JPH07110378A - Thundercloud observation system - Google Patents

Thundercloud observation system

Info

Publication number
JPH07110378A
JPH07110378A JP5254219A JP25421993A JPH07110378A JP H07110378 A JPH07110378 A JP H07110378A JP 5254219 A JP5254219 A JP 5254219A JP 25421993 A JP25421993 A JP 25421993A JP H07110378 A JPH07110378 A JP H07110378A
Authority
JP
Japan
Prior art keywords
thundercloud
cell
echo
information
history file
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5254219A
Other languages
Japanese (ja)
Inventor
Nobuo Kazama
信男 風間
Takao Suzuki
隆雄 鈴木
Yuko Sato
祐子 佐藤
Hideki Hashimoto
秀樹 橋本
Hiroshi Oikawa
博史 及川
Satoru Nakano
悟 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP5254219A priority Critical patent/JPH07110378A/en
Publication of JPH07110378A publication Critical patent/JPH07110378A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

PURPOSE:To accurately detect thundercloud according to the mechanism of generation and ups and downs of the thundercloud regardless of seasons and judge the probability of thunder occurrence by obtaining the height of the top of echo intensity range over a reference level from echo intensity information. CONSTITUTION:Every time echo information from a weather radar is renewed, processed results obtained at an echo top temperature calculation part 2, a vertical direction integral moisture amount value calculation part 4, a cell special part 5 and a tropospheric region detection part 6 are stored in a thundercloud history file production and storage part 7 as a thundercloud history file information indicating the history of the thundercloud. A correlation judgment part 8 calculates the cell gravity center position from the new file produced in the storage part 7, compares it with the cell gravity center position in the part file and judges the equalness of them. Also, a thundercloud ups and downs judgment part 9 judges whether the cloud appearing on a radar echo is thundercloud on the basis of the new file information including the additional information of the judgment part 8 from the storage part 7 and which process of developing, matured or falling the thundercloud belongs to.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、主に気象レーダから
のレーダエコー情報を基に雷雲を判別し、発雷の可能性
を求める雷雲観測システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates mainly to a thundercloud observation system for determining a thundercloud based on radar echo information from a weather radar and determining the possibility of a lightning strike.

【0002】[0002]

【従来の技術】周知のように、雷雲の成長は発達期、成
熟期、衰退期に大別される。図3にその成長過程の様子
を示す。尚、図3において、横軸は経過時間、縦軸は高
度、図中の数字はレーダエコーの強度[dBz]を示し
ている。エコー強度は水分量に比例する。
2. Description of the Related Art As is well known, the growth of thunderclouds is roughly classified into a developmental period, a maturation period and a decline period. FIG. 3 shows the state of the growth process. In FIG. 3, the horizontal axis represents elapsed time, the vertical axis represents altitude, and the numbers in the figure represent radar echo intensity [dBz]. Echo intensity is proportional to water content.

【0003】何らかの理由により、地表付近に暖かい大
気(暖気)が、上空に冷たい大気(寒気)が位置する状
態(不安定な状態)になると、地表付近の暖気は軽いの
で上昇しようとし、上空の寒気は重いので下降しようと
するため、対流が発生する。このとき、上昇する気流が
水分を含んでいれば、この水分が上空の低温域へ行くこ
とで凝結して水または氷晶となり、雲が発生する。
For some reason, if the warm atmosphere (warm air) near the surface of the earth becomes a state (unstable state) where the cold atmosphere (cold air) is located above the ground surface, the warm air near the surface of the earth is light and tries to rise. Since the cold air is heavy, it tries to descend and convection occurs. At this time, if the rising airflow contains water, the water moves to a low temperature region in the sky to be condensed into water or ice crystals, and a cloud is generated.

【0004】上昇流が特に強い場合には、水分量も多い
ため、雲は急速に発達する。このような場合には雷雲と
なる割合が高い。このように、特に上昇流が卓越する期
間は発達期として位置付けられている。
When the upflow is particularly strong, the water content is high and the cloud develops rapidly. In such cases, the rate of thunderclouds is high. In this way, the period in which the updraft is predominant is positioned as the developmental period.

【0005】時間と共に上方の水分は密となり、次第に
核が形成され、成熟期に入って上昇気流は弱くなる。核
の頂点が氷結高度に達すると、氷の粒子が形成される。
その粒子は衝突等によって電荷を帯びるようになり、そ
の電荷は次第に蓄積されていく。ある程度、電荷がたま
ると放電現象が生じて空雷が発生するようになる。
With the passage of time, the water above becomes dense and gradually forms nuclei, and the updraft becomes weaker in the maturation stage. When the top of the nucleus reaches the freezing height, ice particles are formed.
The particles become charged due to collisions, etc., and the charges are gradually accumulated. When electric charges are accumulated to some extent, a discharge phenomenon occurs and a lightning strike occurs.

【0006】さらに上昇気流が弱まると、衰退期に入っ
て下降流に転じ、上方では収束、下方では発散の現象が
生じる。すると、水分領域が下がって電荷を帯びた核が
地表に近付いていく。この結果、核と地表との間の電位
差のために落雷発生が濃厚となる。水分領域がほぼ地表
面に下がりきることで、雷雲は消滅する。
When the ascending air current further weakens, it enters a declining period and turns into a descending air flow, and the phenomenon of convergence occurs in the upper part and the phenomenon of divergence occurs in the lower part. Then, the water region drops and the charged nucleus approaches the surface of the earth. As a result, lightning strikes are concentrated due to the potential difference between the nucleus and the surface. The thundercloud disappears when the moisture region almost falls to the ground surface.

