JPH0710677A - Production of compound semiconductor and unit therefor - Google Patents

Production of compound semiconductor and unit therefor

Info

Publication number
JPH0710677A
JPH0710677A JP16060593A JP16060593A JPH0710677A JP H0710677 A JPH0710677 A JP H0710677A JP 16060593 A JP16060593 A JP 16060593A JP 16060593 A JP16060593 A JP 16060593A JP H0710677 A JPH0710677 A JP H0710677A
Authority
JP
Japan
Prior art keywords
container
compound semiconductor
container support
crystal
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16060593A
Other languages
Japanese (ja)
Inventor
Tomoki Inada
知己 稲田
Michinori Wachi
三千則 和地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP16060593A priority Critical patent/JPH0710677A/en
Publication of JPH0710677A publication Critical patent/JPH0710677A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To enable the growth of single crystal in high yield by allowing the right cylinder part to grow after the initial shoulder of the crystal is formed and the vessel support including the molten compound semiconductor is increased in its capacity and keeping the solid-liquid interface convex. CONSTITUTION:In the shoulder-growing stage from the seeding zone 19 to the right cylinder zone, the vessel 1 for the melt 4 is supported with the first supporter 12 of a small volume and the heat flows toward the center to make the solid-liquid interface convex toward the crystal melt and enable so-called 'convex growth'. After coming in the right cylinder growth stage, the first melt supporter 12 and the second supporter 13 are united and the vessel 1 is supported with the supporter having a larger capacity than that of the first one 12 and the heat mainly flows toward the center or downward to maintain the solid-liquid interface convex. Accordingly, during the crystal growth, the solid-liquid interface can be always kept convex, thus the yield of single crystal is largely increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は化合物半導体の製造方法
及びその装置に係り、特に垂直ブリッジマン法によって
製造するものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a compound semiconductor, and more particularly to a method manufactured by the vertical Bridgman method.

【0002】[0002]

【従来の技術】化合物半導体、例えばGaAsの代表的
な成長方法に、垂直ブリッジマン法(VB法と略す)、
水平ブリッジマン法、(HB法と略す)、及び液体封止
引上げ法(LEC法と略す)がある。HB法は低温度勾
配で成長できるため結晶欠陥密度が小さいが、結晶を円
形にくり抜く必要があるため原料ロスが大きい。LEC
法は、高温度勾配のため結晶欠陥密度が高く、しかも回
転しながら引き上げるので外形変動があり、所望する径
よりも太めの結晶を作製しなければならない分ロスが大
きい。
2. Description of the Related Art A typical Bridgman method (abbreviated as VB method) for growing compound semiconductors such as GaAs is
There are a horizontal Bridgman method, (abbreviated as HB method), and a liquid sealing pulling method (abbreviated as LEC method). The HB method has a low crystal defect density because it can be grown with a low temperature gradient, but the material loss is large because it is necessary to hollow out the crystal. LEC
In the method, the crystal defect density is high due to the high temperature gradient, and since the crystal is pulled while rotating, there is a variation in the outer shape, and the loss is large because a crystal thicker than the desired diameter must be produced.

【0003】これに対して、VB法はHB法を垂直方向
にしたものであり、円筒状の容器中で凝固させることが
できるため、低欠陥密度の円形ウェハを得るために最良
な方法である。
On the other hand, the VB method is a vertical version of the HB method and can be solidified in a cylindrical container, and is the best method for obtaining a circular wafer having a low defect density. .

【0004】このVB法は、下部が円錘状になった円筒
状のルツボ中にGaAs融液を作成し、底部の下方に設
けた種結晶収納部に配した種結晶を核とし、下方より上
方に向かって一方向に凝固させることにより単結晶成長
させる方法である。
In the VB method, a GaAs melt is prepared in a cylindrical crucible having a conical shape at the bottom, and a seed crystal arranged in a seed crystal storage portion provided at the bottom of the bottom serves as a nucleus. This is a method of growing a single crystal by solidifying upward in one direction.

