JPH07109596A - Production of soft magnetic multilayered film - Google Patents

Production of soft magnetic multilayered film

Info

Publication number
JPH07109596A
JPH07109596A JP25394293A JP25394293A JPH07109596A JP H07109596 A JPH07109596 A JP H07109596A JP 25394293 A JP25394293 A JP 25394293A JP 25394293 A JP25394293 A JP 25394293A JP H07109596 A JPH07109596 A JP H07109596A
Authority
JP
Japan
Prior art keywords
soft magnetic
substrate
magnetic
multilayer film
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25394293A
Other languages
Japanese (ja)
Inventor
Kazuto Kamei
一人 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP25394293A priority Critical patent/JPH07109596A/en
Publication of JPH07109596A publication Critical patent/JPH07109596A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an Fe-Ni multilayered film excellent in soft magnetic characteristics at a low cost. CONSTITUTION:An electric conductive substrate 3 as the cathode is alternately immersed in an electrolytic soln. 2 contg. 0.01-2.0mol/l Ni<2+> ions and an electrolytic soln. 1 contg. 0.01-2.0mol/l Fe<2+> ions. Every time the substrate 3 is immersed, electric current is supplied at 1-100mA/cm<2> density for 0.5-15sec and Ni and Fe layers are alternately laminated on the substrate 3 to produce the objective soft magnetic multilayered film. Since a vacuum device is not required, even a large-sized soft magnetic material is economically produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気ヘッド、磁気セン
サー等に用いる軟磁気特性に優れた多層膜の製造方法に
関するものであり、磁気シールド等にも適用可能な軟磁
性多層膜を経済的に製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a multilayer film having excellent soft magnetic characteristics for use in magnetic heads, magnetic sensors, etc. To the manufacturing method.

【0002】[0002]

【従来の技術】磁気ヘッドやヨークなどのように軟磁気
特性を必要とする部分には、パーマロイ(登録商標)と
呼ばれるFeNi合金のような磁性材料が使用されており、
これらの磁性材料には、その小型化や高密度化の要求を
満足する新たな技術の開発が望まれている。
2. Description of the Related Art A magnetic material such as FeNi alloy called Permalloy (registered trademark) is used in a portion such as a magnetic head or a yoke that needs soft magnetic characteristics.
For these magnetic materials, it is desired to develop a new technology that satisfies the requirements for miniaturization and high density.

【0003】高透磁率を示し、優れた磁気特性を呈する
パーマロイはFeの含有量が20〜30原子%であるので飽和
磁化が小さいという問題がある。飽和磁化が小さい材料
を磁気ヘッドに用いる場合、ヘッドの出力を記録に十分
な値に保持するには、その膜厚を増加させなければなら
ず、高密度磁気記録のためにトラック幅を小さくした媒
体に用いることができない。
Permalloy, which has a high magnetic permeability and excellent magnetic properties, has a problem that the saturation magnetization is small because the Fe content is 20 to 30 atomic%. When a material with low saturation magnetization is used for a magnetic head, the film thickness must be increased to maintain the head output at a value sufficient for recording, and the track width was reduced for high-density magnetic recording. It cannot be used as a medium.

【0004】これらの問題を解決するために、多層構造
(以下、多層膜という)の磁性材料が注目されている。
多層膜であれば積層体の組成や、構造、厚みによってそ
の磁性を様々に変化させることができるので、均一膜で
は得られない特性が期待されている。例えば、磁気特性
の異なる層を交互に積層して高飽和磁束密度、高透磁
率、低磁歪定数をもつ軟磁性多層膜が開発されている
(特開昭64−81208 号公報)。このように磁性層と非磁
性層とを交互に積層して多層膜を製造する場合には、真
空蒸着法やスパッタリング法等のドライプロセスで成膜
する。
In order to solve these problems, a magnetic material having a multi-layer structure (hereinafter referred to as a multi-layer film) has attracted attention.
In the case of a multilayer film, its magnetism can be variously changed depending on the composition, structure, and thickness of the laminated body, so that characteristics that cannot be obtained with a uniform film are expected. For example, a soft magnetic multilayer film having high saturation magnetic flux density, high magnetic permeability and low magnetostriction constant has been developed by alternately laminating layers having different magnetic properties (Japanese Patent Laid-Open No. 64-81208). When a magnetic layer and a non-magnetic layer are alternately laminated in this way to manufacture a multilayer film, the film is formed by a dry process such as a vacuum evaporation method or a sputtering method.