【0007】このような雷雲を検出し、発雷を予測する
従来の雷雲観測システムでは、「雷雲のレーダエコーは
普通の雨雲のエコーに比べて高度が高くかつ強い。」と
いう考え方に基づいて雷雲を判別している。すなわち、
エコー強度とエコー高度の情報だけを用いて、例えば次
表のような判別基準を作っている。尚、夏の雷雲と冬の
雷雲の判別方法の違いは、それぞれの判定値を変えるだ
けで、基本的な判別条件とその組み合わせは同じであ
る。
In a conventional thundercloud observation system that detects such a thundercloud and predicts lightning, a thundercloud is based on the idea that "the radar echo of a thundercloud is higher and stronger than the echo of an ordinary rain cloud." Is determined. That is,
For example, the discrimination standard as shown in the following table is created using only the information on the echo intensity and the echo altitude. The difference between the methods of distinguishing between thunderclouds in summer and thunderclouds in winter is that the judgment values are different and the basic judgment conditions and their combinations are the same.

【0008】[0008]

【表1】 [Table 1]

【0009】しかしながら、従来のシステムでは、夏の
雷雲は普通の雨雲よりかなり高くまで発達するので、比
較的判別が容易で検出率が高いが、特に日本海側に発生
する冬の雷雲は高度があまり高くならないため、周囲の
雲との区別がつきにくく、検出率が低かった。
However, in the conventional system, the thundercloud in summer develops much higher than the ordinary rain cloud, so that it is relatively easy to distinguish and the detection rate is high, but the thundercloud in winter especially on the Sea of Japan side has a high altitude. Since it was not too high, it was difficult to distinguish it from the surrounding clouds, and the detection rate was low.

【0010】[0010]

【発明が解決しようとする課題】以上述べたように、従
来の雷雲観測システムでは、エコー強度とエコー高度の
情報だけを用いて雷雲を判別しているため、検出率が低
く、特に冬季雷雲の判別精度が非常に低かった。
As described above, in the conventional thundercloud observation system, since the thundercloud is discriminated using only the information of the echo intensity and the echo altitude, the detection rate is low, especially in the winter thundercloud. The discrimination accuracy was very low.

【0011】この発明は上記の課題を解決するためにな
されたもので、雷雲生成及び盛衰メカニズムに即し、季
節を問わずに雷雲を精度よく検出でき、発雷可能性の程
度をも判定することのできる雷雲観測システムを提供す
ることを目的とする。
The present invention has been made in order to solve the above problems, and is capable of accurately detecting a thundercloud regardless of the season and determining the degree of lightning strike in accordance with the mechanism of thundercloud generation and rise and fall. The purpose is to provide a thundercloud observation system capable of

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
にこの発明に係る雷雲観測システムは、気象レーダから
のエコー強度情報から基準レベルのエコー強度範囲の頂
点の高度を求めるエコー頂高度算出手段と、高度と温度
の関係を示す高層気象情報に基づいて前記エコー頂高度
をエコー頂温度に換算するエコー頂温度換算手段と、前
記エコー強度情報から単位メッシュそれぞれのエコー強
度を水分量に換算し、鉛直方向の積算処理を行う積算水
分量算出手段と、この手段による積算水分量を雷雲判定
基準値と比較し、積算水分量が基準値以上となる範囲を
雷雲の領域を示すセルとして特定するセル特定手段と、
ドップラーレーダからのドップラー情報から対流域の有
無及びその高度を検出する対流域検出手段と、前記気象
レーダからのエコー強度情報が更新される毎に前記エコ
ー頂温度換算手段、積算水分量算出手段、セル特定手段
及び対流域検出手段の各処理結果を更新時の付随情報と
共にまとめて雷雲履歴ファイルを作成し格納する雷雲履
歴ファイル作成格納手段と、前記エコー強度情報の更新
時に前記セル特定手段でセルが特定されたとき、前記エ
コー頂温度換算手段、積算水分量算出手段及び対流域検
出手段の各処理結果に基づいて当該セルによって表され
る雷雲が発達期、成熟期、衰退期のいずれかを判定し、
その判定結果を前記更新時の付随情報として前記雷雲履
歴ファイル作成格納手段に格納する雷雲盛衰判定手段
と、前記雷雲履歴ファイル作成格納手段の最新ファイル
についてそのファイル情報を基に発雷の可能性を判定す
る発雷判定手段とを具備して構成される。
In order to achieve the above object, the thundercloud observation system according to the present invention is an echo top height calculating means for obtaining the height of the apex of the echo intensity range of the reference level from the echo intensity information from the weather radar. , And an echo peak temperature conversion means for converting the echo peak height to an echo peak temperature based on high-level weather information indicating the relationship between altitude and temperature, and converting the echo intensity of each unit mesh from the echo intensity information into a water content. , A cumulative water content calculation means for performing vertical integration processing, and the cumulative water content by this means are compared with a thundercloud judgment reference value, and the range in which the cumulative water content exceeds the reference value is specified as a cell indicating the thundercloud region. Cell identification means,
A convection zone detecting means for detecting the presence or absence of a convection zone and its altitude from the Doppler radar from the Doppler radar, and the echo top temperature converting means, every time the echo intensity information from the weather radar is updated, an integrated water content calculating means, A thundercloud history file creation and storage unit that creates and stores a thundercloud history file by collectively storing the processing results of the cell identification unit and the convection area detection unit together with associated information at the time of updating, and a cell by the cell identification unit when updating the echo intensity information. Is specified, the thundercloud represented by the cell based on the processing results of the echo apex temperature conversion means, the integrated water content calculation means and the convection area detection means, one of the development period, the maturity period, and the decline period. Judge,
Thundercloud ups and downs determination means for storing the determination result as incidental information in the thundercloud history file creation and storage means and the latest file in the thundercloud history file creation and storage means to determine the possibility of lightning based on the file information. And a lightning determination means for determining.

