JP3762826B2 - Lactic acid bacteria for silage preparation - Google Patents

Lactic acid bacteria for silage preparation Download PDF

Info

Publication number
JP3762826B2
JP3762826B2 JP00203098A JP203098A JP3762826B2 JP 3762826 B2 JP3762826 B2 JP 3762826B2 JP 00203098 A JP00203098 A JP 00203098A JP 203098 A JP203098 A JP 203098A JP 3762826 B2 JP3762826 B2 JP 3762826B2
Authority
JP
Japan
Prior art keywords
silage
lactic acid
acid bacteria
strain
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00203098A
Other languages
Japanese (ja)
Other versions
JPH11196860A (en
Inventor
義民 蔡
義己 辨野
崇 中瀬
増弘 小川
清雄 熊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP00203098A priority Critical patent/JP3762826B2/en
Publication of JPH11196860A publication Critical patent/JPH11196860A/en
Application granted granted Critical
Publication of JP3762826B2 publication Critical patent/JP3762826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fodder In General (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はサイレージ調製用乳酸菌及びサイレージの調製方法に関する。
【0002】
【従来の技術】
サイレージとは、水分の多い生草を用い、サイロ内で制御された乳酸発酵を経て調製された貯蔵飼料である。乳酸菌の種類とその生理的性質は、サイレージの発酵品質ばかりでなく、栄養価値及び反すう家畜の生理代謝に及ぼす重要な要因となる。一方、サイレージ材料草に共存する好気性細菌又は酪酸菌等の微生物は、乳酸菌の活動を競合的に阻害し、サイレージ品質の劣化及び発酵損失を招く原因となる。従って、高品質のサイレージを調製するには、これら好気性細菌又は酪酸菌等の微生物の生活環境を制御して(即ちこれら微生物の増殖を抑制して)乳酸の生成量を高めるという優れた機能を有する乳酸菌の選抜及び育種が必要である。
【0003】
近年、サイレージ用微生物添加剤が開発されているが、その構成菌の主流はラクトバチルス・カゼイ(Lactobacillus casei)、ラクトバチルス・プランタラム(Lactobacillus plantarum)及びエンテロコッカス・ファエカリス(Enterococcus faecalis) 等である。
しかし、これらの菌は耐熱性又は耐酸性に欠けるため、サイレージ発酵過程において生ずるpHの低下又はサイロ内の高温化によって乳酸発酵が完全に阻害される。従って、得られるサイレージは品質の低いものが多い。
【0004】
【発明が解決しようとする課題】
本発明はサイレージ調製用乳酸菌及びサイレージ調製方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者は上記課題を解決するため鋭意研究を行った結果、飼料作物及びルーメンから優れた機能を有する発酵乳酸菌を分離することに成功し、本発明を完成するに至った。
すなわち、本発明は、pH3.5〜4.5の範囲及び/又は温度45〜50℃の範囲で生育することができるペディオコッカス属に属する微生物である。
【0006】
さらに、本発明は、pH3.5〜9.6の範囲及び/又は温度15〜50℃の範囲で生育し、かつ、好気性細菌及び酪酸菌の増殖を抑制することができるペディオコッカス属に属する微生物である。
上記微生物としては、例えばペディオコッカス・エスピー LA3 FERM P-16549菌株又はペディオコッカス・エスピーLA35 FERM P-16548菌株が挙げられる。
さらに、本発明は、前記微生物を生草材料草に添加することを特徴とするサイレージの調製方法である。
以下、本発明を詳細に説明する。
【0007】
【発明の実施の形態】
(1)微生物の取得
本発明者は、栃木県那須郡西那須野町の酪農家で採集したサイレージ10gとルーメン液10mlを無菌的に取り出してストマッカ用ビニール袋に入れ、滅菌した生理食塩水90mlを加えてから激しく振とうして10倍〜100000倍の希釈液を作製した。各希釈液をMRS寒天培地、又はBCP(Bromocresol Purple)を加えたプレートカウント寒天培地にまき、嫌気培養装置で30℃で2〜3日間の培養を行った。
【0008】
なお、MRS寒天培地(Lactobacilli MRS寒天培地(Difco社製))の組成は以下の通りである。
【0009】

