JPH0710718A - Method for preventing shedding of pod of leguminous plant - Google Patents

Method for preventing shedding of pod of leguminous plant

Info

Publication number
JPH0710718A
JPH0710718A JP5150291A JP15029193A JPH0710718A JP H0710718 A JPH0710718 A JP H0710718A JP 5150291 A JP5150291 A JP 5150291A JP 15029193 A JP15029193 A JP 15029193A JP H0710718 A JPH0710718 A JP H0710718A
Authority
JP
Japan
Prior art keywords
amino acid
acid fermentation
pods
pod
pot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5150291A
Other languages
Japanese (ja)
Inventor
Akira Yoshimura
明 吉村
Minoru Watanabe
実 渡辺
Yoji Sakai
洋士 坂井
Takeshi Nakamura
武史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP5150291A priority Critical patent/JPH0710718A/en
Publication of JPH0710718A publication Critical patent/JPH0710718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

PURPOSE:To prevent the pod-shedding of a leguminous plant by using an amino acid fermentation liquid. CONSTITUTION:An amino acid fermentation raw material containing a sugar (especially glucose), urea or an ammonium salt and other inorganic and organic materials is treated with an amino acid fermentation microorganism. The obtained amino acid fermentation liquid is sprayed or irrigated to a leguminous plant after the initial stage of flowering time to prevent the shedding of pod of the leguminous plant during the weight-increasing period of the pod.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、豆科作物の栽培におい
て、落莢を防止する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing falling pods in the cultivation of legume crops.

【0002】[0002]

【従来の技術】近年の畑作農業において、豆科作物は大
変重要な位置を占めている。例えば、近代農業において
連作障害を回避するには輪作を行う以外によい方法はな
く、その輪作を行う場合に豆科作物は主役の一つであ
る。豆科作物の収量は一般の作物に比較して著しく低
い。豆科作物の収量が増加しない主な要因としては、
タンパク質,脂肪などの蓄積に多量のエネルギーを要す
ること、根粒菌に葉で生産された炭水化物の一部が消
費されること、根の活性が収穫時期に著しく衰えるこ
と、収穫時期に莢の成熟のために必要な養分が不足す
るため莢間で養分の収奪が起こり、落莢現象が見られる
こと、寒冷地での豆科作物の栽培では低温による生育
障害を受けやすいこと、などがある。豆科作物の栽培で
収益性を向上させるためには、生産性をいかにして向上
させるかが大きな課題となっている。
2. Description of the Related Art Legume crops occupy a very important position in the recent upland farming. For example, in modern agriculture, there is no better way to avoid continuous crop rotations than crop rotation, and legume crops are one of the leading roles in crop rotation. The yield of legume crops is significantly lower than that of ordinary crops. The main factors that do not increase the yield of legume crops are:
A large amount of energy is required to accumulate proteins, fats, etc., some of the carbohydrates produced in the leaves are consumed by rhizobia, root activity is significantly reduced during harvesting, and pod maturation during harvesting Therefore, nutrients are scavenged between the pods due to lack of necessary nutrients, and there is a phenomenon of falling pods. Cultivation of legume crops in cold regions is susceptible to growth failure due to low temperatures. In order to improve profitability in the cultivation of legume crops, how to improve productivity is a major issue.

【0003】生産性向上のため、大型機械化農業や、省
力栽培が進められているが、抜本的な生産コスト低減に
は至っていない。生産性向上には、コスト低減のほか、
単位収量を上げ、収益を高める方法がある。豆科作物の
増収をはかる技術としては、品種面では、多収品種の作
出、栽培面では、根粒菌の着生や、窒素の追施用法,緩
効性肥料の利用,有機物の施用などが研究され、一部で
は実用化されている。
Large-scale mechanized agriculture and labor-saving cultivation have been promoted in order to improve productivity, but the production cost has not been drastically reduced. To improve productivity, in addition to cost reduction,
There are ways to increase unit yield and profit. Techniques for increasing the yield of legume crops include the production of high-yielding varieties in terms of varieties, the growth of root nodule bacteria, the method of nitrogen supplementation, the use of slow-release fertilizers, and the application of organic matter in terms of cultivation. It has been studied and has been put to practical use in some areas.

【0004】しかしながら、多収品種では、食味の問題
や、気候条件、土壌条件などにより収量の上がらない場
合があるなど、不安定な要素を含んでいる。
However, the high-yielding varieties include unstable factors such as the problem that the yield may not be increased due to the problem of eating quality, climatic conditions and soil conditions.

【0005】根粒菌は、宿主作物から炭水化物の供給を
受けて、空気中の窒素を固定して宿主作物に供給する。
豆科作物は、窒素の施肥量が少なくても収量の上がる作
物であるが、植物体が同化したエネルギーを根粒菌に供
給することとなり、炭水化物を収穫部位の主成分とする
作物に比べ、収量が抑制される。根粒菌が宿主作物に供
給する窒素量は、気象条件,土壌条件,栽培条件,根に
共生した根粒菌の能力などによって大きく異なり、安定
的な方法とは言い難い。
[0005] Rhizobium receives a carbohydrate supply from the host crop, fixes nitrogen in the air and supplies the nitrogen to the host crop.
Although legume crops are crops that yield higher yields even when the amount of nitrogen fertilizer applied is small, they supply the energy assimilated by the plant body to the nodule bacteria, and compared to crops that use carbohydrates as the main component at the harvest site, Is suppressed. The amount of nitrogen supplied by root nodule bacteria to host crops varies greatly depending on weather conditions, soil conditions, cultivation conditions, and the ability of root nodule bacteria that co-exist with roots, and it is difficult to say that this is a stable method.

【0006】窒素の追施用では、根粒菌の活性低下を招
く。また、早い時期の追肥は、茎葉への効果が高く、倒
伏につながる場合があり、遅い時期では、実際の作業上
無理がある。根粒菌が固定した窒素をできるだけ利用
し、追施用した窒素肥料を十分に利用することを考えあ
わせると、施用時期が限られ、大変難しい技術である。
また、土壌,気象条件などによって追肥効果が異なるな
ど、多くの問題点を有している。
When nitrogen is additionally applied, the activity of rhizobia is lowered. In addition, the additional fertilization at an early stage has a high effect on the foliage, which may lead to lodging. At a late stage, it is practically impossible in practice. Considering that the nitrogen fixed by the root nodule bacteria should be used as much as possible and the nitrogen fertilizer that has been additionally applied should be used sufficiently, the application period is limited and this is a very difficult technique.
In addition, there are many problems such as the effect of additional fertilization depending on soil and weather conditions.