【0013】[0013]

【作用】上記構成による雷雲観測システムでは、エコー
強度情報から基準レベルのエコー強度範囲の頂点の高度
を求め、高層気象情報に基づいてエコー頂高度をエコー
頂温度に換算し、エコー強度情報から単位メッシュそれ
ぞれのエコー強度を水分量に換算し、鉛直方向の積算処
理を行い、この処理結果を雷雲判定基準値と比較するこ
とで雷雲の領域を示すセルとして特定し、ドップラー情
報から対流域の有無及びその高度を検出し、エコー強度
情報が更新される毎に得られるエコー頂温度、積算水分
量、セル特定結果及び対流域検出結果を、相関判定結
果、盛衰判定結果の更新時の付随情報と共にまとめて雷
雲履歴ファイルを作成して格納しておき、最新ファイル
についてそのファイル情報を基に発雷の可能性を判定す
る。
In the thundercloud observation system having the above-mentioned configuration, the altitude of the apex of the echo intensity range of the reference level is obtained from the echo intensity information, the echo apex altitude is converted to the echo apex temperature based on the high-level meteorological information, and the unit is calculated from the echo intensity information. The echo intensity of each mesh is converted to the amount of water, the vertical direction integration process is performed, and the result of this process is compared with the thundercloud judgment reference value to identify the cell that indicates the thundercloud region, and whether there is a convection region from the Doppler information. And its altitude, echo echo temperature obtained each time the echo intensity information is updated, integrated water content, cell identification result and convection area detection result, along with the accompanying information at the time of updating the correlation determination result, ups and downs determination result. A thundercloud history file is created and stored collectively, and the possibility of lightning is determined for the latest file based on the file information.

【0014】[0014]

【実施例】以下、図面を参照してこの発明に係る実施例
を詳細に説明する。図1は第1の実施例の雷雲観測シス
テムの処理機能を示すブロック図である。ハードウェア
構成は汎用コンピュータで実現できるので、ここではそ
の説明を省略する。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a block diagram showing the processing functions of the thundercloud observation system of the first embodiment. Since the hardware configuration can be realized by a general-purpose computer, its description is omitted here.

【0015】図1において、エコー頂高度算出部1は気
象レーダ(図示せず)からのエコー強度情報から基準レ
ベル(例えば30dBz)のエコー強度範囲の頂点の高
度を求める。ここで求められたエコー頂高度情報はエコ
ー頂温度換算部2に送られる。
In FIG. 1, the echo apex height calculating unit 1 obtains the height of the apex of the echo intensity range of a reference level (for example, 30 dBz) from echo intensity information from a weather radar (not shown). The echo peak height information obtained here is sent to the echo peak temperature conversion unit 2.

【0016】このエコー頂温度換算部2は高度/温度デ
ータテーブル3を参照してエコー頂高度での温度を求め
る。高度/温度データテーブル3のデータは、例えば気
象庁から発表される高層気象情報を基に作成される。
The echo top temperature conversion unit 2 refers to the altitude / temperature data table 3 to obtain the temperature at the echo top altitude. The data of the altitude / temperature data table 3 is created based on, for example, high-level weather information announced by the Meteorological Agency.

【0017】一方、VIL(鉛直方向積算水分量)強度
算出部4は、エコー強度情報から単位メッシュそれぞれ
のエコー強度を水分量に換算し、鉛直方向の積算処理を
行うことで、メッシュ毎のVIL強度を求める。ここで
得られたVIL強度情報はセル特定部5に送られる。
On the other hand, the VIL (vertical direction integrated water content) intensity calculation unit 4 converts the echo intensity of each unit mesh from the echo intensity information into the amount of water, and performs the vertical direction integration process to obtain the VIL for each mesh. Find strength. The VIL strength information obtained here is sent to the cell identification unit 5.

【0018】このセル特定部5は、各メッシュでのVI
L強度を雷雲判定基準値と比較し、積算水分量が基準値
以上となる範囲を雷雲の領域を示すセルとして特定す
る。また、対流域検出部6は、ドップラーレーダ(図示
せず)からのドップラー情報から対流域の有無及びその
高度を検出する。
This cell identification unit 5 is used for VI in each mesh.
The L intensity is compared with a thundercloud determination reference value, and a range in which the integrated water content is equal to or greater than the reference value is specified as a cell indicating a thundercloud region. Further, the convection zone detection unit 6 detects the presence or absence of the convection zone and its altitude from the Doppler information from a Doppler radar (not shown).

【0019】上記気象レーダからのエコー強度情報が更
新される毎に、上記のエコー頂温度換算部2、VIL強
度算出部4、セル特定部5及び対流域検出部6でそれぞ
れ得られる処理結果は、雷雲の履歴を示す雷雲履歴ファ
イル情報として雷雲履歴ファイル作成格納部7に格納さ
れる。このとき、雷雲履歴ファイル情報には、後述の相
関判定部8及び雷雲盛衰判定部9による判定情報も付加
される(以下、付随情報と称する)。
Every time the echo intensity information from the weather radar is updated, the processing results obtained by the echo apex temperature conversion unit 2, the VIL intensity calculation unit 4, the cell identification unit 5 and the convection region detection unit 6 are obtained. Is stored in the thundercloud history file creation storage unit 7 as thundercloud history file information indicating the history of thunderclouds. At this time, the determination information by the correlation determination unit 8 and the thundercloud ups and downs determination unit 9 described later is also added to the thundercloud history file information (hereinafter referred to as accompanying information).