Figure 0003762826
【0010】
これらの培地から出現した各形状の異なるコロニーを単離して分離株とした。
分離した菌株について、乳酸生成能、耐酸性、高温耐性及びサイレージ発酵環境の適応性等を検索した。
【0011】
その結果、目的とする乳酸菌を2株分離し、これらをバージーズ・マニュアル・オブ・システマティック・バクテリオロジー(Bergeys Manual of Systematic Bacteriology)に従って同定すると、得られた乳酸菌はグラム染色陽性、カタラーゼ陰性、グルコースから多量に乳酸を生成する四連球菌であることから、2株ともにペディオコッカス(Pediococcus)属に属することは明らかであり、また、pH3.5〜4.5及び45℃〜50℃の範囲で生育できることから、公知のペディオコッカッス属に属する微生物とは異なる新規な微生物であると判定された。
【0012】
そして、サイレージ発酵過程において、不良微生物である好気性微生物及び酪酸菌の増殖を効果的に抑えることから、上記2株はペディオコッカス属に属する新菌株であると判断し、ペディオコッカス・エスピー(Pediococcus sp.) LA3及びペディオコッカス・エスピーLA35と命名した。
これらの微生物の菌学的性質は表1に示す通りである。
【0013】
【表1】
Figure 0003762826
【0014】
さらに、本発明の菌株の上記以外の菌学的性質(温度及びpHについては表1に記載した内容の詳細)を表2に示す。
【0015】
【表2】
Figure 0003762826
【0016】
これらの微生物は、工業技術院生命工学工業技術研究所(茨城県つくば市東1丁目1番3号)に、平成9年12月11日に、ペディオコッカス・エスピーLA3株(Pediococcus sp. LA3)についてはFERM P-16549、ペディオコッカス・エスピーLA35株(Pediococcus sp. LA35)についてはFERM P-16548としてそれぞれ寄託されている。
【0017】
表1及び2に示す通り、本発明のペディオコッカス属に属する微生物は、公知のペディオコッカス属に属する微生物のうち何れの菌株とも異なっている。特に、温度45〜50℃及びpH3.5〜4.5の範囲において耐熱性及び耐酸性を兼ね備えており、従来のペディオコッカス属に属する微生物にない優れた特性を有している。そして、本発明の微生物は、サイレージ発酵に対する不良微生物、すなわち大腸菌(Escherichia coli)などの好気性細菌、及びクロストリジウム・ブチリカム(Clostridium butyricum)などの酪酸菌の増殖を抑制することができる。
従って、本発明の微生物は、サイレージ調製用微生物添加剤として適している。
【0018】
(2)サイレージの調製
本発明においては、上記微生物を生草材料草に添加し、所定期間培養(貯蔵)すると、高品質のサイレージ、すなわち乳酸含量が高く、酪酸及びアンモニア態窒素含量が低く、そして乾物損失率が少ないサイレージが調製される。
本発明においてサイレージ材料草は、トウモロコシ、ソルガムなどの飼料作物はもちろん、アルファルファ、イタリアンライグラス、エンバク、ギニアグラスなどの牧草も含まれ、何ら限定されるものではない。
【0019】
まず、これらのサイレージ材料草を10mm程度に細切した。
一方、サイレージ材料草に微生物を添加するため、本発明の微生物の培養は、MRS液体培地に接種し、好気又は嫌気培養装置を用いて、30℃〜37℃で1〜2日行う。
次に、培養後の微生物を生理食塩水で希釈し、適量を上記材料草に散布添加してサイロに固く詰め込んだ。
【0020】
飼料単位量あたり本発明の微生物を添加する量は、材料草1gあたり103〜105菌数レベル、好ましくは105菌数レベルである。また、本発明の微生物の菌株の種類は限定されず、1種類の菌株(LA3株又はLA35株)を単独で添加してもよく、両者を混合して添加してもよく、さらに本発明の微生物に他の乳酸菌(例えばラクトバチルス・カゼイ(Lactobacillus casei)等)を混合して添加してもよい。
【0021】
本発明の微生物(例えばLA3株及びLA35株)を複数混合する場合は、それぞれの微生物の混合比を任意に設定することができ、全体で103〜105菌数レベルとなるようにする。また、他の乳酸菌を添加する場合は、微生物全体のうち本発明の微生物が103〜105菌数レベルとなるようにする。
散布添加後、サイロ内で14日以上、好ましくは30日〜60日貯蔵すると、品質に優れたサイレージが調製される。ここで、本発明の微生物はpH3.5〜4.5の範囲及び/又は温度45〜50℃の範囲で生育することができるため、高温又は常温条件でも高品質サイレージの調整ができる。
【0022】
【実施例】
以下、本発明を実施例により更に具体的に説明する。但し、本発明は以下の実施例によってその技術的範囲が限定されるものではない。
〔実施例1〕サイレージの調製及び微生物環境の検討
サイレージの調製は、小規模サイレージ発酵試験法(Cai.Y. et al., J. Appl. Microbiol. 83, 307-313(1997))によって行った。
まず、アルファルファ及びイタリアンライグラス材料草をそれぞれカッターで約10mmに切断した。一方、本発明の乳酸菌(LA3又はLA35株)をMRS液体培地に接種し、好気又は嫌気条件下で30℃〜37℃で1〜2日培養した。
【0023】
次に、材料草1gあたり105菌数レベルのLA3又はLA35株を添加し、1L実験用ガラス瓶サイロに固く詰め込み、ビニールフィルムで密封してサイレージを調製した。材料草の処理区は、無処理区、LA3添加区及びLA35添加区の3つの試験区をそれぞれ設定した。これらのサイロを25℃及び45℃のインキュベーターで所定期間それぞれ培養した。
サイレージ発酵過程における微生物の変遷は、貯蔵後2、5、10、及び30日目にサイロをそれぞれ開封して調査した。
【0024】
まず、サイレージ10gを無菌的に取り出してストマッカ用ビニール袋に入れ、滅菌した生理食塩水90mlを加えた後激しく振とうして10倍希釈液とし、次にこの液の一定量をさらに適当に希釈してから微生物の数を平板培養法で計測した。
【0025】
乳酸菌はBCP加プレートカウント寒天培地及びMRS寒天培地、酪酸菌はEG寒天培地及びBL寒天培地を使用して嫌気培養装置で37℃で2〜5日間培養した。好気性細菌は、普通寒天培地を使用して30℃で2日間培養した。なお、各細菌の菌数は、新鮮試料1g当たりのコロニー形成数(cfu/g)で表示した。
結果を表3に示す。
【0026】
【表3】
Figure 0003762826
【0027】
表3において、常温(25℃)における本発明の菌株を添加したサイレージでは、無処理のサイレージ(本発明の菌株無添加)と比較して、発酵初期に添加菌が旺盛に増殖し、そして培養日数とともに好気性細菌が減少し、酪酸菌においては検出できないほど増殖が抑えられた。この結果は、アルファルファサイレージにおいてもイタリアンライグラスサイレージにおいても同様の傾向であった。
また、高温(45℃)における本発明の菌株を添加したサイレージについても、25℃におけるサイレージと同様、本発明の菌株を添加することにより好気性細菌及び酪酸菌の増殖が抑えられた。
従って、本発明の菌株は、サイレージでの発酵環境に適し、そしてサイレージ発酵品質を改善する点で有用である。
【0028】
〔実施例2〕サイレージ発酵品質の検討
サイレージの乾物率は、70℃通風乾燥法により定量した。サイレージのpHと有機酸含量は以下の通り測定した。
サイレージ試料50gを採取し、これに蒸留水200mlを加えてよく攪拌した後、4℃冷蔵庫で12時間放置した。この浸漬液を濾過し、ガラス電極pHメーターでpH値を測定した。
一方、残りの浸漬液をイオン交換樹脂(Amberlite IR120H+)で処理し、続いて高速遠心分離(12,000rpm×3分)を行った。遠心分離後の上澄液を口径0.45μmフィルターに通し、高速液体クロマトグラフィー(HPLC)によって有機酸を分析した。
【0029】
サイレージのアンモニア態窒素含量は、F-キット酵素法(ベーリンガー・マンハイム山之内)を用いてそれぞれ分析した。この場合、サイレージ抽出液を80℃で15分間加熱処理して酵素活性を失活させた後に含量の分析を行った。なお、サイレージの発酵品質はMultiple range testを用いて有意差を検定した。
結果を表4に示す。
【0030】
【表4】
Figure 0003762826
【0031】
表4において、本発明の菌株を添加した場合は、無処理と比較して乳酸含量が顕著に増加した。また、サイレージの品質を低下させる酪酸発酵及びアンモニア態窒素の生成力が顕著に抑えられた。このことは、25℃の試験区及び45℃の試験区ともに同様の結果であった。
従って、本発明の菌株の添加によって、常温のみならず、高温条件下でも高品質サイレージが調製されることが分かった。
【0032】
〔実施例3〕サイレージ乾物損失率及びガス生成量の検討