【0007】緩効性肥料は、養分の溶出期間をある程度
コントロールできる利点を有しているが、豆科植物に関
しては、窒素の追施用と同様の考えから、有効な手段と
は言い難い。
The slow-release fertilizer has an advantage that the elution period of nutrients can be controlled to some extent, but it cannot be said that it is an effective means for legumes from the same idea as that of nitrogen supplementation.

【0008】有機物の施用では、広い圃場に施用する作
業性の問題、多量の有機物の確保、施用する有機物の種
類や性状により効果が変わるなどの障害があり、普及の
程度は低い。
The application of organic substances is not widely used because of problems such as workability when applied to a wide field, securing a large amount of organic substances, and effects depending on the type and properties of the applied organic substances.

【0009】また、豆科作物の低温障害を軽減するため
に植物体が幼い時期にアミノ酸醗酵液を葉面に散布する
方法が知られている(特開平4−58825号公報)
が、植物体が幼い開花期前のアミノ酸醗酵液での処理で
は植物体の耐寒性を向上させ、樹勢を良くして、収量の
増加にはなるものの、収穫期に発生する落莢は防止する
ことができず、それほどの増収にはなっていない。
Further, there is known a method of spraying an amino acid fermented solution onto the leaves at a young age in order to alleviate low temperature damage of legume crops (JP-A-4-58825).
However, treatment with an amino acid fermentation solution before the flowering stage of the plant improves the cold resistance of the plant, improves the tree vigor, and increases the yield, but it prevents pods that occur during the harvest period. It is not possible to do so, and the revenue has not increased so much.

【0010】これらの方法のほか、豆科作物の収量を増
加させる方法として、豆類の開花中期以降に茎葉にブ
ラシノライド類を処理し、莢の落下を抑制し、収穫莢数
を増加させ、増収をはかる方法(特開平1−14680
5号公報)、特定のアンモニウムヒドロキシド化合物
の塩,特定のアンモニウムの塩を活性成分として含有す
る植物の生長調節剤を用いる方法(特開平2−2314
01号公報、特開平2−231402号公報)が開示さ
れている。これらの方法は、一部実用化されているもの
の、安定した効果が得られない、安全性に疑問があるな
どの問題点を有している。
In addition to these methods, as a method for increasing the yield of legume crops, the foliage is treated with brassinolides after the middle stage of flowering of beans to suppress the drop of pods and increase the number of harvested pods. Method for increasing revenue (Japanese Patent Laid-Open No. 14680/1989)
5), a method of using a salt of a specific ammonium hydroxide compound and a plant growth regulator containing a specific ammonium salt as an active ingredient (JP-A-2-2314).
No. 01, JP-A-2-231402) are disclosed. Although some of these methods have been put to practical use, they have problems such as inability to obtain stable effects and doubts about safety.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、上に
記載した従来技術の欠点を克服した、実用的で安全な方
法で豆科作物の落莢を防止し、安定的に収量を増加させ
る方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to prevent drop pods of legume crops in a practical and safe manner to overcome the drawbacks of the prior art described above, and to stably increase the yield. It is to provide a method to do.

【0012】[0012]

【課題を解決するための手段】本発明者らは、豆科作物
栽培における上記問題点を解決するため、鋭意研究を重
ねた結果、アミノ酸発酵液を開花始期以降に投与するこ
とによって、収穫時期での落莢を防止し、収穫莢数を増
加させ、収量を増加させることが出来ることを見いだ
し、この発明を完成するに至った。
[Means for Solving the Problems] The inventors of the present invention have conducted intensive studies to solve the above problems in cultivating legumes, and as a result, by administering an amino acid fermented liquid after the beginning of flowering, the harvest time was improved. The inventors have found that it is possible to prevent drop pods in the plant, increase the number of harvested pods, and increase the yield, and completed the present invention.

【0013】本発明において用いられるアミノ酸発酵液
はアミノ酸発酵原料にアミノ酸発酵菌を作用させてアミ
ノ酸発酵を行わしめ、通常除菌処理したものである。
The amino acid fermentation liquor used in the present invention is obtained by subjecting an amino acid fermentation raw material to an amino acid fermentation bacterium to carry out amino acid fermentation, and usually sterilized.

【0014】本発酵に用いるアミノ酸発酵原料として
は、アミノ酸発酵菌を作用させることができる何れのも
のであっても良い。
The amino acid fermentation raw material used for the main fermentation may be any one that can act amino acid fermenting bacteria.

【0015】糖原料としては、グルコース,フラクトー
ス,シュークロース,廃糖密,異性化糖などの何れでも
構わない。窒素原料としては尿素やアンモニウム塩の何
れでも良い。
The sugar raw material may be any of glucose, fructose, sucrose, waste sugar concentrate, isomerized sugar and the like. As the nitrogen raw material, either urea or ammonium salt may be used.

【0016】例えば、糖原料としてグルコースのみを用
いた場合、アミノ酸発酵原料中のグルコースの濃度は1
〜50重量%が好ましく、さらに好ましくは5〜20重
量%である。
For example, when only glucose is used as the sugar raw material, the concentration of glucose in the amino acid fermentation raw material is 1
˜50% by weight is preferable, and more preferably 5 to 20% by weight.

【0017】尿素もしくはアンモニウム塩は単独で用い
ても併用しても構わないが、発酵原料中の濃度は合計で
0.5〜20重量%が好ましく、さらに好ましくは1〜
10重量%である。アンモニウム塩としては硫酸アンモ
ニウム、塩化アンモニウム、硝酸アンモニウムなどの無
機アンモニウム塩や酢酸アンモニウム、ギ酸アンモニウ
ムなどの有機アンモニウム塩が用いられる。
The urea or ammonium salt may be used alone or in combination, but the total concentration in the fermentation raw material is preferably 0.5 to 20% by weight, more preferably 1 to 20% by weight.
It is 10% by weight. As the ammonium salt, inorganic ammonium salts such as ammonium sulfate, ammonium chloride and ammonium nitrate, and organic ammonium salts such as ammonium acetate and ammonium formate are used.

【0018】酵母エキスを添加する場合は発酵原料液中
0.1〜20重量%が好ましく、さらに好ましくは0.
2〜5重量%である。また、酵母エキスは培養終了後に
さらに添加してもよく、これによって本発明の効果が高
められることがある。
When yeast extract is added, it is preferably 0.1 to 20% by weight, more preferably 0.1% by weight in the fermentation raw material liquid.
It is 2 to 5% by weight. Further, the yeast extract may be further added after the completion of the culture, which may enhance the effect of the present invention.