【0005】このドライプロセスによって成膜する方法
では、さまざまの材料を使用できる点で有利であるが、
真空装置を用いる必要があり使用できる基板の大きさに
限度がある。また、プロセスが複雑でありコスト面でも
不利である。
This method of forming a film by the dry process is advantageous in that various materials can be used,
It is necessary to use a vacuum device and there is a limit to the size of the substrate that can be used. In addition, the process is complicated and the cost is disadvantageous.

【0006】[0006]

【発明が解決しようとする課題】この発明は、高飽和磁
化を有し、優れた軟磁気特性を示す多層膜を安価に製造
する方法の提供を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method for inexpensively producing a multilayer film having high saturation magnetization and exhibiting excellent soft magnetic characteristics.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、「導電
性を有する基板を陰極として、Ni2+イオンを0.01〜2.0m
ol/リットル含有する電解液とFe2+イオンを0.01〜2.0m
ol/リットル含有する電解液とに交互に浸析し、その都
度1mA/cm2以上 100mA/cm2以下の密度の電流を0.5〜15
秒通電して基板上にNi層とFe層とを交互に積層する軟磁
性多層膜の製造方法」にある。
SUMMARY OF THE INVENTION The gist of the present invention is that "a conductive substrate is used as a cathode and Ni 2+ ions are added in an amount of 0.01 to 2.0 m
Electrolyte solution containing ol / liter and Fe 2+ ion 0.01 to 2.0m
Alternatingly immersed in an electrolyte solution containing ol / liter, each time applying a current of density of 1 mA / cm 2 or more and 100 mA / cm 2 or less 0.5 to 15
The method of manufacturing a soft magnetic multilayer film in which Ni layers and Fe layers are alternately laminated on a substrate by applying a second current.

【0008】[0008]

【作用】強磁性金属中で最も飽和磁化の大きいFeとNiと
を積層すると、Feの結晶や磁区が細分化されて保磁力が
小さくなり、軟磁気特性が向上する。
[Function] When Fe and Ni, which have the highest saturation magnetization among the ferromagnetic metals, are laminated, the Fe crystals and magnetic domains are subdivided to reduce the coercive force and improve the soft magnetic characteristics.

【0009】本発明では、多層膜を、導電性を有する基
板を陰極として電析法で磁性層を積層することによって
製造する。
In the present invention, a multilayer film is manufactured by laminating magnetic layers by electrodeposition using a conductive substrate as a cathode.

【0010】基板は、FeとNiとを電析法によって、積層
できるものであれば良いのであるから、導電性を有する
ものであれば、ガラスやプラスチックの基板上に金属を
被覆したもの等を用いても良いが、経済性の面からすれ
ば金属の基板を用いるのが良い。この基板は、後に積層
した磁性膜の構造が均一となるようにするために、表面
を機械研磨、化学研磨、電解研磨等によって鏡面仕上げ
しておくのが良い。そのようにすることによって、界面
の平坦な多層膜を安定して製造することができる。基板
を交互に浸析する電解液は、それぞれNi2+イオンを0.01
〜2.0mol/リットル含有する電解液とFe2+イオンおよび
0.01〜2.0mol/リットル含有する電解液とする。このと
き最外層は耐食性の優れたNi層とするのが好ましい。い
ずれの電解液でも、目的とするイオンの濃度が0.01mol/
リットルに満たないと電解が起こらず電流効率が著しく
悪い上に、溶質イオンの電極表面への拡散が成膜の律速
過程となるので、樹状の結晶が生じたりして連続膜を安
定に製造できない。また、本発明の方法で多層膜を積層
するには電解質の濃度は 2.0mol /リットルで十分であ
り、これ以上の濃度の電解液をしようするのは不経済で
あるし、この電解質の濃度が 2.0 mol/リットルを超え
ると電解液の粘性が増加して電析膜の厚みにばらつきを
生じることがある。
Any substrate can be used so long as Fe and Ni can be laminated by an electrodeposition method. Therefore, if the substrate has conductivity, a glass or plastic substrate coated with a metal or the like can be used. Although it may be used, a metal substrate is preferably used in terms of economy. The surface of this substrate is preferably mirror-finished by mechanical polishing, chemical polishing, electrolytic polishing or the like in order to make the structure of the magnetic film laminated later uniform. By doing so, a multilayer film having a flat interface can be stably manufactured. The electrolytic solution for alternately leaching the substrate contained 0.01% Ni 2+ ions.
Electrolyte containing ~ 2.0mol / liter and Fe 2+ ion and
The electrolytic solution contains 0.01 to 2.0 mol / liter. At this time, the outermost layer is preferably a Ni layer having excellent corrosion resistance. With either electrolyte, the concentration of the target ion is 0.01 mol /
If it is less than 1 liter, electrolysis does not occur and the current efficiency is extremely poor, and diffusion of solute ions to the electrode surface is the rate-determining process of film formation, so dendritic crystals may form and a continuous film can be stably manufactured. Can not. Further, the concentration of the electrolyte of 2.0 mol / liter is sufficient for laminating the multilayer film by the method of the present invention, and it is uneconomical to use an electrolyte solution having a concentration higher than this, and the concentration of the electrolyte is If it exceeds 2.0 mol / liter, the viscosity of the electrolytic solution may increase and the thickness of the electrodeposited film may vary.