【0020】上記相関判定部8は、雷雲履歴ファイル格
納部7で作成された新規ファイルから最新のセルにおけ
るVIL強度を読取り、セル重心位置を計算し、過去の
ファイルのセル重心位置と比較して、その変化の度合い
から両者の同一性を判定するもので、その判定結果はセ
ル重心位置の情報と共に付随情報として新規ファイルに
盛り込まれる。
The correlation determining section 8 reads the VIL intensity in the latest cell from the new file created in the thundercloud history file storage section 7, calculates the cell center of gravity position, and compares it with the cell center of gravity position of the past file. The degree of change is used to determine the identity of the two, and the determination result is included in the new file as accompanying information together with the information on the cell centroid position.

【0021】また、上記雷雲盛衰判定部9は、雷雲履歴
ファイル作成格納部7から上記相関判定部8の付随情報
を含む新規ファイル情報に基づいて、レーダエコーに写
る雲が雷雲であることを判定すると共に、その雷雲が発
達期、成熟期、衰退期のいずれの時期にあるかを判定す
るもので、その判定結果は付随情報として新規ファイル
に盛り込まれる。
Further, the thundercloud ups and downs determination unit 9 determines that the cloud reflected in the radar echo is a thundercloud based on the new file information including the accompanying information of the correlation determination unit 8 from the thundercloud history file creation storage unit 7. At the same time, it is determined whether the thundercloud is in a developmental period, a maturity period, or a decline period, and the determination result is included in a new file as accompanying information.

【0022】このようにして雷雲履歴ファイル作成格納
部7で作成された新規ファイル情報は発雷判定部10に
送られる。この発雷判定部10は入力したファイル情報
を基に発雷の可能性の程度を具体的に判定し、警報等の
指標となる情報を提供するものである。
The new file information created in the thundercloud history file creation storage unit 7 in this manner is sent to the lightning determination unit 10. The lightning strike determination unit 10 specifically determines the degree of possibility of lightning strike based on the input file information, and provides information serving as an index such as an alarm.

【0023】上記構成において、まず、判定条件に付い
て説明すると、上記セル特定部5でセルが特定できると
き、そのセル領域の雲は雷雲であると判定する。これ
は、「雷雲は普通の雨雲より水分量が多い。」という雷
雲の特徴に基づく。
In the above configuration, first, the determination conditions will be described. When the cell identification unit 5 can identify a cell, it is determined that the cloud in the cell area is a thundercloud. This is based on the characteristic of thunderclouds that "thunderclouds have more water content than ordinary rain clouds."

【0024】対流域が検出されている場合には、その高
度と雷雲判別基準高度との比較を行う。その結果から、
「雷雲の発達期には地表付近の大気が収束し、高層で発
散する。」という条件を満たすときは雷雲は発達期にあ
ると判定し、「雷雲の衰退期には高層の大気が収束し、
地表付近の大気が発散する。」という条件を満たすとき
は雷雲は衰退期にあると判定する。
When the convection area is detected, the altitude is compared with the thundercloud discrimination reference altitude. From the result,
When the condition that "the atmosphere near the surface of the thundercloud converges and diverges in the upper layer during the development period of the thundercloud" is satisfied, it is determined that the thundercloud is in the development period, and "the upper atmosphere converges during the period of thundercloud decline. ,
The atmosphere near the surface emits. If the condition of “” is satisfied, it is determined that the thundercloud is in the decline period.

【0025】また、エコー頂温度を氷結判定基準値と比
較して氷結判定基準値以下であることが検出されたとき
は、発雷の要因となる氷の粒子が生成されていると考え
られるので、雷雲は成熟期あるいは衰退期にあると判定
する。ここで、例えばエコー頂高度におけるVIL強度
を見れば、図3から明らかなように、エコー頂高度にお
ける核の形成によってVIL強度が極めて強くなってい
る成熟期を判別することができる。
Further, when the echo top temperature is compared with the freezing determination reference value and is detected to be equal to or lower than the freezing determination reference value, it is considered that the ice particles that are the cause of lightning are generated. , It is judged that the thundercloud is in maturity or decline. Here, for example, by looking at the VIL intensity at the echo apex height, it is possible to discriminate the maturity period when the VIL intensity becomes extremely strong due to the formation of nuclei at the echo apex height, as is clear from FIG.

【0026】さらに、相関判定によって新規セルが過去
のファイル情報中のセルと同一であると判定されている
場合には、新規セルと一つ前のセルのVIL強度の差
(VIL変化分)を算出し、基準値と比較することで発
達期と衰退期を判別する。これは「発達期には水分量の
増大が激しく、成熟期、衰退期には水分量の増大がほと
んどない。」という雷雲の特徴に基づく。
Further, when the new cell is judged to be the same as the cell in the past file information by the correlation judgment, the difference in VIL intensity between the new cell and the immediately preceding cell (VIL change amount) is calculated. It is calculated and compared with the reference value to distinguish the developmental period and the decline period. This is based on the characteristic of thunderclouds that "the amount of water increases drastically during the development period, and there is almost no increase in the water amount during the maturity period and the decline period."