【0019】その他の発酵原料として、各種の無機物及
び有機物、例えば、燐酸カリウム、塩化ナトリウム、硫
酸マグネシウム、硫酸マンガン、硫酸鉄、硫酸亜鉛など
の無機物及びコーンスティープリカー、肉エキス、ペプ
トン、麦芽エキスなどの有機物を含有させることもでき
る。さらに用いる微生物の栄養要求性によっては特定の
ビタミンなどの微量成分を追加することが望ましい。
As other fermentation raw materials, various inorganic and organic substances such as potassium phosphate, sodium chloride, magnesium sulfate, manganese sulfate, iron sulfate and zinc sulfate, and corn steep liquor, meat extract, peptone, malt extract, etc. It is also possible to contain the organic substance of. Further, depending on the nutritional requirements of the microorganism used, it is desirable to add a trace component such as a specific vitamin.

【0020】アミノ酸発酵に用いられる菌は、コリネバ
クテリウム属,バチルス属,ブレビバクテリウム属,ア
ースロバクター属,セラチア属細菌のようなアミノ酸発
酵菌であり、具体例(種名)として、コリネバクテリウ
ム・グルタミカム(Corynebacterium glutamicum)、バチ
ルス・スブチリス(Bacillus subtilis) 、ブレビバクテ
リウム・フラバム(Brevibacterium flavum) 、アースロ
バクター・シトレウス(Arthrobacter citreus)、セラチ
ア・マルセッセンス(Serratia marcescens) をあげるこ
とができる。
The bacterium used for amino acid fermentation is an amino acid fermenting bacterium such as Corynebacterium, Bacillus, Brevibacterium, Arthrobacter, Serratia, and as a specific example (species name), corynebacterium Examples include Corynebacterium glutamicum, Bacillus subtilis, Brevibacterium flavum, Arthrobacter citreus, and Serratia marcescens.

【0021】アミノ酸発酵は、用いられるアミノ酸発酵
菌の種類に応じて通常の条件により行うことができる。
アミノ酸発酵液は単独のアミノ酸を含むものであっても
良いし、複数のアミノ酸を含むものであっても良い。
Amino acid fermentation can be carried out under ordinary conditions depending on the type of amino acid-fermenting bacterium used.
The amino acid fermentation liquid may contain a single amino acid or may contain a plurality of amino acids.

【0022】このようにして生産されたアミノ酸発酵液
は、通常濾過または遠心分離により除菌する。除菌後の
発酵液は多量の有機物、無機物を含んでおり、そのまま
では雑菌の増殖により成分変化を起こすため、直ちに使
用する場合を除き、品質の安定化のためにpHを3以下
に調整し保存するとよい。以上の操作以外にアミノ酸発
酵液に煩雑な精製、加工処理を施す必要はない。
The amino acid fermentation broth thus produced is usually sterilized by filtration or centrifugation. The fermented liquid after sterilization contains a large amount of organic substances and inorganic substances, and if it is used as it is, the components will change due to the growth of various bacteria. Therefore, unless it is used immediately, adjust the pH to 3 or less to stabilize the quality. Save it. Other than the above operation, it is not necessary to subject the amino acid fermentation liquid to complicated purification and processing.

【0023】上記した本発明の効果は、アミノ酸の作用
はもちろんのこと、発酵原料の残留物及びアミノ酸発酵
代謝産物の総合的な作用によるところが大きいものと推
察される。
It is speculated that the above-mentioned effects of the present invention are largely due not only to the action of the amino acid but also to the overall action of the residue of the fermentation raw material and the amino acid fermentation metabolite.

【0024】豆科作物では、収穫期の根からの養分吸収
はほとんどなく、収穫期までに茎葉等で集積された養分
が収穫部位である莢へ転流し、莢が肥大する。収穫時期
の植物体内の養分のバランスは崩れやすく、転流作用に
も影響を与える。茎葉から莢への転流作用が活発でない
場合には、莢間での養分の収奪が起こり、養分を奪われ
た莢は肥大できずに落下するが、アミノ酸発酵液を豆科
作物の開花−肥大期間中に投与することで、転流作用が
促進され、落莢防止効果が得られる。
In legume crops, there is almost no absorption of nutrients from the roots during the harvesting season, and the nutrients accumulated in the foliage and the like are transferred to the pods at the harvesting site by the harvesting season, and the pods are enlarged. The balance of nutrients in the plant at the time of harvest tends to be disrupted, which also affects translocation. When the translocation action from the foliage to the pod is not active, nutrients are deprived of the pods, and the pods deprived of the nutrients cannot be enlarged and fall, but the amino acid fermentation liquor is used to flower the legume- By administrating during the hypertrophy period, the translocation effect is promoted and the pod-fall prevention effect is obtained.

【0025】アミノ酸発酵液は、作物体の地上部に与え
ても地下部に与えても良く、噴霧や潅注処理などにより
投与することができる。噴霧や潅注処理する場合、アミ
ノ酸の合計濃度が好ましくは5〜200ppm、さらに
好ましくは10〜50ppmになるように水で希釈して
用いることが望ましい。
The amino acid fermentation broth may be applied to the above-ground part or the underground part of the crop body, and can be administered by spraying or irrigation. When spraying or irrigating, it is desirable to dilute with water so that the total concentration of amino acids is preferably 5 to 200 ppm, more preferably 10 to 50 ppm.

【0026】投与の時期は、落莢防止のためには、開花
期の散布が必要であるが、開花期から収穫までの間にも
散布することが望ましい。また、樹勢を健全に保つため
に出芽から開花前までに散布しておくことが好ましい。
上記したように、投与の回数は、開花盛期の1回処理で
も構わないが、好ましくは2週間程度の間隔をおいて2
回以上が望ましく、さらに好ましくは出芽2週間目から
2週間毎に収穫部位肥大期まで散布を続けることが望ま
しい。
As for the timing of administration, spraying at the flowering period is necessary for prevention of drop pods, but it is preferable to spray at the flowering period to the harvest. Further, in order to keep the tree vigor, it is preferable to spray the seedlings from emergence to before flowering.
As described above, the administration may be carried out once at the peak flowering time, but it is preferable that the treatment be performed at intervals of about 2 weeks.
It is desirable to repeat the spraying once or more, and more preferably to continue spraying every two weeks from the second week of emergence to the harvest site enlargement period.