【0011】電解液は、例えば硫酸第1鉄、塩化第1
鉄、硝酸第1鉄や硫酸ニッケル、塩化ニッケル、硝酸ニ
ッケルなどのように、水溶液中で鉄イオンまたはニッケ
ルイオンを生成するものをそれぞれのイオン源として単
独あるいは混合して使用することができる。電解液に
は、これらの活性イオン種の他に電気抵抗を低下させる
硫酸ナトリウム(Na2SO4)などの支持電解質や、滑らかな
電析膜を得るための界面活性剤などの添加剤を加えて用
いても良い。
The electrolytic solution is, for example, ferrous sulfate or ferric chloride.
Iron, ferrous nitrate, nickel sulfate, nickel chloride, nickel nitrate, and the like that generate iron ions or nickel ions in an aqueous solution can be used alone or as a mixture as each ion source. In addition to these active ion species, a supporting electrolyte such as sodium sulfate (Na 2 SO 4 ) that reduces electrical resistance, and an additive such as a surfactant to obtain a smooth electrodeposited film are added to the electrolytic solution. You may use it.

【0012】この電解液は、基本的には酸性とすれば良
いがpH2〜3程度の強酸としておくのが好ましい。
The electrolytic solution may be basically acidic, but it is preferable to use a strong acid having a pH of about 2 to 3.

【0013】通電する電流密度は1〜100 mA/cm2であ
り、通電時間 0.5〜15秒とする。通電する電流の密度が
1mA/cm2に満たないと、目的とするNi、Feの析出が起こ
りにくく成膜が困難であるし、100 mA/cm2を超える場合
には電解析出が急激に起こるので、電極表面へのイオン
の供給が追いつかずに樹状晶等の好ましくない結晶が成
長して多層膜を形成できないことがある。
The current density for energization is 1 to 100 mA / cm 2 , and the energization time is 0.5 to 15 seconds. If the density of current applied is less than 1 mA / cm 2, to Ni of interest, it is less likely to cause deposition precipitation of Fe are difficult, sharply electrolytic deposition if it exceeds 100 mA / cm 2 As a result, the supply of ions to the electrode surface may not catch up, and undesired crystals such as dendrites may grow to form a multilayer film.

【0014】本発明の方法によれば、微細粒組織で軟磁
気特性が良好な多層膜を得ることができるが、各層の膜
厚が50nmを越えると軟磁気特性が劣化する。一方、1nm
未満であると交互層としての構造にならないことがあり
好ましくないので、各層の膜厚を1〜50nmに制御するた
めに通電時間を 0.5〜15秒とするのが良い。
According to the method of the present invention, it is possible to obtain a multilayer film having a fine grain structure and good soft magnetic characteristics, but the soft magnetic characteristics deteriorate when the thickness of each layer exceeds 50 nm. On the other hand, 1 nm
If it is less than the above range, the structure as an alternate layer may not be obtained, which is not preferable. Therefore, in order to control the film thickness of each layer to 1 to 50 nm, it is preferable to set the energization time to 0.5 to 15 seconds.

【0015】[0015]

【実施例】図1は、本発明の方法を説明するための図で
ある。
FIG. 1 is a diagram for explaining the method of the present invention.

【0016】容量が1リットルの角型水槽1および2の
中に次のようにして電解浴を作製した。Fe2+源に硫酸第
1鉄(FeSO4) 、Ni2+源に硫酸ニッケル(NiSO4) を使用
し、これらをそれぞれ純水に添加して、種々の濃度のFe
2+を含む水溶液および同じく種々の濃度のNi2+を含む水
溶液を作製し、硫酸を添加して、そのpHが1〜3の間
となるように調整したものを電解液とした(以下、それ
ぞれをFe浴、Ni浴という)。
An electrolytic bath was prepared in the rectangular water tanks 1 and 2 having a capacity of 1 liter as follows. Ferrous sulfate (FeSO 4 ) was used as the Fe 2+ source, and nickel sulfate (NiSO 4 ) was used as the Ni 2+ source.
An aqueous solution containing 2+ and an aqueous solution containing various concentrations of Ni 2+ were prepared, sulfuric acid was added, and the pH thereof was adjusted to be 1 to 3 as an electrolytic solution (hereinafter, Each of them is called Fe bath and Ni bath).

