JPH07108215B2 - New lactic acid bacteria - Google Patents

New lactic acid bacteria

Info

Publication number
JPH07108215B2
JPH07108215B2 JP8664890A JP8664890A JPH07108215B2 JP H07108215 B2 JPH07108215 B2 JP H07108215B2 JP 8664890 A JP8664890 A JP 8664890A JP 8664890 A JP8664890 A JP 8664890A JP H07108215 B2 JPH07108215 B2 JP H07108215B2
Authority
JP
Japan
Prior art keywords
lactic acid
anaerobic
bacteria
acid bacteria
silage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8664890A
Other languages
Japanese (ja)
Other versions
JPH03285674A (en
Inventor
一郎 中村
昇 白川
進 上中
正行 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP8664890A priority Critical patent/JPH07108215B2/en
Publication of JPH03285674A publication Critical patent/JPH03285674A/en
Publication of JPH07108215B2 publication Critical patent/JPH07108215B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Storage Of Fruits Or Vegetables (AREA)
  • Fodder In General (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はラクトバチルス属に属し、主としてサイレー
ジ、発酵ソーセージ、漬物等の調製に用いられる新規な
乳酸菌に関する。
TECHNICAL FIELD The present invention relates to a novel lactic acid bacterium belonging to the genus Lactobacillus and mainly used for preparing silage, fermented sausage, pickles and the like.

〔従来の技術〕[Conventional technology]

上記したサイレージ等の調製はいずれも発酵初期の段階
から大量の乳酸蓄積量を確保することが要請される点で
共通しているので、以下サイレージ調製を例に挙げて説
明すると、家畜の飼料となるサイレージは、牧草などを
刈り取りサイロに保存することにより主に嫌気性状態で
発酵して製造される。
Since the preparation of silage and the like described above is common in that it is required to secure a large amount of lactic acid accumulation from the early stage of fermentation, the following description will be made taking silage preparation as an example. Nara silage is produced mainly by slaughtering grass and storing it in silos to ferment it in an anaerobic state.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、牧草などのサイレージ原料を刈り取った直後
は、これらが空気にさらされているため好気性雰囲気と
なっており、最初から所定の嫌気性発酵を起こすことが
できない。したがって、家畜の飼料に供するには、刈り
取られた飼料自体の呼吸が進み、積み上げられた原料間
の酸素が十分に消費されて嫌気性雰囲気に達しなければ
ならず、従来からの乳酸菌によるサイレージ調製では嫌
気性発酵が進行するまで少なからぬ時間を要していた。
つまり、乳酸菌を含めた嫌気性菌は一般に好気状態では
嫌気状態に比べて増殖能力は著しく低下するためサイレ
ージ原料が嫌気性雰囲気にぃ達するまでに好気性菌が多
数増殖し、嫌気状態を好む乳酸菌の発育が結果的に抑え
られることがあった。
However, immediately after cutting silage raw materials such as grass and the like, they are exposed to the air and thus have an aerobic atmosphere, so that a predetermined anaerobic fermentation cannot occur from the beginning. Therefore, in order to use it as livestock feed, the cut feed itself must be respired and oxygen between the stacked raw materials must be fully consumed to reach an anaerobic atmosphere. Then, it took a considerable time for the anaerobic fermentation to proceed.
In other words, the anaerobic bacteria including lactic acid bacteria generally have a significantly lower growth ability in the aerobic condition than in the anaerobic condition. Therefore, a large number of aerobic bacteria grow and reach the anaerobic condition before the silage raw material reaches the anaerobic atmosphere. The growth of lactic acid bacteria was sometimes suppressed as a result.

また、嫌気性雰囲気に達しても、乳酸菌の生菌数が一定
数以上に達していない場合家畜の好まない臭いを発する
酪酸菌などの腐敗菌が乳酸菌よりも先に増殖することが
あり、常に良好な嫌気性発酵による良好なサイレージ調
製を実現することができるわけではなかった。
Also, even if the anaerobic atmosphere is reached, if the viable count of lactic acid bacteria does not reach a certain number or more, spoilage bacteria such as butyric acid bacteria that emit an unpleasant smell of livestock may grow before lactic acid bacteria, and always It has not been possible to achieve good silage preparation by good anaerobic fermentation.