【0005】この方法の特徴として、上述したようにゆ
るやかな温度勾配下(数℃/cm)で結晶を作製できるた
め、結晶欠陥密度の小さな結晶を作製できることが上げ
られる。一般にGaAsを始めとする化合物半導体を用
いたデバイスでは、例えば発光ダイオードにおいて結晶
欠陥部が非発光の劣化部となるごとく、結晶欠陥がデバ
イスの特性を劣化させる場合が多く、結晶欠陥の小さな
ものが求められる。この点からもVB法が注目される所
以である。
A feature of this method is that it is possible to produce a crystal with a low crystal defect density because it can be produced under a gentle temperature gradient (several ° C / cm) as described above. In general, in a device using a compound semiconductor such as GaAs, a crystal defect often deteriorates the characteristics of the device, for example, as a crystal defect part becomes a non-emission deteriorated part in a light emitting diode. Desired. This is also the reason why the VB method is receiving attention.

【0006】[0006]

【発明が解決しようとする課題】ところで、VB法の最
大の欠点は種付けの状態をその場観察できないことであ
る。HB法やLEC法では種結晶から成長を開始する部
分を観察できるため、単結晶成長に阻害があった場合に
は再度融解して再成長できるが、VB法では最終的に容
器から取り出すまでは単結晶かどうかの認識ができな
い。そのため初期に単結晶にしやすい条件を見付け、そ
の再現性を維持することが最重要点となる。しかし、V
B法では成長中の固液界面の制御が難しく単結晶化が難
しい。即ち単結晶成長のためには、固液界面が融液に向
かってやや凸の形状を有し、それが成長中に亙って維持
されることが好ましいが、種付け部よりやや凹面に成長
しやすく、また固液界面が波型に湾曲してしまうため双
晶や多結晶などが発生しやすい。このため原料及び作業
のロスが極めて大きく、単結晶収率が悪い。
By the way, the greatest drawback of the VB method is that the state of seeding cannot be observed in situ. In the HB method and the LEC method, since the part where the growth starts from the seed crystal can be observed, when there is an inhibition in the growth of the single crystal, the single crystal can be melted and re-grown, but in the VB method, until the final removal from the container. It is not possible to recognize whether it is a single crystal. Therefore, the most important point is to find a condition that makes it easy to form a single crystal and maintain its reproducibility. But V
In method B, it is difficult to control the solid-liquid interface during growth, and it is difficult to form a single crystal. That is, for single crystal growth, it is preferable that the solid-liquid interface has a slightly convex shape toward the melt, and it is maintained throughout the growth, but it grows slightly concave than the seeded portion. In addition, since the solid-liquid interface is curved in a wavy shape, twins and polycrystals are likely to occur. Therefore, the loss of raw materials and work is extremely large, and the single crystal yield is poor.

【0007】具体的には、図3のように種結晶3と融液
4を入れた容器1の全体をグラファイト製や石英製の容
器支持体2で支えるようになっている。このため、同図
中、矢印6で示したように、容器1の外側に向う熱の流
れが生ずる。固液界面5はその熱の流れに垂直に形成し
やすく、結果として、固液界面5は融液4に向って凹の
形状となる。一旦、凹になると凸に転じにくく結果とし
て多結晶化しやすい。本発明の目的は、結晶育中、固液
界面を凸状に維持させるようにして、前記した従来技術
の欠点を解消し、高収率で単結晶を成長できる化合物半
導体の製造方法を提供することにある。
Specifically, as shown in FIG. 3, the whole container 1 containing the seed crystal 3 and the melt 4 is supported by a container support 2 made of graphite or quartz. Therefore, as shown by the arrow 6 in the figure, a heat flow occurs toward the outside of the container 1. The solid-liquid interface 5 is likely to be formed perpendicular to the heat flow, and as a result, the solid-liquid interface 5 has a concave shape toward the melt 4. Once it becomes concave, it does not easily turn into convex and, as a result, it tends to become polycrystalline. An object of the present invention is to provide a method for producing a compound semiconductor, in which a solid-liquid interface is maintained in a convex shape during crystal growth, the above-mentioned drawbacks of the prior art are solved, and a single crystal can be grown in high yield. Especially.

【0008】また本発明の目的は、簡単な構成により、
結晶育成中、固液界面を凸状に維持することができる化
合物半導体の製造装置を提供することにある。
Another object of the present invention is to provide a simple structure.
An object of the present invention is to provide a compound semiconductor manufacturing apparatus capable of maintaining a solid-liquid interface in a convex shape during crystal growth.