【0027】尚、ここでの判定結果は対流域検出による
判定結果より精度が高いので、こちらを優先する。但
し、過去のセルと相関がとれている(同一であると判定
された場合)ことが条件となり、相関がとれていない場
合には対流域検出による判定結果に基づく。
Since the determination result here is more accurate than the determination result by the convection zone detection, this is prioritized. However, the condition is that there is a correlation with the past cell (when it is determined to be the same), and if there is no correlation, it is based on the determination result by convection zone detection.

【0028】また、過去の相関のとれているファイル情
報に成熟期の履歴がある場合には、少なくとも衰退期以
降であることが判別可能である。発雷判定には、基本的
に雷雲の盛衰判定結果に基づく。すなわち、成熟期及び
衰退期には電荷を帯びた核が形成されているため、極め
て発雷の可能性が高い。ここではこの状態を「強雷」と
称する。発達期にはまだ核が形成されていないが、水分
量が普通の雨雲と比較してかなり多いため、発雷に至る
可能性は十分ある。ここではこの状態を「中雷」と称す
る。さらに、雲の水分量が多い場合には今後発達期に進
む可能性が大きい。ここではこの状態を「弱雷」と称す
る。
If the file information correlated in the past has a history of maturity, it is possible to determine that the file is at least after the decline. The lightning strike determination is basically based on the result of the thundercloud ups and downs. That is, since a charged nucleus is formed in the maturation period and the decline period, there is a high possibility of lightning. This state is called "strong thunder" here. Although the nucleus has not been formed yet in the developmental period, the water content is considerably higher than that of a normal rain cloud, so there is a good possibility of lightning. Here, this state is called "middle thunder". Furthermore, if the water content of the cloud is large, there is a high possibility that it will progress to the developmental stage in the future. Here, this state is called "light thunder".

【0029】尚、いずれの判定条件にも当てはまらない
場合には、雷雲は発生していないものとして盛衰判定は
行わず、発雷判定は「なし」と判定する。以上の判定条
件を基に作成した雷雲盛衰判定及び発雷判定の具体的な
アルゴリズムを図2に例示する。
If none of the judgment conditions is satisfied, it is judged that no thundercloud has occurred, and the ups and downs judgment is not performed, and the lightning judgment is "none". FIG. 2 illustrates a concrete algorithm of the thundercloud ups and downs determination and the lightning emission determination created based on the above determination conditions.

【0030】ステップ(1)において、「セル特定」、
「セル不特定」で判定分類する。セルが特定できたとき
はそのセルが雷雲である可能性が高い。特定できなけれ
ば、雷雲はないものとして、盛衰判定は行わず、発雷判
定は「なし」とする。
In step (1), "cell identification",
Classification is made based on "cell unspecified". When a cell can be identified, it is highly likely that the cell is a thundercloud. If it cannot be specified, it is assumed that there is no thundercloud, the ups and downs are not judged, and the lightning is judged to be “none”.

【0031】ステップ(2)において、「−20℃」を
氷結判定基準値としてエコー頂温度と比較し、「−20
℃以下」、「−20℃より高い」で判定分類する。ステ
ップ(3)において、セル中の各メッシュにおける最大
VIL強度を求め、VIL強度15mm/H を雷雲判定基
準値、30mm/H を核判定基準値として、「30mm/H
以上」、「15〜30mm/H 」、「15mm/H 未満」で
判定分類する。
In step (2), "-20.degree. C." is compared with the echo top temperature as a freezing judgment reference value, and "-20.degree.
Classification is made according to "below ℃" and "higher than -20 ℃". In step (3), the maximum VIL intensity for each mesh in the cell is calculated, and the VIL intensity of 15 mm / H is used as the thundercloud determination reference value and 30 mm / H is the nuclear determination reference value, and the value of “30 mm / H is determined.
Above, ”“ 15 to 30 mm / H 2 ”, and“ less than 15 mm / H 2 ”are used for classification.

【0032】ステップ(4)において、対流域情報(こ
こでは説明を簡単にするため発散域の有無とその高度の
情報とする)を参照し、雷雲判定高度を3kmとして、
「3km以上に発散域有り」、「3km未満に発散域有
り」、「不明」で判定分類する。相関がとれていない場
合には、図中点線で示すように、ここまでの分類で盛衰
判定、発雷判定を行う。
In step (4), referring to the convection area information (herein, for simplification of explanation, the presence or absence of a divergence area and its altitude information) is set, the thundercloud judgment altitude is set to 3 km, and
Classification is made based on "There is a divergence area over 3km", "There is a divergence area under 3km", and "Unknown". If there is no correlation, as shown by the dotted line in the figure, ups and downs determination and lightning determination are performed according to the classification so far.

【0033】相関がとれている場合には、ステップ
(5)において、VIL変化分の基準値を+5mm/H /
3分(一般に、観測レーダの1回の観測走査は3分とな
っている)とし、「+5mm/H /3分以上」、「+5mm
/H /3分未満」で分類する。ステップ(6)で「盛衰
履歴有り」、「盛衰履歴なし」で分類する。
If there is a correlation, in step (5), the reference value for the VIL change is +5 mm / H /
3 minutes (generally, one observation scan of the observation radar is 3 minutes), "+ 5mm / H / 3 minutes or more", "+ 5mm
/ H / less than 3 minutes ”. In step (6), classification is made as “with rise / fall history” and “without rise / fall history”.

【0034】以上の分類結果から、ステップ(7)の盛
衰判定において、「発達期」、「成熟期」、「衰退期」
「不定」を判定し、ステップ(8)の発雷判定におい
て、「強雷」、「中雷」、「弱雷」、「なし」を判定す
る。
From the above classification results, in the ups and downs judgment of step (7), "development period", "maturity period", "decline period"
"Undetermined" is determined, and in the lightning determination of step (8), "strong thunder", "medium thunder", "weak thunder", and "none" are determined.