【0017】陰極とする基板には、機械研磨で鏡面仕上
げを施した40mm×40mmの大きさの銅板3を用い、図1に
示したように銅板5(長さ160mm 、幅40mm、厚さ0.4mm)
の下部に固定した。また、同じ面積の純白金板4を同じ
ように銅板6に固定して陽極とした。これらの2つの極
をアクリル製の試料ホルダー7に1cm間隔で固定し、図
示したようなつりさげ型の平行対電極とした。
A copper plate 3 having a size of 40 mm × 40 mm, which is mirror-finished by mechanical polishing, is used as a substrate for the cathode. As shown in FIG. 1, the copper plate 5 (length 160 mm, width 40 mm, thickness 0.4) is used. mm)
Fixed at the bottom of. Further, a pure platinum plate 4 having the same area was similarly fixed to a copper plate 6 to serve as an anode. These two electrodes were fixed to an acrylic sample holder 7 at intervals of 1 cm to form a hanging type parallel counter electrode as shown in the figure.

【0018】次に、磁気攪拌機とヒーターを内蔵した装
置9の磁気回転子を用いて毎分 800回転で撹拌しな
がら、ヒーターで50℃に保持した電解浴に、電極を浸
漬して定電流直流電解を行った。電源には定電流電源8
を用い、対電極を所定の通電時間で2種類の電解浴に交
互に浸漬して、陰極上に多層膜を形成させた。Ni浴に浸
漬した時とFe浴に浸漬した時に加えた電流の密度および
通電時間は一定とした。
Next, using a magnetic rotor of a device 9 having a magnetic stirrer and a heater built therein, the electrodes were immersed in an electrolytic bath maintained at 50 ° C. by a heater while stirring at a speed of 800 rpm, and a constant current direct current was applied. The solution was done. Constant current power source 8
The counter electrode was alternately immersed in two types of electrolytic baths for a predetermined energization time to form a multilayer film on the cathode. The current density and the energizing time applied during dipping in the Ni bath and dipping in the Fe bath were constant.

【0019】表1および表2に各種電解浴のイオン濃度
および通電した電流の密度と通電時間を示す。表1に示
したのが本発明の例に相当し、表2が比較例である。
Tables 1 and 2 show the ion concentrations of various electrolytic baths, the density of the applied current, and the application time. Table 1 corresponds to an example of the present invention, and Table 2 is a comparative example.

【0020】形成した多層膜の厚みが 1.0μmとなった
ところで電解を終了し、得られたFe−Ni多層膜の保磁力
を保磁力メーターで測定した。その結果を表1および表
2に併記する。なお、保磁力が 1.0(Oe)以下の多層膜が
得られた場合を「適」、 1.0(Oe)を超える多層膜が得ら
れた場合を「不適」として評価した。
The electrolysis was terminated when the thickness of the formed multilayer film became 1.0 μm, and the coercive force of the obtained Fe—Ni multilayer film was measured with a coercive force meter. The results are also shown in Table 1 and Table 2. The multilayer film having a coercive force of 1.0 (Oe) or less was evaluated as "suitable", and the multilayer film having a coercive force of more than 1.0 (Oe) was evaluated as "unsuitable".

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】本発明の方法で製造した軟磁性多層膜
は、保磁力が小さく、磁気ヘッド、磁気センサなどとし
て用いるのに好適である。また、この軟磁気特性に優れ
た多層膜は、電析条件を適切に制御することによって得
ることができるので、経済的に有利である上に大きなも
のであっても製造することができる。
The soft magnetic multilayer film produced by the method of the present invention has a small coercive force and is suitable for use as a magnetic head, a magnetic sensor or the like. Further, since the multilayer film having excellent soft magnetic characteristics can be obtained by appropriately controlling the electrodeposition conditions, it is economically advantageous and can be manufactured even if it is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例の方法を実施する装置構成の一例を説
明するための図である。
FIG. 1 is a diagram for explaining an example of a device configuration for implementing the method of the present embodiment.