【0027】散布量は作物体の生育段階によって適宜決
められるが、葉が一様に濡れる程度を散布することが好
ましく、通常散布量としては株あたり10〜40ml(1
0aあたり50〜200L)が適当である。
The spraying amount is appropriately determined depending on the growth stage of the crop body, but it is preferable to spray the leaves so that the leaves are uniformly wetted. Usually, the spraying amount is 10 to 40 ml (1) per plant.
50-200 L per 0a) is suitable.

【0028】[0028]

【実施例】以下、本発明を実施例に基づき具体的に説明
するが、本発明は下記実施例に限定されるものではな
い。
EXAMPLES The present invention will be specifically described below based on examples, but the present invention is not limited to the following examples.

【0029】製造例1(アミノ酸発酵液Aの調製) 下記組成を有する滅菌したアミノ酸発酵原料(pH7.
0)100mlにコリネバクテリウム・グルタミカム(Co
rynebacterium glutamicum ATCC21157)を接種し、30
℃で120時間振盪培養を行った。次いで遠心分離を行
い、菌を取り除いた培養液をアミノ酸発酵液Aとした。
得られたアミノ酸発酵液中のアミノ酸組成を調べたとこ
ろ、プロリン22g/L、アラニン3g/L、バリン2
g/Lおよびグルタミン酸3g/Lであった。 成分 濃度(g/l) グルコース 200.0 塩化アンモニウム 50.0 尿素 10.0 酵母エキス(オリエンタル酵母社製) 10.0 燐酸水素二カリウム 1.0 硫酸マグネシウム七水塩 0.5 硫酸第一鉄七水塩 0.02 硫酸マンガン五水塩 0.02 硫酸亜鉛七水塩 0.01 ビオチン 0.00003 チアミン塩酸塩 0.0005 炭酸カルシウム 30.0
Production Example 1 (Preparation of Amino Acid Fermentation Liquid A) A sterilized amino acid fermentation raw material (pH 7.
0) 100 ml of Corynebacterium glutamicum (Co
rynebacterium glutamicum ATCC21157)
Shaking culture was performed at 120 ° C. for 120 hours. Next, centrifugation was performed to remove the bacterium, and the resulting culture solution was used as amino acid fermentation solution A.
When the amino acid composition in the obtained amino acid fermentation broth was examined, proline 22 g / L, alanine 3 g / L, valine 2
g / L and glutamic acid 3 g / L. Component concentration (g / l) Glucose 200.0 Ammonium chloride 50.0 Urea 10.0 Yeast extract (Oriental Yeast Co., Ltd.) 10.0 Dipotassium hydrogen phosphate 1.0 Magnesium sulfate heptahydrate 0.5 Ferrous sulfate Heptahydrate 0.02 Manganese sulfate pentahydrate 0.02 Zinc sulfate heptahydrate 0.01 Biotin 0.00003 Thiamine hydrochloride 0.0005 Calcium carbonate 30.0

【0030】製造例2(アミノ酸発酵液Bの調製) 下記組成を有する滅菌したアミノ酸発酵原料(pH7.
2)100mlにブレビバクテリウム・フラバム(Brevib
acterium flavum ATCC15940)を接種し、30℃で72時
間振盪培養を行った。次いで遠心分離を行い、菌を取り
除いた培養液をアミノ酸発酵液Bとした。得られたアミ
ノ酸発酵液中のアミノ酸組成を調べたところ、プロリン
13g/L、アラニン3g/L、バリン2g/L、グル
タミン酸4g/L、グリシン3g/Lであった。 成分 濃度(g/L) 異性化糖液(固形分75%) 130.0 硫酸アンモニウム 30.0 酵母エキス 10.0 コーンスティープリカー 20.0 燐酸水素二カリウム 1.0 硫酸マグネシウム七水塩 0.25 硫酸マンガン五水塩 0.01 硫酸亜鉛七水塩 0.01 ビオチン 0.00003 チアミン塩酸塩 0.0005 炭酸カルシウム 30.0
Production Example 2 (Preparation of Amino Acid Fermentation Liquid B) A sterilized amino acid fermentation raw material (pH 7.
2) 100 ml of Brevibacterium flavum
Acterium flavum ATCC15940) was inoculated and shake culture was performed at 30 ° C. for 72 hours. Next, centrifugation was performed to remove the bacterium, and the resulting culture solution was used as amino acid fermentation solution B. When the amino acid composition in the obtained amino acid fermentation broth was examined, it was proline 13 g / L, alanine 3 g / L, valine 2 g / L, glutamic acid 4 g / L, and glycine 3 g / L. Component concentration (g / L) Isomerized sugar solution (solid content 75%) 130.0 Ammonium sulfate 30.0 Yeast extract 10.0 Corn corn steep liquor 20.0 Dipotassium hydrogen phosphate 1.0 Magnesium sulfate heptahydrate 0.25 Manganese sulfate pentahydrate 0.01 Zinc sulfate heptahydrate 0.01 Biotin 0.00003 Thiamine hydrochloride 0.0005 Calcium carbonate 30.0

【0031】製造例3(アミノ酸発酵液Cの調製) 下記組成を有する滅菌したアミノ酸発酵原料(pH7.
0)100mlにコリネバクテリウム・グルタミカム(Co
rynebacterium glutamicum ATCC21157)を接種し、30
℃で96時間振盪培養を行った。次いで遠心分離を行
い、菌を取り除いた培養液をアミノ酸発酵液Cとした。
得られたアミノ酸発酵液中のアミノ酸組成を調べたとこ
ろ、プロリン18g/L、アラニン4g/L、バリン2
g/L、グルタミン酸5g/Lであった。 成分 濃度(g/L) 廃糖密 100.0 シュークロース 50.0 塩化アンモニウム 50.0 酵母エキス 20.0 燐酸水素二カリウム 1.0 硫酸マグネシウム七水塩 0.25 硫酸第一鉄七水塩 0.02 硫酸マンガン五水塩 0.02 硫酸亜鉛七水塩 0.01 ビオチン 0.00003 チアミン塩酸塩 0.0005 炭酸カルシウム 30.0
Production Example 3 (Preparation of Amino Acid Fermentation Liquid C) A sterilized amino acid fermentation raw material (pH 7.
0) 100 ml of Corynebacterium glutamicum (Co
rynebacterium glutamicum ATCC21157)
Shaking culture was performed at 96 ° C. for 96 hours. Then, the mixture was centrifuged to remove the bacterium, and the resulting culture solution was designated as amino acid fermentation solution C.
When the amino acid composition in the obtained amino acid fermentation broth was investigated, proline 18 g / L, alanine 4 g / L, valine 2
It was g / L and glutamic acid 5 g / L. Ingredient concentration (g / L) Waste sugar concentration 100.0 Sucrose 50.0 Ammonium chloride 50.0 Yeast extract 20.0 Dipotassium hydrogen phosphate 1.0 Magnesium sulfate heptahydrate 0.25 Ferrous sulfate heptahydrate 0.02 Manganese sulfate pentahydrate 0.02 Zinc sulfate heptahydrate 0.01 Biotin 0.00003 Thiamine hydrochloride 0.0005 Calcium carbonate 30.0