サイレージのガス生成量は、小規模サイレージ発酵試験法で測定した。すなわち、精密に秤量した材料草100gをガスバリヤー性の高い(ガスを透過しにくい)ポリエチレン、ナイロン及びビニリデンの積層フィルム(旭化成、飛竜KNタイプ、180×260mm)袋内に入れ、真空包装機(松下電器BH-950)で脱気・密封した。恒温水槽(30℃)を用いて詰込み時のサイロ体積を測定した。
【0033】
貯蔵60日目に同様に体積を測定して、詰込時の体積との差から膨張したガス体積を求め、材料草1kg当たりに換算してガス生成量とした。また、乾物損失率は材料草とサイレージの乾物重量から求めた。サイレージのガス生成量と乾物損失率はMultiple range testを用いて有意差を検定した。
結果を図1に示す。
図1より、本発明の菌株を添加したサイレージでは、乾物の損失及びガスの生成が抑えられ、サイレージの発酵損失を有意に減少させることが明らかになった。
【0034】
【発明の効果】
本発明により、サイレージ調製用高機能発酵乳酸菌及びサイレージの調製方法が提供される。本発明の菌株は、耐酸性及び耐熱性を有し、乳酸生成能が高く、サイレージ調製の際の発酵環境を悪化させる好気性細菌及び酪酸菌等の増殖を抑制することができるため、サイレージ調製用微生物添加剤として有用である。
【図面の簡単な説明】
【図1】サイレージの乾物損失及びガスの生成を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a lactic acid bacterium for silage preparation and a method for preparing silage.
[0002]
[Prior art]
Silage is a stored feed prepared using raw grass with a lot of water and lactic acid fermentation controlled in a silo. The type of lactic acid bacteria and their physiological properties are important factors that affect not only the fermentation quality of silage but also the nutritional value and the physiological metabolism of ruminant livestock. On the other hand, microorganisms such as aerobic bacteria or butyric acid bacteria that coexist in silage material grass competitively inhibit the activity of lactic acid bacteria, leading to deterioration of silage quality and fermentation loss. Therefore, in order to prepare high-quality silage, an excellent function of increasing the amount of lactic acid produced by controlling the living environment of these microorganisms such as aerobic bacteria or butyric acid bacteria (ie, suppressing the growth of these microorganisms). Selection and breeding of lactic acid bacteria having
[0003]
In recent years, microbial additives for silage have been developed, and the main constituents thereof are Lactobacillus casei , Lactobacillus plantarum, Enterococcus faecalis , and the like.
However, since these bacteria lack heat resistance or acid resistance, lactic acid fermentation is completely inhibited by lowering the pH or increasing the temperature in the silo produced during the silage fermentation process. Therefore, the silage obtained is often low quality.
[0004]
[Problems to be solved by the invention]
An object of this invention is to provide the lactic acid bacteria for silage preparation, and the silage preparation method.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventor succeeded in separating fermented lactic acid bacteria having excellent functions from forage crops and rumen, and completed the present invention.
That is, the present invention is a microorganism belonging to the genus Pediococcus that can grow in a pH range of 3.5 to 4.5 and / or a temperature range of 45 to 50 ° C.
[0006]
Furthermore, the present invention relates to a microorganism belonging to the genus Pediococcus that grows in a pH range of 3.5 to 9.6 and / or a temperature range of 15 to 50 ° C. and can suppress the growth of aerobic bacteria and butyric acid bacteria. It is.
Examples of the microorganism include Pediococcus sp. LA3 FERM P-16549 strain or Pediococcus sp. LA35 FERM P-16548 strain.
Furthermore, the present invention is a method for preparing silage, wherein the microorganism is added to a grass of raw grass material.
Hereinafter, the present invention will be described in detail.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
(1) Acquisition of microorganisms The inventor aseptically removes 10g of silage and 10ml of rumen solution collected by a dairy farmer in Nishinasuno-cho, Nasu-gun, Tochigi Prefecture, puts them in a plastic bag for stomacher, and 90ml of sterile saline After addition, the mixture was shaken vigorously to prepare a 10 to 100000-fold dilution. Each dilution was spread on an MRS agar medium or a plate count agar medium supplemented with BCP (Bromocresol Purple), and cultured at 30 ° C. for 2 to 3 days in an anaerobic culture apparatus.
[0008]