このような事情は発酵ソーセージや漬物の調製時におい
ても同様である。
This situation is the same when preparing fermented sausages and pickles.

そこで、本発明は、上記従来の技術の有する問題点を解
消し、菌の増殖速度が早く牧草などのサイレージ原料等
に対して発酵開始直後から、速やかに増殖し、栄養価の
高く家畜及び人間の好む食味を与える乳酸発酵を確実に
促進させる新規な乳酸菌を提供することを目的とする。
Therefore, the present invention eliminates the problems of the above-mentioned conventional techniques, the growth rate of the bacteria is fast, and immediately after the start of fermentation for silage raw materials such as grass, it quickly grows and has high nutritional value. An object of the present invention is to provide a novel lactic acid bacterium that surely promotes lactic acid fermentation that gives the taste that is preferred by lactic acid bacteria.

〔課題を解決するための手段〕[Means for Solving the Problems]

上記目的を達成するため、本発明にかかる新規な乳酸菌
の特徴構成は、ラクトバチルス属に属するものであっ
て、好気性及び嫌気性のいずれの雰囲気でも乳酸発酵能
力を有するラクトバチルスKB−141菌株(微工研菌寄第1
0474号)である点にある。
To achieve the above object, the novel lactic acid bacterium according to the present invention is characterized in that it belongs to the genus Lactobacillus and has a lactic acid fermentation ability in both aerobic and anaerobic atmospheres. (1st Microbiology Research Institute
No. 0474).

〔作用・効果〕[Action / effect]

本発明者らは、サイレージ等の調製の初期から乳酸発酵
を活発に行う乳酸菌を発掘すべく多大の努力を重ねた結
果、詳しくは実施例で示されるが従来の乳酸菌に比べて
特に好気性雰囲気において、また嫌気性雰囲気において
も、速やかに増殖し、急速かつ大量の乳酸の蓄積とそれ
に伴うpH低下を起こす菌を見出すことに成功した。
The present inventors have made great efforts to discover lactic acid bacteria that actively carry out lactic acid fermentation from the initial stage of the preparation of silage and the like. In addition, we succeeded in finding a bacterium that rapidly grows in anaerobic atmosphere and causes rapid and large accumulation of lactic acid and accompanying pH decrease.

本発明にかかる乳酸菌、ラクトバチルスKB−141菌株
は、下記の菌学的性質を有する。
The lactic acid bacterium and the Lactobacillus KB-141 strain according to the present invention have the following mycological properties.

培 地 LCM(ラクトバチルスキャソメディウム) 培地 pH:6.8,37℃,24時間の培養で良好な生育 を示す。Culture medium LCM (Lactobacillus casodium) medium pH: 6.8, which shows good growth when cultured at 37 ° C for 24 hours.

形 態 短桿菌 胞 子 なし グラム染色 陽性 生理学的性質 乳酸発酵 ホモ型 カタラーゼ なし 生育適温 30〜35℃ 生育温度 15〜40℃ 糖の資化性 (これについては、北海道大学応用菌学教室保存株であ
るラクトバチルス・プランタルム標準菌と比較した結果
を表1に示す) なお、上記糖の資化性については、下記組成の基本培地
にBTBを加え、121℃、20分間滅菌して、冷却後に各糖類
を2%となるように加え、その後、乳酸菌の懸濁液を一
滴づつ接種し30℃下で培養して調べた。そして、培養7
日後に増殖の結果、培地の色が緑色から黄色に変わった
ものについて資化性があると判断したものである。
Form Bacillus spores None Gram stain Positive Physiological properties Lactic acid fermentation Homo-type catalase None Growth temperature 30-35 ° C Growth temperature 15-40 ° C Sugar assimilation (For this, a strain preserved in the Department of Applied Bacteriology, Hokkaido University) The result of comparison with a certain Lactobacillus plantarum standard bacterium is shown in Table 1.) Regarding the assimilation of sugars, BTB was added to a basic medium having the following composition, sterilized at 121 ° C for 20 minutes, and each sugar was added to 2% after cooling, and then a suspension of lactic acid bacteria was added. Was inoculated drop by drop and cultured at 30 ° C. for examination. And culture 7
It was judged that there was assimilation in the medium in which the color of the medium changed from green to yellow as a result of proliferation after a day.