【0009】[0009]

【課題を解決するための手段】本発明の化合物半導体の
製造方法は、容器支持体に支持される容器に入れた化合
物半導体融液を下方より順次凝固させて結晶を育成する
垂直ブリッジマン法を用いた化合物半導体の製造方法に
おいて、凝固段階のうち最初のショルダ部育成段階と、
それ以後の直胴部育成段階とで、上記容器を支持する容
器支持体の体積を増加させてやるものである。
A method for producing a compound semiconductor according to the present invention is a vertical Bridgman method in which a compound semiconductor melt contained in a container supported by a container support is solidified sequentially from below to grow a crystal. In the manufacturing method of the compound semiconductor used, the first shoulder portion growth step of the solidification step,
The volume of the container support that supports the container is increased in the subsequent stage of growing the straight body part.

【0010】また、本発明の化合物半導体の製造装置
は、化合物半導体融液を入れた容器を高温部から低温部
に下降させ、容器の下端に設けた種結晶を核に上記融液
を下方より順次凝固させて、結晶径が漸次拡径するショ
ルダ部と結晶径が定径の直胴部とからなる結晶を育成す
る化合物半導体の製造装置において、記容器を支持しつ
つ容器を下降させる容器支持体を容器の下降方向に直列
に2個設け、この2個の容器支持体を、種付け部から直
胴部までのショルダ部育成段階中、上記容器を支持して
容器と一体に下降する第1の容器支持体と、ショルダ部
の育成が終了する時点で徐々に第1の容器支持体と合体
して直胴部育成段階中、容器及び第1の容器支持体と一
体に下降する第2の容器支持体とから構成したものであ
る。なお、第1の容器支持体と第2の容器支持体とを合
体したときの合体体積は、第1の容器支持体の体積の
1.5倍以上にすることが特に好ましい。
Further, in the compound semiconductor manufacturing apparatus of the present invention, the container containing the compound semiconductor melt is lowered from the high temperature part to the low temperature part, and the melt is introduced from below with the seed crystal provided at the lower end of the container as the nucleus. In a manufacturing apparatus for a compound semiconductor that sequentially solidifies and grows a crystal consisting of a shoulder portion where the crystal diameter gradually expands and a straight body portion where the crystal diameter is constant, a container support that lowers the container while supporting the container. First, two bodies are provided in series in the descending direction of the container, and the two container supports support the container and descend integrally with the container during the shoulder part growing stage from the seeding part to the straight body part. Of the container support and the first container support are gradually combined at the time when the growth of the shoulder portion is completed, and the container and the first container support are integrally lowered during the straight body part growing stage. It is composed of a container support. The combined volume when the first container support and the second container support are combined is particularly preferably 1.5 times or more the volume of the first container support.

【0011】この場合において、化合物半導体はGaA
s、InP、またはGaPであり、第1、第2容器支持
体はグラファイト、シリコンカーバイド(SiC)また
は石英などの耐熱性セラミックスが好ましい。容器は石
英、パイロリティックBN(pBN)等、高純度の耐熱
性材質が好ましい。
In this case, the compound semiconductor is GaA.
s, InP, or GaP, and the first and second container supports are preferably heat-resistant ceramics such as graphite, silicon carbide (SiC), or quartz. The container is preferably made of high-purity heat-resistant material such as quartz or pyrolytic BN (pBN).

【0012】[0012]

【作用】VB法の欠点は、種付けを観察できないことに
より再成長ができないため、単結晶収率が悪いことであ
り、種付け段階から固液界面の熱的制御を行うことによ
り、この欠点を補う必要がある。そこで、結晶育成を2
段階に分けて、熱の流れを制御するようにしている。
The disadvantage of the VB method is that the single crystal yield is poor because regrowth cannot be performed because seeding cannot be observed, and this drawback is compensated by thermally controlling the solid-liquid interface from the seeding stage. There is a need. Therefore, the crystal growth is 2
The heat flow is controlled in stages.

【0013】種付け部から胴体部となるまでのショルダ
部の育成段階で、融液の入った容器を小体積の第1容器
支持体で支えると、熱の流れが中心を向き、固液界面が
融液に向って凸になり、いわゆる凸面成長ができる。
When the container containing the melt is supported by the first container support having a small volume in the step of growing the shoulder part from the seeding part to the body part, the heat flow is directed to the center, and the solid-liquid interface is formed. It becomes convex toward the melt and so-called convex growth is possible.