The composition of the MRS agar medium (Lactobacilli MRS agar medium (Difco)) is as follows.
[0009]
Figure 0003762826
[0010]
Colonies with different shapes that emerged from these media were isolated and used as isolates.
The isolated strains were searched for lactic acid production ability, acid resistance, high temperature resistance, adaptability of silage fermentation environment, and the like.
[0011]
As a result, two strains of the desired lactic acid bacteria were isolated and identified according to the Bergeys Manual of Systematic Bacteriology. The resulting lactic acid bacteria were positive from Gram staining, catalase negative, and glucose. It is clear that both strains belong to the genus Pediococcus due to the fact that it is a staphylococcus that produces a large amount of lactic acid, and can grow in the range of pH 3.5 to 4.5 and 45 ° C to 50 ° C. Therefore, it was determined that the microorganism was a novel microorganism different from a known microorganism belonging to the genus Pediococcus.
[0012]
In the silage fermentation process, the above-mentioned two strains are judged to be new strains belonging to the genus Pediococcus because the growth of aerobic microorganisms and butyric acid bacteria, which are defective microorganisms, is effectively suppressed, and Pediococcus sp. (Pediococcus sp.) LA3 and Pediococcus sp. LA35.
The mycological properties of these microorganisms are as shown in Table 1.
[0013]
[Table 1]
Figure 0003762826
[0014]
Further, the bacteriological properties of the strain of the present invention other than the above (details of the contents described in Table 1 for temperature and pH) are shown in Table 2.
[0015]
[Table 2]
Figure 0003762826
[0016]
These microorganisms were transferred to the Biotechnology Institute of Industrial Technology (Tsukuba City, Ibaraki Pref. 1-3-3) on December 11, 1997, on Pediococcus sp. LA3. For FERM P-16549 and Pediococcus sp. LA35 (Pediococcus sp. LA35) are deposited as FERM P-16548.
[0017]
As shown in Tables 1 and 2, the microorganism belonging to the genus Pediococcus of the present invention is different from any of the known microorganisms belonging to the genus Pediococcus. In particular, it has heat resistance and acid resistance in the temperature range of 45 to 50 ° C. and pH 3.5 to 4.5, and has excellent characteristics not found in conventional microorganisms belonging to the genus Pediococcus. The microorganism of the present invention can suppress the growth of bad microorganisms for silage fermentation, that is, aerobic bacteria such as Escherichia coli and butyric acid bacteria such as Clostridium butyricum .
Therefore, the microorganism of the present invention is suitable as a microorganism additive for silage preparation.
[0018]
(2) Preparation of silage In the present invention, when the above-mentioned microorganisms are added to fresh grass grass and cultured (stored) for a predetermined period, high quality silage, that is, high lactic acid content, low butyric acid and ammonia nitrogen content, Silage with a low dry matter loss rate is prepared.
In the present invention, the silage material grass includes not only forage crops such as corn and sorghum, but also grass such as alfalfa, Italian ryegrass, oat, and guinea grass, and is not limited at all.
[0019]
First, these silage grasses were chopped to about 10 mm.
On the other hand, in order to add microorganisms to the silage material grass, the culture of the microorganisms of the present invention is inoculated into an MRS liquid medium and performed at 30 ° C. to 37 ° C. for 1 to 2 days using an aerobic or anaerobic culture apparatus.
Next, the cultured microorganisms were diluted with physiological saline, and an appropriate amount was sprayed and added to the material grass and packed tightly in a silo.
[0020]