【0032】製造例4(アミノ酸発酵液Dの調製) 下記組成を有する滅菌したアミノ酸発酵原料(pH7.
0)100mlにコリネバクテリウム・グルタミカム(Co
rynebacterium glutamicum ATCC13869)を接種し、30
℃で120時間振盪培養を行った。次いで遠心分離を行
い、菌を取り除いた培養液をアミノ酸発酵液Dとした。
得られたアミノ酸発酵液中のアミノ酸組成を調べたとこ
ろ、グルタミン酸17g/L、アラニン2g/Lおよび
バリン0.5g/Lであった。 成分 濃度(g/l) グルコース 100.0 尿素 8.0 酵母エキス 2.0 燐酸一水素二カリウム 1.0 硫酸マグネシウム七水塩 0.4 硫酸第一鉄七水塩 0.01 硫酸マンガン五水塩 0.01 チアミン塩酸塩 0.0001 カザミノ酸 0.0002 炭酸カルシウム 50.0
Production Example 4 (Preparation of Amino Acid Fermentation Liquid D) A sterilized amino acid fermentation raw material (pH 7.
0) 100 ml of Corynebacterium glutamicum (Co
rynebacterium glutamicum ATCC13869)
Shaking culture was performed at 120 ° C. for 120 hours. Then, the mixture was centrifuged to remove the bacteria, and the resulting culture solution was designated as amino acid fermentation solution D.
When the amino acid composition in the obtained amino acid fermentation broth was examined, glutamic acid was 17 g / L, alanine was 2 g / L, and valine was 0.5 g / L. Component concentration (g / l) Glucose 100.0 Urea 8.0 Yeast extract 2.0 Dipotassium monohydrogen phosphate 1.0 Magnesium sulfate heptahydrate 0.4 Ferrous sulfate heptahydrate 0.01 0.01 Manganese sulphate pentahydrate Salt 0.01 Thiamine hydrochloride 0.0001 Casamino acid 0.0002 Calcium carbonate 50.0

【0033】実施例1 6寸の素焼鉢に小豆(アカネ大納言)を5粒播種し、出
芽後1鉢3本立とし、最低気温を15℃に管理した温室
内で生育させた。試験には、圃場より採取した黒ボク土
を使用し、pH6.0に炭酸カルシウムを用いて調整し
た。肥料は、元肥として窒素75mg/鉢、リン酸 400mg/
鉢、カリ 250mg/鉢、苦土75mg/鉢を、追肥として窒素
120mg/鉢×2回を施した。開花始期(出芽後6週間
目)から2週間毎に収穫部位肥大盛期までに4回、アミ
ノ酸の合計濃度が50ppmとなるように調製した発酵
液A、B、C及びDを作物体全体に散布した。また、比
較のため発酵液Aのアミノ酸組成の液を試薬のアミノ酸
から調製した混合液を上記と同濃度にしたものを散布し
た。散布量は、一鉢あたり、1回目は10ml、2〜4回
目は20mlであった。出芽後105日目に収穫調査を行
った。その結果をアミノ酸醗酵液の散布処理しないもの
を100としたときの相対指数で表1に示す。
Example 1 Five azuki beans (Akane Daionagon) were sown in a 6-inch unglazed pot, and after emergence, one pot was made into three-bottle and grown in a greenhouse controlled at a minimum temperature of 15 ° C. For the test, black soil extracted from the field was used and adjusted to pH 6.0 with calcium carbonate. The fertilizer is nitrogen 75 mg / pot, phosphoric acid 400 mg /
Nitrogen as a fertilizer for pots, potash 250mg / pot, magnesia 75mg / pot
120 mg / pot x 2 was applied. Fermented liquors A, B, C, and D, which were prepared so that the total concentration of amino acids would be 50 ppm four times every two weeks from the beginning of flowering (6 weeks after emergence) to the harvest site hypertrophy stage, were applied to the entire crop body. Sprayed. For comparison, a mixed solution prepared by preparing the amino acid composition of the fermentation solution A from the amino acid of the reagent and having the same concentration as the above was sprayed. The amount of spray was 10 ml for the first time and 20 ml for the second and fourth times per pot. The harvest survey was conducted 105 days after emergence. The results are shown in Table 1 as a relative index when the value obtained by not spraying the amino acid fermentation liquid was 100.

【0034】[0034]

【表1】 表1から明らかなように、アミノ酸発酵液を散布した方
が収穫莢数が多く、収量も増加した。茎葉重が無処理に
比べて低いのは転流作用が促進されたためと考えられ
る。
[Table 1] As is clear from Table 1, the number of pods harvested was larger and the yield was increased when the amino acid fermentation liquid was sprayed. The lower foliage weight compared to the untreated one is considered to be due to the promotion of translocation.