【0014】胴体部の育成段階に入ってから、第1容器
支持体よりも大体積の合体容器支持体で容器を支える
と、中心あるいは下方へ大きな熱の流れが生ずるため、
固液界面の凸面の向きを維持できる。
When the container is supported by the united container support having a larger volume than the first container support after entering the body part growing stage, a large heat flow occurs in the center or downward,
The direction of the convex surface of the solid-liquid interface can be maintained.

【0015】このようにVB法の種付け部において、熱
の流れを制御できる容器支持体を使用することにより、
結晶育成中、固液界面を融液に向かって理想的な凸にす
ることができるので、単結晶の収率を大幅に向上でき
る。
As described above, in the seeding section of the VB method, by using the container support capable of controlling the heat flow,
During crystal growth, the solid-liquid interface can be made to have an ideal convex shape toward the melt, so that the yield of single crystals can be greatly improved.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。本実施例では、VB法において、種付けから直胴部
までのショルダ部育成段階と、それ以後の直胴部育成段
階とで、固液界面の形状が融液に向って常に凸になるよ
うに、容器支持体の体積を切替えてやるようにしてい
る。
Embodiments of the present invention will be described below with reference to the drawings. In the present example, in the VB method, the shape of the solid-liquid interface is always convex toward the melt in the shoulder part growing stage from seeding to the straight body part and the straight body part growing stage after that. , The volume of the container support is switched.

【0017】図1は、ショルダ部育成段階に使用される
第1容器支持体12(図1(A))と、胴体部育成段階
に追加使用される第2容器支持体13(図1(B))の
構成を示す。
FIG. 1 shows a first container support 12 (FIG. 1 (A)) used in the shoulder growing stage and a second container support 13 (FIG. 1 (B) additionally used in the body growing stage). )) Is shown.

【0018】容器支持体12、13はGaAs融液4を
入れる容器(ルツボ)1を下方から支持する。これに支
持される容器1の形状は縦長で、下部が略円錐状に突出
し、上部が一定の径をもつ円筒形をしている。略円錐状
に突出した下部は、先端に種結晶の入れられる小径の種
結晶収納部と、円錐形をした円錐部とから構成される。
したがって、容器1内で凝固されるGaAs結晶11の
形状は、種付け部から漸次拡径していくショルダ部と、
径が一定な直胴部とから構成される。
The container supports 12 and 13 support the container (crucible) 1 for containing the GaAs melt 4 from below. The shape of the container 1 supported by this is vertically long, the lower part projects in a substantially conical shape, and the upper part has a cylindrical shape with a constant diameter. The lower part that protrudes in a substantially conical shape is composed of a small-diameter seed crystal accommodating portion into which a seed crystal is inserted at the tip and a conical conical portion.
Therefore, the shape of the GaAs crystal 11 solidified in the container 1 has a shoulder portion whose diameter gradually increases from the seeding portion,
It consists of a straight body with a constant diameter.

【0019】第1容器支持体12は、図1(A)に示す
ように、容器1の略円錐状の下部のみを支持するように
なっており、容器1の下部を支持する上部外径が容器1
の外径とほぼ同一にできている。具体的には、容器1を
下方から支持するために、容器1の略円錐状に突き出た
下部と係合する略円錐状に凹んだ係合穴14を上部にも
ち、下部に第1容器支持体12を昇降させる昇降ロッド
(図示略)と連結するロッド15をもつ。したがって、
この第1容器支持体12で容器1を一体的に支持するこ
とにより、図示矢印6のように熱の流れが種結晶3の中
心を向き、固液界面5の形状が融液4側に凸になる。
As shown in FIG. 1A, the first container support 12 is designed to support only a substantially conical lower part of the container 1 and has an upper outer diameter for supporting the lower part of the container 1. Container 1
The outer diameter is almost the same. Specifically, in order to support the container 1 from below, a substantially conical recessed engaging hole 14 that engages with a lower part of the container 1 protruding in a substantially conical shape is provided in the upper part, and the first container support is provided in the lower part. It has a rod 15 which is connected to an elevating rod (not shown) for elevating the body 12. Therefore,
By integrally supporting the container 1 with this first container support 12, the heat flow is directed to the center of the seed crystal 3 as shown by an arrow 6 in the figure, and the shape of the solid-liquid interface 5 is projected toward the melt 4 side. become.