The amount of the microorganism of the present invention to be added per feed unit amount is 10 3 to 10 5 bacteria number per gram of material grass, preferably 10 5 bacteria number level. Further, the type of the strain of the microorganism of the present invention is not limited, and one type of strain (LA3 strain or LA35 strain) may be added alone, or both may be mixed and added. Other lactic acid bacteria (such as Lactobacillus casei ) may be mixed and added to the microorganism.
[0021]
When a plurality of the microorganisms of the present invention (for example, LA3 strain and LA35 strain) are mixed, the mixing ratio of the respective microorganisms can be arbitrarily set, so that the total number of bacteria is 10 3 to 10 5 . In addition, when other lactic acid bacteria are added, the microorganism of the present invention is at a level of 10 3 to 10 5 bacteria among all the microorganisms.
After spraying addition, silage excellent in quality is prepared by storing in a silo for 14 days or more, preferably 30 to 60 days. Here, since the microorganism of the present invention can grow in a pH range of 3.5 to 4.5 and / or a temperature range of 45 to 50 ° C., high-quality silage can be adjusted even at high temperature or normal temperature conditions.
[0022]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the technical scope of the present invention is not limited by the following examples.
[Example 1] Preparation of silage and examination of microbial environment Silage is prepared by a small-scale silage fermentation test method (Cai. Y. et al., J. Appl. Microbiol. 83, 307-313 (1997)). It was.
First, alfalfa and Italian ryegrass grass were each cut into approximately 10 mm with a cutter. On the other hand, the lactic acid bacteria (LA3 or LA35 strain) of the present invention were inoculated into an MRS liquid medium and cultured at 30 ° C. to 37 ° C. for 1-2 days under aerobic or anaerobic conditions.
[0023]
Next, 10 5 bacteria level of LA3 or LA35 strain was added per 1 g of material grass, and it was tightly packed into a 1 L laboratory glass bottle silo and sealed with a vinyl film to prepare a silage. Three treatment plots were set for the treatment zone of the material grass, the non-treatment plot, the LA3 addition plot, and the LA35 addition plot. These silos were cultured in a 25 ° C. and 45 ° C. incubator for a predetermined period, respectively.
The changes in microorganisms during the silage fermentation process were investigated by opening the silos on the second, fifth, tenth and thirty days after storage.
[0024]
First, aseptically remove 10g of silage and place it in a plastic bag for stomacher. Add 90ml of sterilized physiological saline, shake vigorously to make a 10-fold diluted solution, and then dilute a certain amount of this solution appropriately. Then, the number of microorganisms was counted by a plate culture method.
[0025]
Lactic acid bacteria were cultured at 37 ° C. for 2 to 5 days in an anaerobic culture apparatus using BCP-added plate count agar medium and MRS agar medium, butyric acid bacteria using EG agar medium and BL agar medium. Aerobic bacteria were cultured at 30 ° C. for 2 days using a normal agar medium. The number of bacteria of each bacterium was expressed as the number of colonies formed per 1 g of fresh sample (cfu / g).
The results are shown in Table 3.
[0026]
[Table 3]
Figure 0003762826
[0027]
In Table 3, in the silage to which the strain of the present invention was added at room temperature (25 ° C.), the added bacteria were vigorously grown and cultured in the early stage of fermentation as compared to untreated silage (no strain of the present invention added). The number of aerobic bacteria decreased with the number of days, and the growth was suppressed to an extent that could not be detected in butyric acid bacteria. This result was similar in both alfalfa silage and Italian ryegrass silage.
Moreover, also about the silage which added the strain of this invention in high temperature (45 degreeC), like the silage at 25 degreeC, the growth of aerobic bacteria and butyric acid bacteria was suppressed by adding the strain of this invention.