【0035】実施例2 6寸の素焼鉢にサヤエンドウ(三十日絹莢)を5粒播種
し、出芽後1鉢3本立とし、最低気温を15℃に管理し
た温室内で生育させた。試験には、圃場より採取した黒
ボク土を使用し、pH6.0に炭酸カルシウムを用いて
調整した。肥料は、元肥として窒素75mg/鉢、リン酸 4
00mg/鉢、カリ 150mg/鉢、苦土 100mg/鉢を、追肥と
して窒素50mg/鉢×2回、カリ 100mg/鉢×2回を施し
た。開花始期(出芽後8週間目)から2週間毎に収穫部
位肥大盛期までに4回、アミノ酸の合計濃度が50pp
mとなるように調製した発酵液A、B、C及びDを作物
体全体に散布した。散布量は、一鉢あたり1回目は20
ml、2〜4回目は30mlであった。肥大した莢は、都度
収穫し、重量を測定した。出芽後95日目に最終調査を
行なった。その結果を散布処理しないものを100とし
たときの相対指数で表2に示す。収量はそれまでに収穫
した莢重の積算で求めた。
Example 2 Five pea pods (30 days silk pods) were sown in a 6-inch unglazed pot, and after emergence, one pot and three stems were sown and grown in a greenhouse controlled at a minimum temperature of 15 ° C. For the test, black soil extracted from the field was used and adjusted to pH 6.0 with calcium carbonate. As fertilizer, nitrogen 75mg / pot, phosphoric acid 4
00 mg / pot, potash 150 mg / pot, magnesia 100 mg / pot, nitrogen 50 mg / pot × 2 times, potassium 100 mg / pot × 2 times were applied as additional fertilizers. The total concentration of amino acids is 50 pp four times from the beginning of flowering (8 weeks after emergence) to every 2 weeks until the harvest site enlarges.
Fermented liquors A, B, C and D prepared so as to have m were sprinkled over the whole crop body. The application amount is 20 for the first time per bowl.
ml, 2 to 4 times was 30 ml. The enlarged pods were harvested each time and weighed. The final investigation was carried out 95 days after the emergence. The results are shown in Table 2 as a relative index when the non-dispersion treatment is set to 100. The yield was calculated by integrating the pod weights collected so far.

【0036】[0036]

【表2】 表2から明らかなように、アミノ酸発酵液を散布した方
が収穫莢数が多く、収量も増加した。茎葉重が無処理に
比べて低いのは転流作用が促進されたためと考えられ
る。
[Table 2] As is clear from Table 2, the number of pods harvested and the yield increased when the amino acid fermentation broth was sprayed. The lower foliage weight compared to the untreated one is considered to be due to the promotion of translocation.

【0037】実施例3 圃場に播種前に市販の根粒菌を種子にまぶした大豆(キ
タムスメ)を60cm×20cmの栽植密度で3〜4粒
播種し、出芽後1株2本立として栽培した。栽培圃場の
pHは炭酸カルシウムを用いて6.0となるように調整
した。施肥量は元肥として窒素2kg/10a、リン酸1
5kg/10a、カリ8kg/10aを施した。追肥は行わ
なかった。出芽後60日目の開花盛期に1回のみアミノ
酸の合計濃度が50ppmとなるように調製した発酵液
Aを作物体全体に散布した。散布量は、10aあたり2
00Lであった。出芽後120日目に収穫期の調査を行
なった。その結果を散布処理しないものを100とした
ときの相対指数で表3に示す。
Example 3 In the field, 3-4 seeds of soybean (Kitasumume) sprinkled with commercial nodule bacteria before seeding were sown in the field at a planting density of 60 cm × 20 cm, and after emergence, two plants were cultivated as one plant. The pH of the cultivation field was adjusted to 6.0 using calcium carbonate. The amount of fertilizer applied is 2kg / 10a of nitrogen and 1 phosphoric acid as the basic fertilizer.
5 kg / 10a and potassium 8kg / 10a were applied. No additional fertilizer was applied. Fermentation liquid A prepared so that the total concentration of amino acids would be 50 ppm was sprayed once only at the peak of flowering on the 60th day after emergence, and sprayed over the whole crop body. 2 sprays per 10a
It was 00L. The harvest period was investigated 120 days after emergence. The results are shown in Table 3 as a relative index when the non-dispersion treatment was set to 100.

【0038】[0038]

【表3】 表3から明らかなように、アミノ酸発酵液を散布した方
が収穫莢数が多く、収量も増加した。全窒素吸収量は無
処理に比べて高く、開花期以降の養分吸収が促進された
ことが判る。茎葉重、茎葉窒素集積量が無処理に比べて
低く、転流作用が促進されたと考えられる。
[Table 3] As is clear from Table 3, the number of pods harvested and the yield increased when the amino acid fermentation broth was sprayed. The total nitrogen absorption was higher than that of the untreated one, indicating that the absorption of nutrients after the flowering period was promoted. It is considered that the foliage weight and foliage nitrogen accumulation were lower than those of the untreated plants, and the translocation action was promoted.

【0039】実施例4 圃場に播種前に大豆(ツルムスメ)を60cm×20c
mの栽植密度で3〜4粒播種し、出芽後1株2本立とし
て栽培した。栽培圃場のpHは炭酸カルシウムを用いて
6.0となるように調整した。施肥量は元肥として窒素
20kg/10a、リン酸15kg/10a、カリ10kg/
10aを施した。追肥は行わなかった。開花始期(出芽
後8週間目)から2週間毎に収穫部位肥大盛期までに4
回、アミノ酸の合計濃度が50ppmとなるように調製
した発酵液Aを作物体全体に散布した。散布量は、10
aあたり1回目は100L、2回目は150L、3〜4
回目は200Lであった。開花後3週間目から2週間毎
に莢数(個/m2 )を調査した結果を表4に示す。ま
た、出芽後120日目に収穫調査を行い、その結果を散
布処理しないものを100としたときの相対指数で表5
に示す。
Example 4 Soybean (Tsurume) 60 cm × 20 c before sowing in the field
Three to four seeds were sown at a planting density of m, and after emergence, one plant was cultivated as two stems. The pH of the cultivation field was adjusted to 6.0 using calcium carbonate. The amount of fertilizer applied is 20 kg / 10a of nitrogen as the basic fertilizer, 15 kg / 10a of phosphoric acid, and 10 kg / potassium.
10a was applied. No additional fertilizer was applied. 4 from the beginning of flowering (8 weeks after emergence) to every 2 weeks until the harvest site enlarges
Fermentation liquid A prepared so that the total concentration of amino acids would be 50 ppm was sprayed over the entire crop body. Spraying amount is 10
The first time is 100 L per a, the second time is 150 L, and 3 to 4
The second time was 200L. Table 4 shows the results of examining the number of pods (pieces / m 2 ) every 2 weeks from the third week after flowering. In addition, a harvesting survey was conducted 120 days after the emergence, and the result is a relative index when the untreated one is 100.
Shown in.

【0040】[0040]

【表4】 [Table 4]

【0041】[0041]

【表5】 表4から明らかなように、アミノ酸発酵液を散布した場
合、莢のつきが早く、かつ、収穫期にかけての落莢が防
止される。また、表5より明らかなようにアミノ酸発酵
液を散布した方が収穫莢数が多く、収量も増加した。茎
葉重が無処理に比べて低く、転流作用が促進されたと考
えられる。
[Table 5] As is clear from Table 4, when the amino acid fermentation liquid is sprayed, the pods are quickly attached and the pods are prevented from falling during the harvest season. Also, as is clear from Table 5, the number of pods harvested and the yield increased when the amino acid fermentation broth was sprayed. It is considered that the foliage weight was lower than that of untreated plants, and the translocation effect was promoted.