【0020】第2容器支持体13は、図1(B)に示す
ように、容器1の全体を支持するようになっており、容
器1を支持する上部外径が容器1の外径よりも大きくな
っている。具体的には、容器1を支持した第1容器支持
体12ごと支持、すなわち第1容器支持体12を入れ子
状に支持するように、一体となった容器1及び第1容器
支持体12を係合する円筒状に凹んだ係合穴16を上部
にもち、下部に第2容器支持体13を昇降させる昇降ロ
ッド(図示略)と連結するロッド17を下部にもつ。こ
のロッド17には、第1容器支持体12の下部ロッド1
5を挿通させる貫通孔18が設けられる。したがって、
この第2容器支持体13で容器1及び第1容器支持体1
2を入れ子状に支持することにより、図示矢印6のよう
に中心あるいは下方へ大きな熱の流れが生ずるため、固
液界面5の凸の向きが維持できる。
As shown in FIG. 1B, the second container support 13 supports the entire container 1, and the outer diameter of the upper portion supporting the container 1 is larger than the outer diameter of the container 1. It is getting bigger. Specifically, the container 1 and the first container support 12 integrated together are supported so that the first container support 12 supporting the container 1 is supported together, that is, the first container support 12 is nested. It has an engaging hole 16 which is recessed in a cylindrical shape to fit, and a rod 17 which is connected to an elevating rod (not shown) for elevating the second container support 13 in the lower part in the lower part. This rod 17 includes the lower rod 1 of the first container support 12.
A through hole 18 for inserting 5 is provided. Therefore,
With this second container support 13, the container 1 and the first container support 1
By supporting 2 in a nested manner, a large heat flow occurs in the center or in the downward direction as shown by an arrow 6 in the figure, so that the convex direction of the solid-liquid interface 5 can be maintained.

【0021】後述するように、第1容器支持体12を第
2容器支持体13に入れ子にして合体したときの全体の
容器支持体の体積は、第1容器支持体12の体積の1.
5倍以上とする。なお、第1容器支持体12は、必ずし
も容器1の下部のみを覆う構成でなく、容器1の全体を
すっぽり覆う様にしてもよい。この場合、熱の流れの点
から容器1の上部円筒部を覆う部分の厚さは薄くするこ
とが望ましい。なお、既述したように容器1はpBN
等、容器支持体12、13はグラファイト等で構成する
ことが好ましい。
As will be described later, the volume of the entire container support when the first container support 12 is nested in the second container support 13 and combined is 1.
5 times or more. The first container support 12 does not necessarily have to cover only the lower portion of the container 1, but may cover the entire container 1 completely. In this case, it is desirable to reduce the thickness of the portion that covers the upper cylindrical portion of the container 1 in terms of heat flow. As described above, the container 1 is pBN.
Etc., the container supports 12 and 13 are preferably made of graphite or the like.

【0022】このようにして、種付け部19から直胴部
となるまでのショルダ部の育成段階で、融液4の入った
容器1を小体積の第1容器支持体12で支えると、熱の
流れが中心を向き、固液界面5が融液側に凸になって、
いわゆる凸面成長ができる。直胴部の育成段階に入って
から、第1容器支持体12と第2容器支持体13とが合
体して第1容器支持体12よりも大体積となった合体容
器支持体で容器1を支えると、中心あるいは下方へ大き
な熱の流れが生ずるため、固液界面5の凸面の向きを維
持できる。したがって、結晶育成中、常に固液界面5を
融液4に向かって凸にすることができるので、単結晶の
収率を大幅に向上できる。
In this way, when the container 1 containing the melt 4 is supported by the first container support 12 having a small volume in the stage of growing the shoulder part from the seeding part 19 to the straight body part, heat of the container 1 is reduced. The flow is directed to the center, the solid-liquid interface 5 is convex toward the melt,
So-called convex growth is possible. After the straight body part is grown, the first container support 12 and the second container support 13 are united to form a container 1 with a combined container support having a larger volume than the first container support 12. When it is supported, a large heat flow occurs in the center or downward, so that the direction of the convex surface of the solid-liquid interface 5 can be maintained. Therefore, since the solid-liquid interface 5 can be always convex toward the melt 4 during the crystal growth, the yield of the single crystal can be significantly improved.