Therefore, the strain of the present invention is suitable for a fermentation environment in silage and is useful in improving the quality of silage fermentation.
[0028]
[Example 2] Examination of silage fermentation quality The dry matter rate of silage was quantified by a 70 ° C ventilation drying method. The silage pH and organic acid content were measured as follows.
A silage sample (50 g) was collected, 200 ml of distilled water was added thereto, and the mixture was stirred well, and then left in a refrigerator at 4 ° C. for 12 hours. The immersion liquid was filtered, and the pH value was measured with a glass electrode pH meter.
On the other hand, the remaining immersion liquid was treated with an ion exchange resin (Amberlite IR120H +), followed by high-speed centrifugation (12,000 rpm × 3 minutes). The supernatant after centrifugation was passed through a 0.45 μm filter, and the organic acid was analyzed by high performance liquid chromatography (HPLC).
[0029]
The ammonia nitrogen content of silage was analyzed using the F-kit enzyme method (Boehringer Mannheim Yamanouchi). In this case, the silage extract was heat-treated at 80 ° C. for 15 minutes to inactivate the enzyme activity, and then the content was analyzed. In addition, the fermentation quality of the silage was tested for a significant difference using a multiple range test.
The results are shown in Table 4.
[0030]
[Table 4]
Figure 0003762826
[0031]
In Table 4, when the strain of the present invention was added, the lactic acid content was remarkably increased as compared with no treatment. Moreover, the production capacity of butyric acid fermentation and ammonia nitrogen which lowers the quality of silage was remarkably suppressed. This was the same result in both the 25 ° C. test zone and the 45 ° C. test zone.
Therefore, it was found that by adding the strain of the present invention, high quality silage is prepared not only at room temperature but also at high temperature.
[0032]
[Example 3] Examination of silage dry matter loss rate and gas generation amount The gas generation amount of silage was measured by a small-scale silage fermentation test method. In other words, 100 g of precisely weighed material grass is placed in a bag of polyethylene, nylon and vinylidene film (Asahi Kasei, Hiryu KN type, 180 × 260 mm) with high gas barrier properties (difficult to permeate gas), and vacuum packaging machine (Matsushita Electric BH-950) deaerated and sealed. The silo volume at the time of clogging was measured using a constant temperature water bath (30 ° C).
[0033]
On the 60th day of storage, the volume was measured in the same manner, and the expanded gas volume was determined from the difference from the volume at the time of packing, and converted into the amount of gas produced per 1 kg of material grass. The dry matter loss rate was determined from the dry weight of the material grass and silage. Silage gas production and dry matter loss rate were tested for significant differences using the Multiple range test.
The results are shown in FIG.
From FIG. 1, it became clear that silage to which the strain of the present invention was added suppressed dry matter loss and gas production, and significantly reduced silage fermentation loss.
[0034]
【The invention's effect】
According to the present invention, a highly functional fermented lactic acid bacterium for silage preparation and a method for preparing silage are provided. Since the strain of the present invention has acid resistance and heat resistance, has a high ability to produce lactic acid, and can suppress the growth of aerobic bacteria and butyric acid bacteria that deteriorate the fermentation environment during silage preparation, silage preparation It is useful as a microbial additive.
[Brief description of the drawings]
FIG. 1 is a diagram showing silage dry matter loss and gas generation.