基本培地 ポリペプトン 0.5% 酵母エキス 0.5% リン酸二カリ 0.5% 以上の結果より、本発明の乳酸菌はラクトバチルス属に
属することが明らかであり、ラクトバチルス・プランタ
ルムAHU−1526(以下、L.プランタルムと略称する。)
の類菌種であると認められる。しかしながら、L.プラン
タルムとは、ソルボース、トレハロース、スターチ、L
−アラビノース、リボース、ラムノースの各糖類におい
て資化性が異なること、及び詳しくは実施例で述べられ
るが、培養初期において好気性、嫌気性のいずれの雰囲
気においても速やかに増殖すること、乳酸蓄積量が多い
こと及びこれに付随するpH値の低下が著しいこと等の点
において顕著な相違点が存在する。
Basic medium Polypeptone 0.5% Yeast extract 0.5% Dipotassium phosphate 0.5% From the above results, it is clear that the lactic acid bacterium of the present invention belongs to the genus Lactobacillus, and Lactobacillus plantarum AHU-1526 (hereinafter, L. plantarum and Abbreviated.)
It is recognized as a fungus species of. However, L. plantarum means sorbose, trehalose, starch, L.
-Arabinose, ribose, rhamnose have different assimilation abilities, and as described in detail in Examples, rapidly proliferate in both aerobic and anaerobic atmospheres in the early stage of culture, and the amount of lactic acid accumulated. There are significant differences in that there is a large amount of water and the concomitant decrease in pH value.

このような事実を勘案すると、本菌株はラクトバチルス
属に属する新規な乳酸菌とすることが妥当であると認
め、ラクトバチルスKB−141菌株と命名した。
Considering these facts, it was confirmed that this strain was a novel lactic acid bacterium belonging to the genus Lactobacillus, and was named Lactobacillus KB-141 strain.

このKB−141菌株は後述のように特に好気条件下及び嫌
気条件下においても速やかに増殖するため、多数のKB−
141菌株を牧草等の原料と混合した調整初期において生
菌数で他の腐敗菌等の細菌を圧倒することができ、他の
菌の増殖を抑制できる。従って、嫌気性の酪酸菌の増殖
によるサイレージ等の食味の劣化を防ぐことができる。
しかも、乳酸蓄積量及び蓄積速度も標準菌L.プランタル
ムと同等以上であり、十分な乳酸発酵能力を有してい
る。
Since this KB-141 strain grows rapidly even under aerobic and anaerobic conditions, as described below, a large number of KB-141
In the initial stage of preparation in which 141 strains are mixed with raw materials such as grass, bacteria such as spoilage bacteria can be overwhelmed by the viable cell count, and the growth of other bacteria can be suppressed. Therefore, it is possible to prevent the deterioration of the taste such as silage due to the growth of anaerobic butyric acid bacteria.
Moreover, the amount and rate of lactic acid accumulation are equal to or higher than those of the standard bacterium L. plantarum, and the lactic acid fermentation capacity is sufficient.

従って、本発明により他の細菌の影響をほとんど受け
ず、安定して優れた品質を有するサイレージ等を提供す
ることができるようになった。
Therefore, according to the present invention, it is possible to provide a silage or the like that is stable and has an excellent quality and is hardly affected by other bacteria.

なお、本菌株ラクトバチルスKB−141は、微工研菌寄第1
0474号として工業技術院微生物工業技術研究所において
寄託されている。
This strain, Lactobacillus KB-141, is
No. 0474 has been deposited at the Institute of Microbial Technology of the Agency of Industrial Science and Technology.