【0023】次に上記したGaAs製造法の具体的例
を、図2を用いて説明する。
Next, a specific example of the above-mentioned GaAs manufacturing method will be described with reference to FIG.

【0024】(具体例)外径78mm、肉厚1mm、ショル
ダ部に対応する円錐部の長さ50mm、直胴部に対応する
円筒部の長さ500mmで、底部に7mm、直径及び長さ4
0mmの種結晶収納部20を設けたpBN製のルツボ21
を用意した。
(Concrete example) Outer diameter 78 mm, wall thickness 1 mm, length of conical portion corresponding to shoulder portion is 50 mm, length of cylindrical portion corresponding to straight body portion is 500 mm, bottom is 7 mm, diameter and length 4
Crucible 21 made of pBN with a seed crystal storage 20 of 0 mm
Prepared.

【0025】このルツボ21に予め製作したGaAs多
結晶22を7000g砕いて入れ、さらにAs23を5
g入れた後、全体をほぼ気密性の保たれるグラファイト
製容器に収納した。このグラファイト製容器27をステ
ンレス製チャンバ内にヒータを配した成長炉(図示略)
に入れ、ルツボ21を下方に移動させる方式で種付け部
24から成長させた。
7,000 g of GaAs polycrystal 22 produced in advance was crushed and put in this crucible 21, and As23 was added to 5
After the addition of g, the whole was placed in a graphite container that is almost airtight. This graphite container 27 is a growth furnace (not shown) in which a heater is placed in a stainless chamber.
, And the crucible 21 was moved downward to grow from the seeding portion 24.

【0026】最初のショルダ部育成段階は、容器支持体
として、図2の上部に示す第1容器支持体25を用い
た。この第1容器支持体25は、図に示すように、ルツ
ボ21の全体を覆う形のものを使用した。
At the first shoulder portion growing stage, the first container support 25 shown in the upper portion of FIG. 2 was used as the container support. As shown in the figure, the first container support 25 used has a shape that covers the entire crucible 21.

【0027】次の直胴部育成段階では、図2の下部に示
す第2容器支持体26に第1容器支持体25を合体させ
たものを使用した。すなわち、ショルダ部の育成が終了
する時点で、下方に移動してきたルツボ21及び第1容
器支持体25を、第2容器支持体26と徐々に接触一体
化させる。その後は、全部のGaAs融液の凝固が終了
するまで、第1、第2容器支持体25、26を一体化さ
せたまま、下方に移動することで成長させた。
At the next stage of growing the straight body part, the one in which the first container support 25 was united with the second container support 26 shown in the lower part of FIG. 2 was used. That is, the crucible 21 and the first container support 25 that have moved downward are gradually brought into contact with and integrated with the second container support 26 at the time when the growth of the shoulder portion is completed. After that, until the solidification of all the GaAs melts was completed, the first and second container supports 25 and 26 were made integral and moved downward to grow.

【0028】このとき、図2に示す第1容器支持体25
の体積V0 に対する合体支持体の体積V1 の比を、ほぼ
2倍(実施例1)、1.5倍(実施例2)、1.0倍
(実施例3)と変えて各実施例で5本づつ結晶を作っ
た。
At this time, the first container support 25 shown in FIG.
In each of the examples, the ratio of the volume V 1 of the united support to the volume V 0 of the same was changed to approximately 2 times (Example 1), 1.5 times (Example 2), and 1.0 times (Example 3). I made 5 crystals each.

【0029】これによりφ75mm、直胴部が約250mm
のGaAs単結晶を得た。
As a result, φ75 mm, straight body is about 250 mm
GaAs single crystal was obtained.

【0030】(比較例)図2に示す第1容器支持体25
と第2容器支持体26を最初から一体化させたまま、他
は実施例と同じ条件で5本の結晶を成長した。
(Comparative Example) First container support 25 shown in FIG.
While keeping the second container support 26 integrated from the beginning, five crystals were grown under the same conditions as in the other examples.

【0031】(結果)実施例1〜3と比較例の結果をま
とめて表1に示す。
(Results) The results of Examples 1 to 3 and Comparative Example are summarized in Table 1.