【0042】実施例5 散布するアミノ酸の合計濃度が豆科作物の落莢防止にど
う影響するかを試験した。すなわち、6寸の素焼鉢にイ
ンゲン(サーベル)を5粒播種し、出芽後1鉢3本立と
し、最低気温を15℃に管理した温室内で生育させた。
試験には圃場より採取した黒ボク土をpH6.0に炭酸
カルシウムを用いて調整して使用した。肥料は、元肥と
して窒素75mg/鉢、リン酸 400mg/鉢、カリ 200mg/
鉢、苦土 100mg/鉢を、追肥として窒素 100mg/鉢×2
回、カリ50mg/鉢×2回を施した。開花始期(出芽後4
週間目)から2週間毎に収穫部位肥大盛期までに3回、
アミノ酸の合計濃度が5ppm、10ppm、20pp
m、50ppm、100ppm、200ppmとなるよ
うに調製した発酵液Aを作物体全体に散布した。散布量
は、一鉢あたり、1回目は20ml、2〜3回目は30ml
であった。肥大した莢は都度収穫し、重量を測定した。
出芽後85日目に最終調査を行なった。その結果を散布
処理しないものを100としたときの相対指数で表6に
示す。収量はそれまでに収穫した莢重の積算で求めた。
Example 5 It was tested how the total concentration of amino acids applied affects the prevention of pods in legume crops. That is, 5 beans of a kidney bean (saber) were sowed in a 6-inch unglazed pot, and after emergence, one pot had 3 stems and grown in a greenhouse controlled at a minimum temperature of 15 ° C.
In the test, black soil extracted from the field was adjusted to pH 6.0 with calcium carbonate and used. The fertilizer used as the basic fertilizer is nitrogen 75mg / pot, phosphoric acid 400mg / pot, potassium 200mg /
Pots, magnesia 100mg / pots, nitrogen as additional fertilizer 100mg / pots x 2
, Potash 50 mg / pot x 2 times. Flowering start (4 after emergence
Every 3 weeks from the second week) until the harvest site is in full bloom,
Total concentration of amino acids is 5ppm, 10ppm, 20pp
Fermented liquid A prepared to have m, 50 ppm, 100 ppm, and 200 ppm was sprayed over the whole crop body. The application amount is 20 ml for the first time and 30 ml for the second and third times per bowl.
Met. The enlarged pods were harvested each time and weighed.
The final investigation was performed 85 days after emergence. The results are shown in Table 6 as a relative index when the non-dispersion treatment was set to 100. The yield was calculated by integrating the pod weights collected so far.

【0043】[0043]

【表6】 表6から明らかなように、アミノ酸の合計濃度が5pp
m以上で落莢防止効果が認められるが、20ppm以上
でその効果が顕著である。また、100ppm以上の濃
度のアミノ酸発酵液を散布してもそれ以下の濃度の液を
散布した場合と効果に差がみられない。
[Table 6] As is clear from Table 6, the total concentration of amino acids is 5 pp
When it is m or more, a drop pod preventing effect is recognized, but when it is 20 ppm or more, the effect is remarkable. Further, even if the amino acid fermentation liquor having a concentration of 100 ppm or more is sprayed, there is no difference in the effect from the case of spraying a liquid having a concentration lower than that.

【0044】実施例6 アミノ酸発酵液を散布する時期が豆科作物の落莢防止に
どう影響するかを試験した。すなわち、6寸の素焼鉢に
播種前に市販の根粒菌を種子にまぶした大豆(キタムス
メ)を5粒播種し、出芽後1鉢3本立とし、最低気温を
15℃に管理した温室内で生育させた。試験には圃場よ
り採取した黒ボク土をpH6.0に炭酸カルシウムを用
いて調整して使用した。肥料は、元肥として窒素50mg/
鉢、リン酸 400mg/鉢、カリ 200mg/鉢、苦土80mg/鉢
を施し、追肥は行わなかった。散布時期を出芽後2週間
目から2週間毎に収穫部位肥大盛期までの7回とし、そ
れぞれ表7に示すとおりに設定した散布回数でアミノ酸
醗酵液Aを散布した。アミノ酸の合計濃度は20ppm
とし、発酵液Aを作物体全体に散布した。散布量は、出
芽後2〜4週間目は10ml、6〜8週間目は20ml、1
0〜14週間目は30mlであった。出芽後120日目に
収穫調査を行なった。その結果を散布処理しないものを
100としたときの相対指数で表8に示す。
Example 6 It was examined how the timing of spraying an amino acid fermentation liquor affects the prevention of pods in legume crops. That is, 5 seeds of soybean (Kitasumusume) sprinkled with commercially available root nodule bacteria on seeds were sowed in a 6-inch unglazed pot, and after emergence, 3 pots were placed in 1 pot and grown in a greenhouse controlled at a minimum temperature of 15 ° C. Let In the test, black soil extracted from the field was adjusted to pH 6.0 with calcium carbonate and used. The fertilizer is nitrogen 50mg /
Pots, phosphoric acid 400 mg / pot, potash 200 mg / pot, magnesia 80 mg / pot were applied, and topdressing was not performed. The spraying time was set to 7 times from the second week after emergence to every two weeks until the harvest site enlargement peak, and the amino acid fermentation liquid A was sprayed at the spraying times set as shown in Table 7, respectively. The total concentration of amino acids is 20ppm
The fermentation liquid A was sprayed over the entire crop body. The amount of spray is 10 ml 2-4 weeks after emergence, 20 ml 6-8 weeks, 1
It was 30 ml from 0 to 14 weeks. The harvest survey was conducted 120 days after the emergence. The results are shown in Table 8 as a relative index when the non-spraying treatment is set to 100.

【0045】[0045]

【表7】 [Table 7]

【0046】[0046]

【表8】 表8から明らかなように、処理時期によらずアミノ酸発
酵液を散布することにより落莢を防止して収穫莢数を増
加させる効果が認められるが、中でも出芽後8〜10週
目(開花期)に散布すると顕著な効果が認められる。
[Table 8] As is clear from Table 8, the effect of preventing pods and increasing the number of harvested pods is recognized by spraying the amino acid fermentation liquor regardless of the treatment time, but among them, 8 to 10 weeks after emergence (flowering period ), A remarkable effect is recognized.