〔実施例〕〔Example〕

以下、サイレージ調整能力を指標として本菌株の増殖速
度及び乳酸生成能力に関する実験結果を示す。
Below, the experimental results relating to the growth rate and lactic acid production ability of this strain are shown using the silage adjusting ability as an index.

〔実験例1〕資化性の認められた糖の乳酸蓄積量(%)
の測定 上記表1においてKB−141と標準株L.プランタルムの両
方に資化性の認められた糖について更に乳酸蓄積量を測
定した。30℃で上記基本培地に糖を2.0%になるように
添加して培養し、培養48時間及び96時間後の乳酸蓄積量
を測定した。結果を表2に示す。
[Experimental Example 1] Lactic acid accumulation of sugars that were assimilated (%)
The amount of lactic acid accumulated was further measured for sugars that were assimilated in both KB-141 and the standard strain L. plantarum in Table 1 above. Sugar was added to the above basic medium at 30 ° C. so as to be 2.0%, and the mixture was cultured, and the amount of lactic acid accumulated after 48 hours and 96 hours of culture was measured. The results are shown in Table 2.

以上の結果より、本発明のKB−141は標準株であるL−
プランタルムよりも全体的に糖の資化能力が高いことが
確認された。
From the above results, KB-141 of the present invention is L- which is a standard strain.
It was confirmed that sugar assimilation capacity was higher than that of plantarum.

〔実験例2〕増殖性の比較 前記基本培地にグルコース2.0%、炭酸カルシウム0.5%
及び寒天1.3%を加えた培地を用いて通常の希釈平板培
養法によって生菌数を求めた。結果を第1図(イ),
(ロ),(ハ)に示す。
[Experimental Example 2] Comparison of growth properties Glucose 2.0% and calcium carbonate 0.5% were added to the basal medium.
The number of viable cells was determined by the usual dilution plate culture method using a medium containing 1% and agar. The results are shown in Fig. 1 (a),
Shown in (b) and (c).

この結果より、本発明のKB−141は標準株L.プランタル
ムよりも初期増殖速度は特に高く、乳酸菌の増殖が抑制
されるpH4.0以下の条件下の生菌数でもpH低下後の安定
状態における通常の条件である20℃において標準株を上
回っていることが確認された。
From this result, the initial growth rate of KB-141 of the present invention is particularly higher than that of the standard strain L. plantarum, and the stable state after the pH decrease even in the viable cell count under the conditions of pH 4.0 or less at which the growth of lactic acid bacteria is suppressed. It was confirmed that the standard strain was exceeded at 20 ° C, which is the usual condition in.

〔実験例3〕乳酸蓄積量(%)及びpHの比較 基本培地にグルコース2.0%を添加し、KB−141及びL.プ
ランタルムを夫々接種し、20゜,30゜37℃の各温度で経
時的pHとに乳酸蓄積量を測定した。乳酸蓄積量の測定
は、滴定法で行ない、次式で計算した。
[Experimental Example 3] Comparison of Lactic Acid Accumulation (%) and pH 2.0% glucose was added to the basic medium, KB-141 and L. plantarum were inoculated, respectively, and 20 ° C., 30 ° C. and 37 ° C. Lactic acid accumulation was measured in pH. The amount of accumulated lactic acid was measured by the titration method and calculated by the following formula.

乳酸量=N/10水酸化ナトリウム滴定数×f ×0.009×100/サンプル量 測定結果を表3に示し、20゜,30゜及び37℃におけるpH
と乳酸量の経時変化を第2図(イ),(ロ),(ハ)に
示す。
Lactic acid amount = N / 10 drop constant of sodium hydroxide x f x 0.009 x 100 / sample amount The measurement results are shown in Table 3 and the pH at 20 °, 30 ° and 37 ° C.
Figure 2 (a), (b), and (c) show the changes with time in the amount of lactic acid and lactic acid.