【0032】[0032]

【表1】 [Table 1]

【0033】表1は、各条件で得られたそれぞれ5本の
結晶から、直胴部長さに対する単結晶長さの比率を求め
て、単結晶収率を比較したものである。この結果から、
1/V0 ≧1.5とすると単結晶収率が極めて高く、
非常に有用であることが認められた。
Table 1 shows the comparison of the single crystal yields by obtaining the ratio of the length of the single crystal to the length of the straight body part from each of the five crystals obtained under each condition. from this result,
When V 1 / V 0 ≧ 1.5, the single crystal yield is extremely high,
It was found to be very useful.

【0034】[0034]

【発明の効果】【The invention's effect】

(1)請求項1に記載の発明によれば、固液界面を理想
的に凸ならしめることができるので、単結晶収率を飛躍
的に向上させることができ、またVB法の本来の特長で
ある低欠陥密度の高品質結晶を廉価に提供できる。
(1) According to the invention described in claim 1, since the solid-liquid interface can be ideally made convex, the single crystal yield can be dramatically improved, and the original feature of the VB method is obtained. It is possible to provide a high-quality crystal having a low defect density, which is

【0035】(2)請求項2ないし4に記載の発明によ
れば、ショルダ部育成段階で容器を支持していた第1容
器支持体を、直胴部育成段階で第2容器支持体に合体さ
せることにより、ショルダ部育成段階と直胴部育成段階
との容器支持体の体積を増加し、あるいは所定の比率に
なるように増加したので、結晶育成中、固液界面を凸状
に維持するための熱制御が容易である。
(2) According to the present invention as set forth in claims 2 to 4, the first container support body which has supported the container at the shoulder portion growing stage is combined with the second container support body at the straight body portion growing stage. By increasing the volume of the container support in the shoulder part growing stage and the straight body part growing stage, or by increasing the volume to a predetermined ratio, the solid-liquid interface is kept convex during crystal growth. It is easy to control heat.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の化合物半導体の製造方法の実施例によ
る熱の流れを2段階に制御する垂直ブリッジマン装置の
要部図。
FIG. 1 is a main part diagram of a vertical Bridgman apparatus for controlling heat flow in two stages according to an embodiment of a method for manufacturing a compound semiconductor of the present invention.

【図2】本発明の化合物半導体の製造装置の具体例によ
る垂直ブリッジマン装置の要部図。
FIG. 2 is a main part view of a vertical Bridgman device according to a specific example of a compound semiconductor manufacturing device of the present invention.

【図3】従来の熱の流れを説明する垂直ブリッジマン装
置の要部図。
FIG. 3 is a main part diagram of a vertical Bridgman device for explaining a conventional heat flow.

【符号の説明】[Explanation of symbols]

1 容器 3 種結晶 4 GaAs融液 5 固液界面 6 熱の流れ 11 GaAs結晶 12 第1の容器支持体 13 第2の容器支持体 19 種付け部 1 Container 3 Seed Crystal 4 GaAs Melt 5 Solid-Liquid Interface 6 Heat Flow 11 GaAs Crystal 12 First Container Support 13 Second Container Support 19 Seeding Section