【0047】[0047]

【発明の効果】本発明により、豆科作物の開花始期以降
に、アミノ酸発酵液を葉面散布するという、簡単で安全
かつ安定的に豆科作物の落莢を防止することができる新
規な方法が提供された。上記の実施例から明らかなよう
に、本発明の方法によると、開花期のアミノ酸発酵液処
理により根の養分吸収能が促進され、収穫時期における
落莢が防止されることにより、収量が増加することが示
された。従って、本発明は、豆科作物の栽培において、
豆科作物の収益性向上に大いに貢献する。またアミノ酸
発酵液を用いているため、人体に対してなんら影響はな
く、幼莢を食料とする豆科作物に対しても安全に適用で
きる。
EFFECTS OF THE INVENTION According to the present invention, a novel method of spraying amino acid fermented liquid onto the leaves after the beginning of flowering of legume crops, which is simple, safe and stable, and can prevent drop legumes of legume crops. Was provided. As is clear from the above examples, according to the method of the present invention, the nutrient absorption capacity of roots is promoted by the amino acid fermentation liquid treatment at the flowering stage, and the drop pods at the harvest time are prevented, so that the yield is increased. Was shown. Therefore, the present invention, in the cultivation of legume crops,
It will greatly contribute to improving the profitability of legume crops. Further, since the amino acid fermentation broth is used, it has no effect on the human body and can be safely applied to legume crops that feed on young pods.

フロントページの続き (72)発明者 中村 武史 北海道砂川市豊沼町1番地 三井東圧化学 株式会社内Front page continued (72) Inventor Takeshi Nakamura 1 Toyonuma-cho, Sunagawa-shi, Hokkaido Mitsui Toatsu Chemical Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】豆科作物の栽培において、開花始期以降に
アミノ酸発酵液を投与することを特徴とする豆科作物の
落莢を防止する方法。
1. A method for preventing pods of legume crops, which comprises administering an amino acid fermentation solution after the beginning of flowering in the cultivation of legume crops.
【請求項2】散布時のアミノ酸発酵液中の投与するアミ
ノ酸の合計濃度が5〜200ppm である請求項1記載の
方法。
2. The method according to claim 1, wherein the total concentration of amino acids to be administered in the amino acid fermentation liquor at the time of spraying is 5 to 200 ppm.
【請求項3】前記アミノ酸発酵液は、糖類、尿素及び/
又はアンモニウム塩及び酵母エキスを含むアミノ酸発酵
原料をアミノ酸発酵させて得られたものである請求項1
または2記載の方法。
3. The amino acid fermentation liquor comprises sugars, urea and / or
Alternatively, it is obtained by amino acid fermentation of an amino acid fermentation raw material containing an ammonium salt and yeast extract.
Or the method described in 2.
JP5150291A 1993-06-22 1993-06-22 Method for preventing shedding of pod of leguminous plant Pending JPH0710718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5150291A JPH0710718A (en) 1993-06-22 1993-06-22 Method for preventing shedding of pod of leguminous plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5150291A JPH0710718A (en) 1993-06-22 1993-06-22 Method for preventing shedding of pod of leguminous plant

Publications (1)

Publication Number Publication Date
JPH0710718A true JPH0710718A (en) 1995-01-13

Family

ID=15493784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5150291A Pending JPH0710718A (en) 1993-06-22 1993-06-22 Method for preventing shedding of pod of leguminous plant

Country Status (1)

Country Link
JP (1) JPH0710718A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098205A1 (en) * 2001-06-01 2002-12-12 Isamu Hirose Emthod of increasing the yield of peas regardelss of the weather
WO2005065454A1 (en) * 2004-01-05 2005-07-21 Ajinomoto Co., Inc. Cultivation period shortening agent or crop yield improver for soybean and method of cultivation period shortening or crop yield improvement for soybean
EP3428140A4 (en) * 2015-10-14 2019-05-01 Adobs I Innovació Fitovegetal Hortus Natura S.L. Production of improved fortifier from beer yeast water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002098205A1 (en) * 2001-06-01 2002-12-12 Isamu Hirose Emthod of increasing the yield of peas regardelss of the weather
WO2005065454A1 (en) * 2004-01-05 2005-07-21 Ajinomoto Co., Inc. Cultivation period shortening agent or crop yield improver for soybean and method of cultivation period shortening or crop yield improvement for soybean
EP3428140A4 (en) * 2015-10-14 2019-05-01 Adobs I Innovació Fitovegetal Hortus Natura S.L. Production of improved fortifier from beer yeast water

Similar Documents

Publication Publication Date Title
US5840656A (en) Method for increasing fertilizer efficiency
JP2002034335A (en) Method for increasing amino acid content in agricultural crop
JP4104263B2 (en) Method for promoting absorption of calcium ions from the surface of plants
US5489572A (en) Methods for reducing nitrate nitrogen and oxalic acids contents nin plants
EP0841007B1 (en) Plant-root growth promoting agent
JP3377873B2 (en) How to increase the drought or salt tolerance of plants
JPH0710718A (en) Method for preventing shedding of pod of leguminous plant
RU2344589C1 (en) Green manure cultivation method
JP2887554B2 (en) Oxalic acid content reducing agent for plants
JPH06105625A (en) Method for water-culturing vegetable
JP2874789B2 (en) How to reduce cold injury in legume crops
JPH067047A (en) Hydroponic culture method
JP2852677B2 (en) Method for promoting survival and tillering of rice transplanted seedlings
CN107750875B (en) Planting method for shortening growth period of bighead atractylodes rhizome
RU2270546C1 (en) Method for continuous growing of potato
JP2874788B2 (en) How to reduce rice cold injury
CN110839499A (en) Tobacco and kidney bean interplanting planting method
Sommer et al. Source/Sink-relationships in plants as depending on ammonium as" CULTAN", nitrate or urea as available nitrogen fertilizers
RU2681579C1 (en) Method of cultivation of lentils in biological agriculture
SU1761021A1 (en) Method of fertilizing crop rotation crops
JP2001151618A (en) Method for accelerating absorption of potassium ion by plant
WO1984002059A1 (en) Method and composition for the promotion of leguminous plant productivity and seed yields
SU1766293A1 (en) Method for cultivation of honey-bearing and forage crops
RU1811770C (en) Method for growing potatoes in crop rotation
CN113475342A (en) Cultivation method for intercropping soybean-rape in orange garden