【0035】このように、上記構成による雷雲観測シス
テムは、雷雲生成及び盛衰メカニズムを考慮し、エコー
強度とエコー高度の情報のみならず、鉛直方向積算水分
量を求めて判定材料としているので、雷雲を精度よく検
出できる。
As described above, the thundercloud observation system having the above-described configuration uses not only the information on the echo intensity and the echo altitude but also the vertical cumulative water content as a judgment material in consideration of the thundercloud generation and rise / fall mechanisms. Can be accurately detected.

【0036】また、エコー頂温度を求めて氷結の有無を
判別しているので、高精度な盛衰判定、発雷判定が可能
となる。特に、観測時の高層気象情報に基づいて高度/
温度換算を行っているので、季節を問わずに判定するこ
とができ、特に冬季観測における検出精度を飛躍的に向
上させることができる。
Moreover, since the presence or absence of icing is determined by obtaining the echo top temperature, it is possible to perform ups and downs determination and lightning determination with high accuracy. In particular, the altitude /
Since the temperature conversion is performed, the determination can be performed regardless of the season, and the detection accuracy in winter observation can be dramatically improved.

【0037】さらに、相関判定により過去の一連のファ
イル情報が利用可能となり、より高精度な判定が可能と
なる。一方、雷雲盛衰時特有の対流現象をドップラー情
報からとらえ、収束/発散の検出判別結果から発達期、
衰退期を判別しているので、相関がとれず、過去のファ
イル情報が利用できなくても雷雲盛衰判定、発雷判定が
可能となる。
Furthermore, a series of file information in the past can be used by the correlation judgment, and the judgment can be performed with higher accuracy. On the other hand, the convection phenomenon peculiar to thundercloud rise and fall is grasped from the Doppler information, and the development / discrimination period is shown from the convergence / divergence detection discrimination
Since the period of decline is determined, correlation cannot be obtained, and thundercloud ups and downs and lightning can be determined even if past file information cannot be used.

【0038】尚、落雷標定位置情報が得られる場合に
は、図1に示すように雷雲履歴ファイル作成格納部7に
付随情報として格納しておくと、当該システムの精度評
価に利用できる。その他、この発明は上記の実施例に限
定されず、その要旨を変更することなく種々変形しても
同様に実施可能である。
When the lightning strike location information is obtained, it can be used for accuracy evaluation of the system by storing it as incidental information in the thundercloud history file creation storage unit 7 as shown in FIG. Besides, the present invention is not limited to the above-described embodiments, and can be similarly implemented by various modifications without changing the gist thereof.

【0039】[0039]

【発明の効果】以上のようにこの発明によれば、雷雲生
成及び盛衰メカニズムに即し、季節を問わずに雷雲を精
度よく検出でき、発雷可能性の程度をも判定することの
できる雷雲観測システムを提供することができる。
As described above, according to the present invention, it is possible to accurately detect a thundercloud regardless of the season and to judge the degree of lightning possibility according to the mechanism of generation and rise and fall of the thundercloud. An observation system can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係る雷雲観測システムの一実施例の
機能構成を示すブロック図である。
FIG. 1 is a block diagram showing a functional configuration of an embodiment of a thundercloud observation system according to the present invention.

【図2】この発明に係る雷雲観測システムの雷雲盛衰判
定/発雷判定アルゴリズムを例示するブロック図であ
る。
FIG. 2 is a block diagram illustrating a thundercloud ups and downs determination / lightning determination algorithm of the thundercloud observation system according to the present invention.

【図3】雷雲の成長過程を説明するための概念図であ
る。
FIG. 3 is a conceptual diagram for explaining a thundercloud growth process.

【符号の説明】[Explanation of symbols]