この結果から、本発明のKB−141は標準株L.プランタル
ムよりも乳酸菌自身の増殖が阻害されるpH4付近になる
まで急速に乳酸を蓄積し、pHを低下させることが確認さ
れた。この早期のpH低下は至適pH7付近の多くの雑菌の
増殖を抑制する上で有利である。
From these results, it was confirmed that KB-141 of the present invention rapidly accumulates lactic acid and lowers the pH as compared with the standard strain L. plantarum until the pH is around 4 at which the growth of lactic acid bacteria themselves is inhibited. This early decrease in pH is advantageous in suppressing the growth of many bacteria around the optimum pH 7.

〔実験例4〕乳酸生成と酸素との関係 基本培地にグルコール2.0%を添加して、三株の乳酸菌
を夫々接種し、30℃で好気的静地培養及び嫌気的(BBL
製嫌気ジャー中)静地培養を行った。結果を表4、及び
第3図に示す。
[Experimental Example 4] Relationship between Lactic Acid Production and Oxygen Glucol 2.0% was added to the basic medium, three strains of lactic acid bacteria were inoculated, respectively, and aerobic static culture and anaerobic (BBL
In an anaerobic jar) static culture was performed. The results are shown in Table 4 and FIG.

上記結果より、KB−141は好気性条件下において嫌気条
件下の同等以上の急速な乳酸蓄積とpH低下を示し、好気
・嫌気にかかわらず安定した品質のサイレージを調整し
得ることが明らかになった。
From the above results, it is clear that KB-141 shows equal or more rapid lactic acid accumulation and pH decrease under anaerobic conditions under aerobic conditions, and can regulate stable quality silage regardless of aerobic or anaerobic conditions. became.

〔実験例5〕 培養条件を以下の〜のように設定して、標準株L.プ
ランタルムとKB−141の培養特性を比較した。
[Experimental Example 5] The culture conditions were set as follows, and the culture characteristics of the standard strains L. plantarum and KB-141 were compared.

培 地:PYG(ポリペプトンイーストグルコース )培地 培養温度:30℃ 培養時間:72時間 結果を表5に示す。 Culture place: PYG (polypeptone yeast glucose) medium Culture temperature: 30 ° C Culture time: 72 hours Results are shown in Table 5.

上記結果よりKB−141は標準株に比べて世代時間が短
く、増殖速度が速いこと、及び乳酸生成量も上回ること
が定量的に確認された。
From the above results, it was quantitatively confirmed that KB-141 had a shorter generation time, a higher growth rate, and higher lactic acid production than the standard strain.

以上の結果から明らかなように本発明に係る乳酸菌KB−
141は好気、嫌気のいずれの条件下でも同程度の速やか
な増殖と乳酸蓄積に伴うpH低下を起こすという優れた性
質を有し、このことは乳酸発酵により安定した良質のサ
イレージ、発酵ソーセージ、漬物糖の調整を行う上で極
めて有利なものである。本発明のKB−141は単独で用い
ることもできるが、他の異なる性質を持つ乳酸菌と併用
してもよい。また、本発明のKB−141は乳酸菌飲料、ヨ
ーグルト糖の食品の製造に用いても有用である。
As is clear from the above results, the lactic acid bacterium KB- according to the present invention
141 has the excellent property of causing similar rapid growth and pH decrease due to lactic acid accumulation under both aerobic and anaerobic conditions, which means stable high quality silage by lactic acid fermentation, fermented sausage, It is extremely advantageous in adjusting pickled sugar. The KB-141 of the present invention can be used alone or in combination with other lactic acid bacteria having different properties. The KB-141 of the present invention is also useful when used in the production of lactic acid bacteria beverages and yogurt sugar foods.

