimation method, and computer-readable storage medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839089A (en) * 1994-10-20 1998-11-17 Kabushiki Kaisha Toshiba Thunder cloud observation system
JPH11183641A (en) * 1997-12-24 1999-07-09 Mitsubishi Electric Corp System for observing thundercloud
JP2000131458A (en) * 1998-10-28 2000-05-12 Mitsubishi Electric Corp Observation system for thundercloud
JP2011033528A (en) * 2009-08-04 2011-02-17 Japan Radio Co Ltd Method and system of automatically tracking weather phenomenon
EP3190435A1 (en) * 2016-01-08 2017-07-12 Kabushiki Kaisha Toshiba Estimation apparatus, estimation method, and computer-readable storage medium
CN106959475A (en) * 2016-01-08 2017-07-18 株式会社东芝 Estimation unit, method of estimation and computer-readable recording medium
CN106959475B (en) * 2016-01-08 2019-06-14 株式会社东芝 Estimation device, estimation method and computer readable storage medium
US10379259B2 (en) 2016-01-08 2019-08-13 Kabushiki Kaisha Toshiba Estimation apparatus, estimation method, and computer-readable storage medium

Similar Documents

Publication Publication Date Title
Sherburn et al. Climatology and ingredients of significant severe convection in high-shear, low-CAPE environments
Jones et al. A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model
US7129885B1 (en) Adaptive weather radar detection system and method used in continental and maritime environments
US5175551A (en) Downdraft velocity estimator for a microburst precursor detection system
US7486219B1 (en) Adaptive weather radar detection system and method
Michimoto A study of radar echoes and their relation to lightning discharge of thunderclouds in the Hokuriku district Part I: Observation and analysis of thunderclouds in summer and winter
JPH08122433A (en) Thundercloud observation system
JPH07110379A (en) Thundercloud observation system
Sugier et al. Detection and removal of clutter and anaprop in radar data using a statistical scheme based on echo fluctuation
JPH07110378A (en) Thundercloud observation system
Hartung et al. An intercomparison of UW cloud-top cooling rates with WSR-88D radar data
Watson et al. The relationship of lightning to surface convergence at Kennedy Space Center: A preliminary study
CN115016043B (en) Precipitation Classification Method and System Based on Vertical Structure and Precipitation Rate
JPH07110385A (en) Thunder generation potential judgment device
EP3695253B1 (en) Method for warning about lightning activity in wind farms
CN109896018B (en) Unmanned aerial vehicle fixed-point haze removing system and method
JP3571268B2 (en) Fog observation radar device
Nielsen-Gammon et al. Detection and interpretation of left-moving severe thunderstorms using the WSR-88D: A case study
CN116821626B (en) Hydropower station meteorological data monitoring, inquiring and alarming system
Martín et al. The Sigüenza tornado: a case study based on convective ingredients concept and conceptual models
JPH08194069A (en) Transmission wire damage-by-snow predicting method and apparatus
Groenemeijer Sounding-derived parameters associated with severe convective storms in the Netherlands
CN114216440B (en) Safety posture monitoring and early warning method and system for towering structure
JP2003098270A (en) System for judge-determining occurrence of thunder
Fujiwara et al. Characteristics of hailfall and lightning in a splitting thunderstorm observed on May 4, 2019 in the Tokyo Metropolitan Area, Japan