1…エコー頂高度算出部、2…エコー頂温度換算部、3
…高度/温度データテーブル、4…VIL(鉛直方向積
算水分量)強度算出部、5…セル特定部、6…対流域検
出部、7…雷雲履歴ファイル作成格納部、8…相関判定
部、9…雷雲盛衰判定部、10…発雷判定部。
1 ... Echo top height calculation unit, 2 ... Echo top temperature conversion unit, 3
... Altitude / temperature data table, 4 ... VIL (vertical direction integrated water content) intensity calculation unit, 5 ... Cell identification unit, 6 ... Convection region detection unit, 7 ... Thundercloud history file creation storage unit, 8 ... Correlation determination unit, 9 ... thundercloud ups and downs determination unit, 10 ... thunderlight determination unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐藤 祐子 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝小向工場内 (72)発明者 橋本 秀樹 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝小向工場内 (72)発明者 及川 博史 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝小向工場内 (72)発明者 中野 悟 神奈川県川崎市幸区小向東芝町1番地 株 式会社東芝小向工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Yuko Sato Yuko Sato 1 Komukai Toshiba Town, Saiwai-ku, Kanagawa Prefecture Komu Factory, Toshiba Corporation (72) Hideki Hashimoto Komukai Toshiba, Kawasaki City, Kanagawa Prefecture Town No. 1 Incorporation company Toshiba Komukai Plant (72) Inventor Hiroshi Oikawa Komukai Toshiba Town No. 1, Komukai-ku, Kawasaki City, Kanagawa Prefecture Incorporation company Toshiba Komukai Plant (72) Inventor Satoshi Nakano Kawasaki City, Kanagawa Prefecture Komukai-Toshiba-cho, 1-ku, Toshiba Corporation Komukai factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】気象レーダからのエコー強度情報から基準
レベルのエコー強度範囲の頂点の高度を求めるエコー頂
高度算出手段と、 高度と温度の関係を示す高層気象情報に基づいて前記エ
コー頂高度をエコー頂温度に換算するエコー頂温度換算
手段と、 前記エコー強度情報から単位メッシュそれぞれのエコー
強度を水分量に換算し、鉛直方向の積算処理を行う積算
水分量算出手段と、 この手段による積算水分量を雷雲判定基準値と比較し、
積算水分量が基準値以上となる範囲を雷雲の領域を示す
セルとして特定するセル特定手段と、 ドップラーレーダからのドップラー情報から対流域の有
無及びその高度を検出する対流域検出手段と、 前記気象レーダからのエコー強度情報が更新される毎に
前記エコー頂温度換算手段、積算水分量算出手段、セル
特定手段及び対流域検出手段の各処理結果を更新時の付
随情報と共にまとめて雷雲履歴ファイルを作成し格納す
る雷雲履歴ファイル作成格納手段と、 前記エコー強度情報の更新時に前記セル特定手段でセル
が特定されたとき、前記エコー頂温度換算手段、積算水
分量算出手段及び対流域検出手段の各処理結果に基づい
て当該セルによって表される雷雲が発達期、成熟期、衰
退期のいずれかを判定し、その判定結果を前記更新時の
付随情報として前記雷雲履歴ファイル作成格納手段に格
納する雷雲盛衰判定手段と、 前記雷雲履歴ファイル作成格納手段の最新ファイルにつ
いてそのファイル情報を基に発雷の可能性を判定する発
雷判定手段とを具備する雷雲観測システム。
1. An echo apex height calculating means for obtaining an altitude of a vertex of an echo intensity range of a reference level from echo intensity information from a meteorological radar, and the echo apex height based on high level meteorological information showing a relation between altitude and temperature. Echo top temperature conversion means for converting to echo top temperature, integrated water content calculation means for converting the echo strength of each unit mesh into water content from the echo intensity information, and performing vertical integration processing, and integrated water content by this means Compare the amount with the thundercloud judgment reference value,
Cell specifying means for specifying a range in which the amount of accumulated water is a reference value or more as a cell indicating a thundercloud area, convection area detecting means for detecting the presence or absence of a convection area and its altitude from Doppler information from the Doppler radar, Every time the echo intensity information from the radar is updated, the processing results of the echo apex temperature conversion means, the integrated water content calculation means, the cell identification means and the convection area detection means are collected together with the accompanying information at the time of updating the thundercloud history file. Thundercloud history file creating and storing means for creating and storing, and when the cell is specified by the cell specifying means at the time of updating the echo intensity information, each of the echo top temperature converting means, the integrated water content calculating means and the convection area detecting means Based on the processing result, the thundercloud represented by the cell determines whether it is a developmental period, a maturity period, or a decline period, and the determination result is attached to the update time. As a report, a thundercloud ups and downs determination means to be stored in the thundercloud history file creation and storage means, and a thunderstorm determination means to determine the possibility of a lightning strike based on the file information of the latest file of the thundercloud history file creation and storage means Thundercloud observation system.
【請求項2】前記雷雲盛衰判定手段は、前記セル特定手
段で特定されるセルについて、前記対流域検出手段で検
出される対流域の高度と雷雲判別高度の比較結果に基づ
いて発達期か衰退期かを判定し、前記エコー頂温度が氷
結温度に達しているとき成熟期であると判定するように
したことを特徴とする請求項1記載の雷雲観測システ
ム。
2. The thundercloud ups and downs determination means is in a developmental stage or declines based on the result of comparison between the altitude of the convection zone detected by the convection zone detection means and the thundercloud discrimination height for the cell identified by the cell identification means. The thundercloud observation system according to claim 1, wherein it is determined that the echo top temperature is in a mature stage when the echo top temperature reaches a freezing temperature.
【請求項3】前記発雷判定手段は、前記雷雲盛衰判定手
段の判定結果に応じて発雷の可能性の程度を分類するよ
うにしたことを特徴とする請求項2記載の雷雲観測シス
テム。
3. The thundercloud observation system according to claim 2, wherein the lightning strike determination means classifies the degree of lightning possibility according to the determination result of the thundercloud ups and downs determination means.
【請求項4】さらに、前記セル特定手段で得られる最新
のセルと前記雷雲履歴ファイル作成格納手段に格納され
た過去のセルとの相関をとってその同一性を判定し、判
別結果を更新時の付随情報として前記雷雲履歴ファイル
作成格納手段に格納する相関処理手段を備え、 前記発雷判定手段は、前記相関処理手段で得られる最新
のセルが前記雷雲履歴ファイル作成格納手段に格納され
ている過去のセルと同一であると判定されるとき、過去
のファイル情報を参照して発雷の可能性を判定するよう
にしたことを特徴とする請求項1記載の雷雲観測システ
ム。
4. The correlation between the latest cell obtained by the cell specifying means and the past cell stored in the thundercloud history file creating / storing means is used to determine the sameness, and the determination result is updated. Correlation information storage means for storing in the thundercloud history file creation storage means as incidental information of the thundercloud history file creation storage means, and the latest cell obtained by the correlation processing means is stored in the thundercloud history file creation storage means. The thundercloud observation system according to claim 1, wherein when it is determined that the cell is the same as a past cell, the possibility of lightning is determined by referring to past file information.
【請求項5】前記雷雲盛衰判定手段は、前記相関処理手
段で最新のセルが過去のセルと同一であると判定された
とき、前記雷雲履歴ファイルを参照して過去に成熟期と
判定されているかを判別することで、前記対流域検出手
段の検出結果にかかわらず衰退期と判定するようにした
ことを特徴とする請求項4記載の雷雲観測システム。
5. The thundercloud ups and downs determination means, when the correlation processing means determines that the latest cell is the same as the past cell, refers to the thundercloud history file and determines that the maturity period is in the past. The thundercloud observation system according to claim 4, wherein it is determined whether or not there is a decline period regardless of the detection result of the convection area detection means by determining whether or not there is a presence.
【請求項6】前記雷雲盛衰判定手段は、前記相関処理手
段で最新のセルが過去のセルと同一であると判定された
とき、前記雷雲履歴ファイルを参照して最新のセルの垂
直積算水分量と1更新前のセルの垂直積分水分量との差
と基準レベルとの大小を比較することで、発達期と衰退
期と判定するようにしたことを特徴とする請求項4記載
の雷雲観測システム。
6. The thundercloud ups and downs determining means refers to the thundercloud history file when the correlation processing means determines that the latest cell is the same as the past cell, and the vertical cumulative moisture content of the latest cell. 5. The thundercloud observation system according to claim 4, wherein the development period and the decline period are determined by comparing the difference between the vertical integration moisture content of the cell before 1 update and the reference level. .
JP5254219A 1993-10-12 1993-10-12 Thundercloud observation system Pending JPH07110378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5254219A JPH07110378A (en) 1993-10-12 1993-10-12 Thundercloud observation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5254219A JPH07110378A (en) 1993-10-12 1993-10-12 Thundercloud observation system