【図面の簡単な説明】[Brief description of drawings]

第1図(イ),(ロ),(ハ)は20℃、30℃、37℃の各
温度における生菌数の推移を示す図、第2図(イ),
(ロ),(ハ)は20℃、30℃、37℃の各温度における培
地中の乳酸量及びpHの推移を示す図である。
Figures 1 (a), (b), and (c) show the changes in the viable cell count at each temperature of 20 ° C, 30 ° C, and 37 ° C, and Fig. 2 (a),
(B) and (C) are graphs showing changes in the amount of lactic acid in the medium and the pH at each temperature of 20 ° C, 30 ° C, and 37 ° C.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12P 7/56 9548−4B (C12N 1/20 C12R 1:225) (C12P 7/56 C12R 1:225) Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location C12P 7/56 9548-4B (C12N 1/20 C12R 1: 225) (C12P 7/56 C12R 1: 225)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ラクトバチルス属に属する乳酸菌であっ
て、好気性及び嫌気性のいずれの雰囲気でも乳酸発酵能
力を有するラクトバチルスKB−141菌株(微工研菌寄第1
0474号)であることを特徴とする新規な乳酸菌。
1. A lactic acid bacterium belonging to the genus Lactobacillus, which has the ability to ferment lactic acid in both aerobic and anaerobic atmospheres.
No. 0474), a novel lactic acid bacterium.
JP8664890A 1990-03-31 1990-03-31 New lactic acid bacteria Expired - Lifetime JPH07108215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8664890A JPH07108215B2 (en) 1990-03-31 1990-03-31 New lactic acid bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8664890A JPH07108215B2 (en) 1990-03-31 1990-03-31 New lactic acid bacteria

Publications (2)

Publication Number Publication Date
JPH03285674A JPH03285674A (en) 1991-12-16
JPH07108215B2 true JPH07108215B2 (en) 1995-11-22

Family

ID=13892855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8664890A Expired - Lifetime JPH07108215B2 (en) 1990-03-31 1990-03-31 New lactic acid bacteria

Country Status (1)

Country Link
JP (1) JPH07108215B2 (en)

Also Published As

Publication number Publication date
JPH03285674A (en) 1991-12-16

Similar Documents

Publication Publication Date Title
CA1333888C (en) Fermentation
CN109486707B (en) Bacillus subtilis strain and application thereof
EP1089633B1 (en) Methods and compositions for improving aerobic stability of silage
EP3137635A1 (en) Rapid acting lactobacillus strains and their use to improve aerobic stability of silage
CN113736716B (en) Lactobacillus paracasei, compound biological leavening agent for yellow storage and yellow storage method
JPS61501885A (en) Propionic acid production method using microbial co-culture
AU765641B2 (en) Process for preparing starter cultures of lactic acid bacteria
Langston et al. Types and sequence change of bacteria in orchardgrass and alfalfa silages
JP3805727B2 (en) Novel lactic acid strain, microbial additive containing it, and method for preparing rice fermented roughage using the additive
EP1194541B1 (en) Non-lactate-assimilating yeast for improving aerobic stability of silage
AU766156B2 (en) Baking mixes which contain flour and have an enhanced shelf life and method and means for preparing same
JP5933260B2 (en) Lactobacillus spp. And food with antifungal properties
Rauramaa et al. The effect of inoculants and cellulase on the fermentation and microbiological composition of grass silage: II Microbiological changes in the silages
CN114908018A (en) Lactobacillus brevis and application thereof in silage
JPH07108215B2 (en) New lactic acid bacteria
EP4166646A1 (en) Method for isolating lactic acid bacteria (lab) from complex samples
CN112175834B (en) Application of lactobacillus plantarum in preservation of bacillus subtilis solid microbial inoculum and method for prolonging preservation period of bacillus subtilis
JPH06104059B2 (en) New lactic acid bacteria
JPH0763358B2 (en) Lactic acid bacteria starter for silage preparation
JPH03285675A (en) New lactobacillus
Lanigan Silage Bacteriology II. Influence of Temperature Differences on the Composition of the Lactic Microflora
CN112175835B (en) Application of lactobacillus plantarum in storage of bacillus subtilis fermentation liquor
JPH0757186B2 (en) Lactic acid bacteria preparation for silage preparation
CN114672437B (en) Bacillus subtilis G-1 for producing organic acid and application thereof
JP3762826B2 (en) Lactic acid bacteria for silage preparation