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】容器支持体に支持される容器に入れた化合
物半導体融液を下方より順次凝固させて結晶を育成する
垂直ブリッジマン法を用いた化合物半導体の製造方法に
おいて、上記凝固工程は最初のショルダ部を育成する段
階と、それ以後の直胴部を育成する段階からなり、上記
ショルダ部を育成した後に上記容器を支持する容器支持
体の体積を増加させて上記直胴部を育成することを特徴
とする化合物半導体の製造方法。
1. A method for producing a compound semiconductor using a vertical Bridgman method in which a compound semiconductor melt contained in a container supported by a container support is solidified sequentially from below to grow crystals. The step of growing the shoulder part of, and the step of growing the straight body part after that, grow the straight body part by increasing the volume of the container support that supports the container after growing the shoulder part. A method of manufacturing a compound semiconductor, comprising:
【請求項2】化合物半導体融液を入れた容器を高温部か
ら低温部に下降させ、容器の下端に設けた種結晶を核に
上記融液を下方より順次凝固させて、結晶径が漸次拡径
するショルダ部と結晶径が定径の直胴部とからなる結晶
を育成する化合物半導体の製造装置において、上記容器
を支持しつつ容器を下降させる容器支持体を容器の下降
方向に直列に2個設け、この2個の容器支持体を、種付
け部から直胴部までのショルダ部育成段階中、上記容器
を支持して容器と一体に下降する第1の容器支持体と、
ショルダ部の育成が終了する時点で徐々に第1の容器支
持体と合体して直胴部育成段階中、上記容器及び第1の
容器支持体と一体に下降する第2の容器支持体とから構
成したことを特徴とする化合物半導体の製造装置。
2. A container containing a compound semiconductor melt is lowered from a high temperature part to a low temperature part, and the melt is sequentially solidified from below with a seed crystal provided at the lower end of the container as a nucleus to gradually expand the crystal diameter. In a compound semiconductor manufacturing apparatus for growing a crystal comprising a shoulder portion having a diameter and a straight body portion having a constant crystal diameter, a container support for lowering the container while supporting the container is connected in series in the descending direction of the container. A first container support that supports the above-mentioned container and descends integrally with the container during the shoulder section growing stage from the seeding section to the straight body section,
From the container and the second container support descending integrally with the above-mentioned container and the first container support during the straight body part growing stage by gradually combining with the first container support at the time when the shoulder part growth is completed. An apparatus for manufacturing a compound semiconductor, which is configured.
【請求項3】上記第1の容器支持体と第2の容器支持体
とを合体したときの合体体積を、第1の容器支持体の体
積の1.5倍以上にした請求項2に記載の化合物半導体
の製造装置。
3. The combined volume of the first container support and the second container support when combined together is 1.5 times or more the volume of the first container support. Manufacturing equipment for compound semiconductors.
【請求項4】上記化合物半導体がGaAs、InP、ま
たはGaPであり、上記第1、第2の容器支持体がグラ
ファイト、シリコンカーバイド、または石英である請求
項2または3に記載の化合物半導体の製造装置。
4. The production of a compound semiconductor according to claim 2, wherein the compound semiconductor is GaAs, InP, or GaP, and the first and second container supports are graphite, silicon carbide, or quartz. apparatus.
JP16060593A 1993-06-30 1993-06-30 Production of compound semiconductor and unit therefor Pending JPH0710677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16060593A JPH0710677A (en) 1993-06-30 1993-06-30 Production of compound semiconductor and unit therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16060593A JPH0710677A (en) 1993-06-30 1993-06-30 Production of compound semiconductor and unit therefor

Publications (1)

Publication Number Publication Date
JPH0710677A true JPH0710677A (en) 1995-01-13

Family

ID=15718562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16060593A Pending JPH0710677A (en) 1993-06-30 1993-06-30 Production of compound semiconductor and unit therefor

Country Status (1)

Country Link
JP (1) JPH0710677A (en)

Similar Documents

Publication Publication Date Title
US8506706B2 (en) Systems, methods and substrates of monocrystalline germanium crystal growth
US4863554A (en) Process for pulling a single crystal
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
JPH0710677A (en) Production of compound semiconductor and unit therefor
JP2690419B2 (en) Single crystal growing method and apparatus
JPH11147785A (en) Production of single crystal
JP3567662B2 (en) Single crystal growth method and apparatus
JP2021080141A (en) Manufacturing method and manufacturing apparatus of gallium oxide single crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JPH07330482A (en) Method and apparatus for growing single crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JPH1129398A (en) Apparatus for producing compound semiconductor single crystal
JPH0867593A (en) Method for growing single crystal
JP2004107099A (en) Method of manufacturing semi-insulative gallium arsenide single crystal
JP2001080987A (en) Device for producing compound semiconductor crystal and production process using the same
JP2004161559A (en) Apparatus for manufacturing compound semiconductor
JP2004083301A (en) Single crystal manufacturing apparatus
JPH11189499A (en) Production of compound semiconductor single crystal
JPH08290991A (en) Method for growing compound semiconductor single crystal
JPH0952789A (en) Production of single crystal
KR101649539B1 (en) Reverse sublimation apparatus for single crystal growth
JP2013018678A (en) Crucible for growing crystal, and method for growing crystal
JPH10182277A (en) Device for producing single crystal and production of single crystal, using the same
JPH061692A (en) Device for producing compound semiconductor single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same