Claims (2)

pH3.5〜9.6の範囲及び/又は温度15〜50℃の範囲で生育し、かつ、好気性細菌及び酪酸菌の増殖を抑制することができるペディオコッカス属に属する微生物であって、ペディオコッカス・エスピー LA3 (受託番号 FERM P-16549 )菌株又はペディオコッカス・エスピー LA35 (受託番号 FERM P-16548 )菌株である、前記微生物grown in scope and / or the temperature 15 to 50 ° C. for PH3.5~9.6, and a microorganism belonging to the genus Pediococcus capable of suppressing the growth of aerobic bacteria and butyric acid bacteria, Pedio Staphylococcus sp LA3 (accession No. FERM P-16549) strain or Pediococcus sp LA35 (accession No. FERM P-16548) is a strain, the microorganism. 請求項1記載の微生物を生草材料草に添加することを特徴とするサイレージの調製方法。 A method for preparing silage, wherein the microorganism according to claim 1 is added to a grass of raw grass material.
JP00203098A 1998-01-08 1998-01-08 Lactic acid bacteria for silage preparation Expired - Fee Related JP3762826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00203098A JP3762826B2 (en) 1998-01-08 1998-01-08 Lactic acid bacteria for silage preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00203098A JP3762826B2 (en) 1998-01-08 1998-01-08 Lactic acid bacteria for silage preparation