【符号の説明】[Explanation of symbols]

1:Fe浴、 2:Ni浴、 3:銅基板、 4:白金板、
5、6:銅板 7:試料ホルダー、 8:定電流電源、 9:攪拌
・加熱装置
1: Fe bath, 2: Ni bath, 3: Copper substrate, 4: Platinum plate,
5, 6: Copper plate 7: Sample holder, 8: Constant current power supply, 9: Stirrer / heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性を有する基板を陰極として、Ni2+
オンを0.01〜2.0mol/リットル含有する電解液とFe2+
オンを0.01〜2.0mol/リットル含有する電解液とに交互
に浸析し、その都度1mA/cm2以上 100mA/cm2以下の密度
の電流を 0.5〜15秒通電して基板上にNi層とFe層とを交
互に積層することを特徴とする軟磁性多層膜の製造方
法。
1. A substrate having conductivity is used as a cathode and is alternately immersed in an electrolytic solution containing 0.01 to 2.0 mol / liter of Ni 2+ ions and an electrolytic solution containing 0.01 to 2.0 mol / liter of Fe 2+ ions. The soft magnetic multilayer film is characterized in that a Ni layer and a Fe layer are alternately laminated on the substrate by conducting a current having a density of 1 mA / cm 2 or more and 100 mA / cm 2 or less for 0.5 to 15 seconds each time. Manufacturing method.
JP25394293A 1993-10-12 1993-10-12 Production of soft magnetic multilayered film Pending JPH07109596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25394293A JPH07109596A (en) 1993-10-12 1993-10-12 Production of soft magnetic multilayered film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25394293A JPH07109596A (en) 1993-10-12 1993-10-12 Production of soft magnetic multilayered film

Publications (1)

Publication Number Publication Date
JPH07109596A true JPH07109596A (en) 1995-04-25

Family

ID=17258141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25394293A Pending JPH07109596A (en) 1993-10-12 1993-10-12 Production of soft magnetic multilayered film

Country Status (1)

Country Link
JP (1) JPH07109596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178372A1 (en) * 2015-05-07 2016-11-10 株式会社日立製作所 Laminated body having corrosion-resistant coating, and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178372A1 (en) * 2015-05-07 2016-11-10 株式会社日立製作所 Laminated body having corrosion-resistant coating, and method for manufacturing same
JPWO2016178372A1 (en) * 2015-05-07 2018-03-29 株式会社日立製作所 LAMINATE HAVING CORROSION-RESISTANT FILM AND PROCESS FOR PRODUCING THE SAME
US10836138B2 (en) 2015-05-07 2020-11-17 Hitachi, Ltd. Laminated body having corrosion-resistant coating, and method for manufacturing same

Similar Documents

Publication Publication Date Title
US4102756A (en) Nickel-iron (80:20) alloy thin film electroplating method and electrochemical treatment and plating apparatus
CN100371989C (en) Soft magnetic thin film and magnetic recording head
JP2544845B2 (en) Magnetic thin film, laminate, magnetic recording head, magnetic shield, and method for producing laminate
US8221598B2 (en) System for plating
JP2003034891A (en) Method for manufacturing cobalt iron alloy and plated magnetic thin-film of cobalt iron alloy, and method for manufacturing quaternary alloy and plated magnetic thin-film of cobalt iron molybdenum alloy
JPS6353277B2 (en)
US3844909A (en) Magnetic film plated wire and substrates therefor
JP3102505B2 (en) Method for manufacturing soft magnetic multilayer plating film, soft magnetic multilayer plating film, and magnetic head
US3533922A (en) Composition and process for plating ferromagnetic film
US20080197021A1 (en) Method to make superior soft (low Hk), high moment magnetic film and its application in writer heads
JP2003510465A (en) Electrodeposition method of metal multilayer
CN101593523B (en) Method for preparing L10 type ultrahigh density magnetic record metal thin film
JPH07109596A (en) Production of soft magnetic multilayered film
JPH02500069A (en) magnetic recording material
EP0396227B1 (en) Magnetic devices with enhanced poles
US3271276A (en) Electrodeposition of quaternary magnetic alloy of iron, nickel, antimony and phosphorus
US3272727A (en) Process for electroplating magnetic alloy onto a platinized chromium substrate
JP3826323B2 (en) Manufacturing method of plated magnetic thin film
Hayashi et al. Growth of Co/Cu multilayered thin films by electro‐deposition
CN112962122B (en) Preparation method of high-coercivity B-doped FePt film
Kolk et al. Magnetic Properties of 97 Fe‐3 Ni Thin Film Electroplate
JP4117022B2 (en) Method for producing Fe-Ce-O granular thin film
JPH05190327A (en) Magnetic thin film and manufacture thereof
Schwartz et al. Direct & pulse current electrodeposition of iron group thin film alloys containing vanadium
JPH06251978A (en) Soft magnetic thin film and manufacture thereof