Publications (1)

Publication Number Publication Date
JPH07110378A true JPH07110378A (en) 1995-04-25

Family

ID=17261924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5254219A Pending JPH07110378A (en) 1993-10-12 1993-10-12 Thundercloud observation system

Country Status (1)

Country Link
JP (1) JPH07110378A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839089A (en) * 1994-10-20 1998-11-17 Kabushiki Kaisha Toshiba Thunder cloud observation system
JPH11183641A (en) * 1997-12-24 1999-07-09 Mitsubishi Electric Corp System for observing thundercloud
JP2000075029A (en) * 1998-09-01 2000-03-14 Mitsubishi Electric Corp Weather radar device
JP2000131458A (en) * 1998-10-28 2000-05-12 Mitsubishi Electric Corp Observation system for thundercloud
JP2013221787A (en) * 2012-04-13 2013-10-28 Japan Radio Co Ltd Weather prediction support apparatus
JP2018044895A (en) * 2016-09-15 2018-03-22 株式会社東芝 Torrential rain prediction method, torrential rain prediction apparatus, system to which that torrential rain prediction apparatus is applied, and program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5839089A (en) * 1994-10-20 1998-11-17 Kabushiki Kaisha Toshiba Thunder cloud observation system
JPH11183641A (en) * 1997-12-24 1999-07-09 Mitsubishi Electric Corp System for observing thundercloud
JP2000075029A (en) * 1998-09-01 2000-03-14 Mitsubishi Electric Corp Weather radar device
JP2000131458A (en) * 1998-10-28 2000-05-12 Mitsubishi Electric Corp Observation system for thundercloud
JP2013221787A (en) * 2012-04-13 2013-10-28 Japan Radio Co Ltd Weather prediction support apparatus
JP2018044895A (en) * 2016-09-15 2018-03-22 株式会社東芝 Torrential rain prediction method, torrential rain prediction apparatus, system to which that torrential rain prediction apparatus is applied, and program

Similar Documents

Publication Publication Date Title
CN109738970B (en) Method, device and storage medium for realizing lightning early warning based on lightning data mining
CN106526708B (en) A kind of intelligent early-warning analysis method of the meteorological strong convective weather based on machine learning
Jones et al. A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model
US7515087B1 (en) Weather radar system and method using data from a lightning sensor
US5839089A (en) Thunder cloud observation system
US6894638B2 (en) Radar signal processing unit and radar signal processing method for abnormal signal extraction
Tunved et al. An investigation of processes controlling the evolution of the boundary layer aerosol size distribution properties at the Swedish background station Aspvreten
EP3951439B1 (en) Advection fog forecasting system and forecasting method
Brémaud et al. Forecasting heavy rainfall from rain cell motion using radar data
CN112651463A (en) Construction method of double-forecast model of hail weather in plateau area
CN113177678A (en) Meteorological risk early warning method and device for different types of foreign body intrusion
CN111950589A (en) Point cloud region growing optimization segmentation method combined with K-means clustering
JPH07110378A (en) Thundercloud observation system
CN117093953B (en) Multi-meteorological-element-fused quick correction prediction method and system for aircraft icing
Voormansik et al. Thunderstorm hail and lightning detection parameters based on dual‐polarization D oppler weather radar data
CN110941032B (en) Typhoon forecasting method, device, equipment and computer-readable storage medium
Watson et al. The relationship of lightning to surface convergence at Kennedy Space Center: A preliminary study
JPH07110379A (en) Thundercloud observation system
CN112347872A (en) Method and system for identifying thunderstorm body and storm body based on ground observation
Matyas A spatial analysis of radar reflectivity regions within Hurricane Charley (2004)
JP4067999B2 (en) Lightning observation system
JPH07110385A (en) Thunder generation potential judgment device
CN109671248A (en) Mountain flood method for early warning based on object of taking precautions against natural calamities
CN115016043A (en) Precipitation classification method and system based on vertical structure and precipitation rate
KR101636651B1 (en) Apparatus and method for estimation of hybrid surface rainfall based on radar