Publications (2)

Publication Number Publication Date
JPH11196860A JPH11196860A (en) 1999-07-27
JP3762826B2 true JP3762826B2 (en) 2006-04-05

Family

ID=11517946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00203098A Expired - Fee Related JP3762826B2 (en) 1998-01-08 1998-01-08 Lactic acid bacteria for silage preparation

Country Status (1)

Country Link
JP (1) JP3762826B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3023490A1 (en) * 2014-11-24 2016-05-25 Danstar Ferment AG Hay preservative and methods for preservation of hay

Also Published As

Publication number Publication date
JPH11196860A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
Lin et al. Epiphytic lactic acid bacteria succession during the pre‐ensiling and ensiling periods of alfalfa and maize
Cai et al. Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage
Cai et al. Effect of NaCl‐tolerant lactic acid bacteria and NaCl on the fermentation characteristics and aerobic stability of silage
EP3137635B1 (en) Rapid acting lactobacillus strains and their use to improve aerobic stability of silage
CN107034156A (en) Lactobacillus plantarum and its application
CN107047978A (en) A kind of Lactobacillus plantarum and its application in ensilage is prepared
US20080138461A1 (en) Lactobacillus buchneri strain LN1297 and its use to improve aerobic stability of silage
US20080138463A1 (en) Lactobacillus buchneri strain LN5689 and its use to improve aerobic stability of silage
US20080138462A1 (en) Lactobacillus buchneri strain LN5665 and its use to improve aerobic stability of silage
CN107981034B (en) Lactobacillus buchneri HEW-A666 and application thereof
US20090028991A1 (en) Lactobacillus buchneri strain LN1284 and its use to improve aerobic stability of silage
US20090028993A1 (en) Lactobacillus buchneri strain LN1326 and its use to improve aerobic stability of silage
US20090028992A1 (en) Lactobacillus buchneri strain LN1286 and its use to improve aerobic stability of silage
JP2886285B2 (en) Control of mold in feed
JP3805727B2 (en) Novel lactic acid strain, microbial additive containing it, and method for preparing rice fermented roughage using the additive
CN108998387B (en) Lactobacillus combined preparation for ensiling sugarcane tail leaves and application thereof
JP3762826B2 (en) Lactic acid bacteria for silage preparation
Hanagasaki Identification and characterization of lactic acid bacteria associated with tropical grass silage produced in Okinawa
Cai et al. Comparative studies of lactobacilli and enterococci associated with forage crops as silage inoculants
EP0329164B1 (en) Lactic acid bacteria starter for preparation of silage and agent containing the bacteria in the viable state
JPH0763358B2 (en) Lactic acid bacteria starter for silage preparation
CN117343883B (en) Lactobacillus plantarum and application thereof
CN114621900B (en) Lactobacillus paracasei and application thereof
CA3230397A1 (en) Silage inoculants for inhibition of acetobacter
JP2006042647A (en) New lactic acid bacterial strain and method for inhibiting silage aerobic deterioration

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees