JPH07105963A - Air supply device for fuel cell - Google Patents

Air supply device for fuel cell

Info

Publication number
JPH07105963A
JPH07105963A JP5252647A JP25264793A JPH07105963A JP H07105963 A JPH07105963 A JP H07105963A JP 5252647 A JP5252647 A JP 5252647A JP 25264793 A JP25264793 A JP 25264793A JP H07105963 A JPH07105963 A JP H07105963A
Authority
JP
Japan
Prior art keywords
air
blower
fuel cell
electric blower
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5252647A
Other languages
Japanese (ja)
Other versions
JP3262145B2 (en
Inventor
Hajime Saito
一 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP25264793A priority Critical patent/JP3262145B2/en
Publication of JPH07105963A publication Critical patent/JPH07105963A/en
Application granted granted Critical
Publication of JP3262145B2 publication Critical patent/JP3262145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide an air supply device for fuel cell which can stably supply a necessary quantity of air to the fuel cell from the normal pressure to a rated pressure without imposing an overload on any of the constituent apparatus. CONSTITUTION:An air supply device for a fuel cell is equipped with a turbine compressor machine 17 comprising a turbine T driven with a cathode exhaust gas 7 and a compressor C driven by the turbine and a motor-driven blower 18 which is driven by a motor M, wherein the turbine compressor machine and motor-driven blower have respective air suction lines 21, 22 and discharge lines 23, 24. The discharge line 23 of the turbine compressor machine is fitted with a compressor check valve 25 which hinders counterflow of the discharge air, while the suction line 22 of the blower is furnished with a blower check valve 26 which is to prevent counterflow of the suction air. An air bypass line 27 is provided which puts the upstream of the compressor check valve in communication with the downstream of the blower check valve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃料電池用空気供給装置
に係わり、更に詳しくは、溶融炭酸塩型燃料電池におけ
る空気供給装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air supply device for a fuel cell, and more particularly to an air supply device for a molten carbonate fuel cell.

【0002】[0002]

【従来の技術】溶融炭酸塩型燃料電池は、高効率、かつ
環境への影響が少ないなど、従来の発電装置にはない特
徴を有しており、水力・火力・原子力に続く発電システ
ムとして注目を集め、現在世界各国で鋭意研究開発が行
われている。特に天然ガスを燃料とする溶融炭酸塩型燃
料電池を用いた発電設備では、図3に示すように天然ガ
ス等の燃料ガス1を水素を含むアノードガス2に改質す
る改質器10と、アノードガス2と酸素を含むカソード
ガス3とから発電する燃料電池12とを一般的に備えて
おり、改質器で作られたアノードガスは燃料電池に供給
され、燃料電池内でその大部分(例えば80%)を消費
した後、アノード排ガス4として改質器10の燃焼室C
oに供給される。燃料ガス1は燃料予熱器11により予
熱されて改質器の改質室Reに入る。改質器ではアノー
ド排ガス中の可燃成分(水素、一酸化炭素、メタン等)
を燃焼室で燃焼し、高温の燃焼ガスにより改質室Reを
加熱し内部を流れる燃料ガスを改質する。改質室を出た
燃焼排ガス5は、排ガス循環ライン13の空気予熱器1
4で熱回収され、凝縮器15と気水分離器16で水分を
除去され、タービン圧縮機17で加圧された空気6が混
入し、この混合ガスが空気予熱器14で加熱されてカソ
ードガス3に合流する。これにより、電池のアノード側
で発生した二酸化炭素が、燃焼排ガス5を介して燃料電
池用のカソードガス3に入り、燃料電池のカソード反応
に必要な二酸化炭素をカソード側Cに供給する。カソー
ドガス3は燃料電池内でその一部が反応してカソード排
ガス7となり、その一部はカソード入口側に再循環さ
れ、一部は改質器10の燃焼室Coに供給されてアノー
ド排ガス4を燃焼させ、残りはタービン圧縮機17に供
給されて圧力回収され、系外に排出される。なお、8は
燃料電池の格納容器に供給されるパージガスである。
2. Description of the Related Art Molten carbonate fuel cells have characteristics that conventional power generators do not have, such as high efficiency and little impact on the environment, and they are attracting attention as a power generation system following hydropower, thermal power, and nuclear power. Is currently being researched and developed all over the world. Particularly in a power generation facility using a molten carbonate fuel cell using natural gas as a fuel, a reformer 10 for reforming a fuel gas 1 such as natural gas into an anode gas 2 containing hydrogen as shown in FIG. A fuel cell 12 for generating power from an anode gas 2 and a cathode gas 3 containing oxygen is generally provided, and the anode gas produced by the reformer is supplied to the fuel cell, and most of the fuel gas in the fuel cell ( (For example, 80%), the combustion chamber C of the reformer 10 is used as the anode exhaust gas 4.
supplied to the o. The fuel gas 1 is preheated by the fuel preheater 11 and enters the reforming chamber Re of the reformer. In the reformer, combustible components (hydrogen, carbon monoxide, methane, etc.) in the anode exhaust gas
Are burned in the combustion chamber and the high temperature combustion gas heats the reforming chamber Re to reform the fuel gas flowing inside. The combustion exhaust gas 5 exiting the reforming chamber is the air preheater 1 of the exhaust gas circulation line 13.
4, the heat is recovered by the condenser 4, the moisture is removed by the condenser 15 and the steam separator 16, and the air 6 pressurized by the turbine compressor 17 is mixed, and the mixed gas is heated by the air preheater 14 to form the cathode gas. Merge into 3. As a result, carbon dioxide generated on the anode side of the cell enters the cathode gas 3 for the fuel cell via the combustion exhaust gas 5, and supplies carbon dioxide required for the cathode reaction of the fuel cell to the cathode side C. A part of the cathode gas 3 reacts in the fuel cell to form a cathode exhaust gas 7, a part of which is recirculated to the cathode inlet side, and a part of the cathode gas 3 is supplied to the combustion chamber Co of the reformer 10 to generate the anode exhaust gas 4. Is burned, and the rest is supplied to the turbine compressor 17 to recover the pressure and is discharged to the outside of the system. In addition, 8 is a purge gas supplied to the storage container of the fuel cell.

【0003】上述した燃料電池発電設備において燃料電
池12に必要な空気は、定格運転時にはタービン圧縮機
17により十分供給することができる。しかし、常圧か
ら徐々に昇圧及び昇温する始動時には、カソード排ガス
7の圧力及び温度が十分ではなく、タービン圧縮機17
のコンプレッサCでは十分な空気量を供給できない問題
があった。そのため従来の燃料電池発電設備では、図2
に例示するような電動ブロア18が併設され、始動時に
は主としてこのブロアにより空気を供給するようになっ
ていた。
The air required for the fuel cell 12 in the above-described fuel cell power generation facility can be sufficiently supplied by the turbine compressor 17 during the rated operation. However, the pressure and temperature of the cathode exhaust gas 7 are not sufficient at the time of start-up in which the pressure is gradually increased and the temperature is raised from the normal pressure, and the turbine compressor 17
There was a problem that the compressor C could not supply a sufficient amount of air. Therefore, in the conventional fuel cell power generation facility, as shown in FIG.
An electric blower 18 as illustrated in FIG. 2 is provided side by side, and air is mainly supplied by this blower at the time of starting.

【0004】[0004]

【発明が解決しようとする課題】しかし、燃料電池発電
設備の運転圧力は、例えば3〜10ataであり、図2
に示した空気供給装置の電動ブロア18の発生圧力は約
2000mmAq(0.2kg/cm2)程度にすぎないた
め、常圧から約0.2kg/cm2までは、電動ブロア18で
空気を供給できるが、それ以上の圧力では、タービン圧
縮機17のみにより供給する必要があった。そのため、
約0.2kg/cm2より高い圧力領域において、空気供給装
置の供給空気量が過渡的に不足する問題点があった。
However, the operating pressure of the fuel cell power generation equipment is, for example, 3 to 10 at.
Since the pressure generated by the electric blower 18 of the air supply device shown in Fig. 2 is only about 2000 mmAq (0.2 kg / cm 2 ), air is supplied by the electric blower 18 from normal pressure to about 0.2 kg / cm 2. However, at higher pressures, it was necessary to supply only by the turbine compressor 17. for that reason,
In a pressure range higher than about 0.2 kg / cm 2 , there has been a problem that the air supply amount of the air supply device is transiently insufficient.

【0005】更に、かかる問題点を解決するために、上
述した電動ブロア18によりタービン圧縮機17の不足
分を補充(バックアップ)しようとすると、排ガス循環
ライン13の圧力変動により電動ブロア18の前後差圧
が過大(例えば2000mmAq以上)となり、電動ブ
ロア18の電動機Mが過負荷によりトリップしやすい問
題点があった。
Further, in order to solve such a problem, when an attempt is made to supplement (back up) the shortage of the turbine compressor 17 by the electric blower 18, the difference in pressure between the exhaust gas circulation line 13 causes a difference in front and rear of the electric blower 18. There is a problem that the pressure becomes excessive (for example, 2000 mmAq or more), and the electric motor M of the electric blower 18 easily trips due to overload.

【0006】本発明は、かかる問題点を解決するために
創案されたものである。すなわち、本発明の目的は、構
成機器に過負荷を生じさせることなく、常圧から定格圧
力まで燃料電池に必要な空気量を安定して供給できる燃
料電池用空気供給装置を提供することにある。
The present invention was devised to solve such problems. That is, an object of the present invention is to provide an air supply device for a fuel cell, which can stably supply an air amount required for a fuel cell from normal pressure to rated pressure without causing overload on constituent devices. .

【0007】[0007]

【課題を解決するための手段】本発明によれば、カソー
ド排ガスで駆動するタービンと該タービンで駆動される
コンプレッサとを有するタービン圧縮機と、電動機で駆
動される電動ブロアと、を備え、タービン圧縮機と電動
ブロアはそれぞれ空気の吸引ラインと吐出ラインを有
し、タービン圧縮機の吐出ラインには、吐出空気の逆流
を防ぐコンプレッサ逆止弁が設けられ、電動ブロアの吸
引ラインには吸引空気の逆流を防ぐブロア逆止弁が設け
られ、更に、コンプレッサ逆止弁の上流側とブロア逆止
弁の下流側とを連通するバイパスラインを備える、こと
を特徴とする燃料電池用空気供給装置が提供される。
According to the present invention, there is provided a turbine compressor having a turbine driven by cathode exhaust gas and a compressor driven by the turbine, and an electric blower driven by an electric motor. The compressor and the electric blower each have an air suction line and an air discharge line, the turbine compressor's discharge line is equipped with a compressor check valve that prevents the reverse flow of the discharge air, and the electric blower's suction line has a suction air line. Is provided with a blower check valve for preventing backflow of the fuel cell, and further includes a bypass line communicating between the upstream side of the compressor check valve and the downstream side of the blower check valve. Provided.

【0008】本発明の好ましい実施例によれば、前記電
動ブロアの上流側と下流側との差圧を検出する差圧検出
器と、電動ブロアの回転速度を制御する制御装置とを更
に備え、該制御装置は、差圧検出器の出力信号と燃料電
池の負荷指令信号とを受け、前記差圧が小さい場合には
燃料電池の負荷指令信号により電動ブロアの回転速度を
制御し、前記差圧が大きい場合には該差圧が所定の値以
下になるように電動ブロアの回転速度を制御するように
設定されている。
According to a preferred embodiment of the present invention, there is further provided a differential pressure detector for detecting a differential pressure between the upstream side and the downstream side of the electric blower, and a control device for controlling the rotation speed of the electric blower, The control device receives the output signal of the differential pressure detector and the load command signal of the fuel cell, controls the rotation speed of the electric blower by the load command signal of the fuel cell when the differential pressure is small, and controls the differential pressure. Is larger, the rotational speed of the electric blower is controlled so that the differential pressure becomes a predetermined value or less.

【0009】[0009]

【作用】上記本発明の構成によれば、電動ブロアの吸引
ラインに吸引空気の逆流を防ぐブロア逆止弁が設けら
れ、かつ、コンプレッサ逆止弁の上流側とブロア逆止弁
の下流側とを連通するバイパスラインを備えているの
で、始動時の例えば約2000mmAq(0.2kg/c
m2)以下のときには、ブロア逆止弁を介して電動ブロア
により空気を供給することができ、この際、コンプレッ
サ逆止弁は電動ブロアで加圧された空気の逆流を防止す
る機能を果たす。次いで、系内圧力が上昇し、例えば
約2000mmAq(0.2kg/cm2)を越えるときに
は、タービン圧縮機でわずかに加圧した空気をバイパス
ラインを介して電動ブロアに供給し、電動ブロアで更に
加圧して供給することができる。この際、ブロア逆止弁
はタービン圧縮機で加圧した空気の逆流を防ぐように機
能する。更に系内圧力が上昇すると、タービン圧縮機
のみで必要空気量を供給することができるようになり、
タービン圧縮機で加圧した空気はコンプレッサ逆止弁を
介して供給され、電動ブロアは過渡的な変動を補助的に
バックアップする機能を果たす。これにより、常圧から
定格圧力まで燃料電池に必要な空気量を安定して供給で
きる。
According to the above configuration of the present invention, a blower check valve for preventing backflow of suction air is provided in the suction line of the electric blower, and the upstream side of the compressor check valve and the downstream side of the blower check valve are provided. Since it has a bypass line that communicates with, for example, about 2000 mmAq (0.2 kg / c
In the case of m 2 ) or less, air can be supplied by the electric blower through the blower check valve, and at this time, the compressor check valve functions to prevent the backflow of the air pressurized by the electric blower. Next, when the system pressure rises and exceeds, for example, about 2000 mmAq (0.2 kg / cm 2 ), air slightly pressurized by the turbine compressor is supplied to the electric blower through the bypass line, and the electric blower further It can be supplied under pressure. At this time, the blower check valve functions to prevent backflow of the air compressed by the turbine compressor. When the system pressure further rises, it becomes possible to supply the required amount of air only with the turbine compressor,
The air compressed by the turbine compressor is supplied through the compressor check valve, and the electric blower serves as an auxiliary backup for transient fluctuations. As a result, the amount of air required for the fuel cell can be stably supplied from normal pressure to rated pressure.

【0010】更に、電動ブロアの差圧検出器と、電動ブ
ロアの回転速度を制御する制御装置とを備え、この制御
装置により、差圧が大きい場合に差圧が所定の値以下に
なるように電動ブロアの回転速度を制御すれば、電動ブ
ロアの電動機が過負荷によるトリップを防止することが
できる。
Further, a differential pressure detector for the electric blower and a control device for controlling the rotational speed of the electric blower are provided so that the differential pressure becomes a predetermined value or less when the differential pressure is large. By controlling the rotation speed of the electric blower, the electric motor of the electric blower can be prevented from tripping due to overload.

【0011】[0011]

【実施例】以下に本発明の好ましい実施例を図面を参照
して説明する。なお、各図において共通する部分には同
一の符号を付して使用する。図1は、本発明による燃料
電池用空気供給装置の全体構成図である。この図におい
て、本発明の燃料電池用空気供給装置は、カソード排ガ
ス7で駆動するタービンTとこのタービンTで駆動され
るコンプレッサCとを有するタービン圧縮機17と、電
動機Mで駆動される電動ブロア18とを備えている。か
かる構成は、従来の燃料電池用空気供給装置と同様であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. In addition, in each figure, the same parts are denoted by the same reference numerals. FIG. 1 is an overall configuration diagram of an air supply device for a fuel cell according to the present invention. In this figure, the air supply device for a fuel cell of the present invention includes a turbine compressor 17 having a turbine T driven by cathode exhaust gas 7 and a compressor C driven by this turbine T, and an electric blower driven by an electric motor M. 18 and 18. Such a configuration is similar to that of the conventional air supply device for a fuel cell.

【0012】本発明によれば、タービン圧縮機17と電
動ブロア18はそれぞれ空気の吸引ライン21、22と
吐出ライン23、24を有している。また、タービン圧
縮機17の吐出ライン23には、吐出空気の逆流を防ぐ
コンプレッサ逆止弁25が設けられ、電動ブロア18の
吸引ライン22には吸引空気の逆流を防ぐブロア逆止弁
26が設けられている。更に、コンプレッサ逆止弁25
の上流側とブロア逆止弁26の下流側とを連通するバイ
パスライン27を備えている。
According to the present invention, the turbine compressor 17 and the electric blower 18 have air suction lines 21 and 22 and discharge lines 23 and 24, respectively. Further, the discharge line 23 of the turbine compressor 17 is provided with a compressor check valve 25 for preventing backflow of discharge air, and the suction line 22 of the electric blower 18 is provided with a blower check valve 26 for preventing backflow of suction air. Has been. Further, the compressor check valve 25
A bypass line 27 that connects the upstream side of the blower check valve to the downstream side of the blower check valve 26.

【0013】かかる構成により、始動時の例えば約2
000mmAq(0.2kg/cm2)以下のときには、ブロ
ア逆止弁26を介して電動ブロア18により空気を供給
することができ、この際、コンプレッサ逆止弁25は電
動ブロア18で加圧された空気の逆流を防止する機能を
果たす。次いで、系内圧力が上昇し、例えば約200
0mmAq(0.2kg/cm2)を越えるときには、タービ
ン圧縮機17でわずかに加圧した空気をバイパスライン
27を介して電動ブロア18に供給し、電動ブロア18
で更に加圧して供給することができる。この際、ブロア
逆止弁26はタービン圧縮機17で加圧した空気の逆流
を防ぐように機能する。更に系内圧力が上昇すると、
タービン圧縮機17のみで必要空気量を供給することが
できるようになり、タービン圧縮機17で加圧した空気
はコンプレッサ逆止弁25を介して供給され、電動ブロ
アは過渡的な変動を補助的にバックアップする機能を果
たす。従って、上述した構成により、常圧から定格圧力
まで燃料電池に必要な空気量を安定して供給することが
できる。
With this configuration, for example, about 2 at the time of starting.
When the pressure is 000 mmAq (0.2 kg / cm 2 ) or less, air can be supplied by the electric blower 18 via the blower check valve 26, and the compressor check valve 25 is pressurized by the electric blower 18 at this time. It functions to prevent backflow of air. Then, the system pressure rises, for example, about 200
When the pressure exceeds 0 mmAq (0.2 kg / cm 2 ), the air slightly compressed by the turbine compressor 17 is supplied to the electric blower 18 via the bypass line 27, and the electric blower 18 is supplied.
Can be further pressurized and supplied. At this time, the blower check valve 26 functions to prevent the backflow of the air pressurized by the turbine compressor 17. When the system pressure further increases,
The required amount of air can be supplied only by the turbine compressor 17, the air compressed by the turbine compressor 17 is supplied through the compressor check valve 25, and the electric blower assists transient fluctuations. Fulfill the function of backing up to. Therefore, with the configuration described above, it is possible to stably supply the amount of air required for the fuel cell from normal pressure to rated pressure.

【0014】図1の燃料電池用空気供給装置は、更に、
電動ブロア18の上流側と下流側との差圧を検出する差
圧検出器31と、電動ブロア18の回転速度を制御する
制御装置32とを備えている。制御装置32は、差圧検
出器31の出力信号と燃料電池の負荷指令信号Sとを受
け、電動ブロア18の差圧が小さい場合には燃料電池の
負荷指令信号Sにより電動ブロアの回転速度を制御し、
電動ブロア18の差圧が大きい場合にはこの差圧が所定
の値(例えば2000mmAq)以下になるように電動
ブロア18の回転速度を制御するように設定されてい
る。かかる構成により、電動ブロアの電動機Mの過負荷
によるトリップを防止することができる。
The fuel cell air supply system of FIG. 1 further comprises:
A differential pressure detector 31 that detects a differential pressure between the upstream side and the downstream side of the electric blower 18 and a control device 32 that controls the rotation speed of the electric blower 18 are provided. The control device 32 receives the output signal of the differential pressure detector 31 and the load command signal S of the fuel cell, and when the differential pressure of the electric blower 18 is small, controls the rotation speed of the electric blower by the load command signal S of the fuel cell. Control and
When the differential pressure of the electric blower 18 is large, the rotational speed of the electric blower 18 is set so that the differential pressure becomes a predetermined value (for example, 2000 mmAq) or less. With this configuration, it is possible to prevent a trip due to an overload of the electric motor M of the electric blower.

【0015】更に図1において、吐出ライン23と24
は、合流して空気6を供給するようになっており、この
吐出ラインには、安全弁34が設けられている。これに
より、吐出ライン23、24の異常な圧力上昇を防止す
ることができる。
Further in FIG. 1, the discharge lines 23 and 24
Are joined to supply the air 6, and a safety valve 34 is provided in this discharge line. As a result, it is possible to prevent an abnormal pressure rise in the discharge lines 23, 24.

【0016】上述したように、本発明によれば、始動
時には電動ブロア単独で、系内圧力がわずかに上昇し
たときには、タービン圧縮機と電動ブロアの連携によ
り、系内圧力が十分上昇したときには、タービン圧縮
機のみで、必要空気量を供給することができる。また、
差圧検出器と制御装置とにより、電動ブロアの過負荷に
よるトリップを防止することができる。
As described above, according to the present invention, when the internal pressure of the system is slightly increased by the electric blower alone at the start, when the internal pressure of the system is sufficiently increased by the cooperation of the turbine compressor and the electric blower, The required amount of air can be supplied only by the turbine compressor. Also,
The differential pressure detector and the control device can prevent tripping due to overload of the electric blower.

【0017】[0017]

【発明の効果】従って、本発明の燃料電池用空気供給装
置は、構成機器に過負荷を生じさせることなく、常圧か
ら定格圧力まで燃料電池に必要な空気量を安定して供給
できる、優れた効果を有する。
Therefore, the air supply device for a fuel cell of the present invention is excellent in that it can stably supply the air amount required for the fuel cell from the normal pressure to the rated pressure without causing overload on the constituent equipment. Have the effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燃料電池用空気供給装置の全体構
成図である。
FIG. 1 is an overall configuration diagram of an air supply device for a fuel cell according to the present invention.

【図2】従来の燃料電池用空気供給装置の構成図であ
る。
FIG. 2 is a configuration diagram of a conventional air supply device for a fuel cell.

【図3】溶融炭酸塩型燃料電池を用いた発電設備の全体
構成図である。
FIG. 3 is an overall configuration diagram of a power generation facility using a molten carbonate fuel cell.

【符号の説明】[Explanation of symbols]

1 燃料ガス 2 アノードガス 3 カソードガス 4 アノード排ガス 5 燃焼排ガス 6 空気 7 カソード排ガス 8 パージガス 10 改質器 11 燃料予熱器 12 燃料電池 13 排ガス循環ライン 14 空気予熱器 15 凝縮器 16 気水分離器 17 タービン圧縮機 18 電動ブロア 21、22 吸引ライン 23、24 吐出ライン 25 コンプレッサ逆止弁 26 ブロア逆止弁 31 差圧検出器 32 制御装置 34 安全弁 Re 改質室 Co 燃焼室 A アノード側 C カソード側 M 電動機 1 Fuel gas 2 Anode gas 3 Cathode gas 4 Anode exhaust gas 5 Combustion exhaust gas 6 Air 7 Cathode exhaust gas 8 Purge gas 10 Reformer 11 Fuel preheater 12 Fuel cell 13 Exhaust gas circulation line 14 Air preheater 15 Condenser 16 Gas-water separator 17 Turbine compressor 18 Electric blower 21, 22 Suction line 23, 24 Discharge line 25 Compressor check valve 26 Blower check valve 31 Differential pressure detector 32 Control device 34 Safety valve Re Reforming chamber Co Combustion chamber A Anode side C Cathode side M Electric motor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 カソード排ガスで駆動するタービンと該
タービンで駆動されるコンプレッサとを有するタービン
圧縮機と、電動機で駆動される電動ブロアと、を備え、 タービン圧縮機と電動ブロアはそれぞれ空気の吸引ライ
ンと吐出ラインを有し、タービン圧縮機の吐出ラインに
は、吐出空気の逆流を防ぐコンプレッサ逆止弁が設けら
れ、電動ブロアの吸引ラインには吸引空気の逆流を防ぐ
ブロア逆止弁が設けられ、 更に、コンプレッサ逆止弁の上流側とブロア逆止弁の下
流側とを連通するバイパスラインを備える、ことを特徴
とする燃料電池用空気供給装置。
1. A turbine compressor having a turbine driven by cathode exhaust gas and a compressor driven by the turbine, and an electric blower driven by an electric motor. The turbine compressor and the electric blower each suck air. It has a line and a discharge line.The discharge line of the turbine compressor is equipped with a compressor check valve to prevent backflow of discharge air, and the suction line of the electric blower is equipped with a blower check valve to prevent backflow of suction air. An air supply device for a fuel cell, further comprising a bypass line that connects the upstream side of the compressor check valve and the downstream side of the blower check valve.
【請求項2】 前記電動ブロアの上流側と下流側との差
圧を検出する差圧検出器と、電動ブロアの回転速度を制
御する制御装置とを更に備え、該制御装置は、差圧検出
器の出力信号と燃料電池の負荷指令信号とを受け、前記
差圧が小さい場合には燃料電池の負荷指令信号により電
動ブロアの回転速度を制御し、前記差圧が大きい場合に
は該差圧が所定の値以下になるように電動ブロアの回転
速度を制御するように設定されている、ことを特徴とす
る請求項1に記載の燃料電池用空気供給装置。
2. A differential pressure detector for detecting the differential pressure between the upstream side and the downstream side of the electric blower, and a control device for controlling the rotation speed of the electric blower, the control device being for detecting the differential pressure. When the differential pressure is small, the rotational speed of the electric blower is controlled by the load command signal of the fuel cell, and when the differential pressure is large, the differential pressure is received. The air supply device for a fuel cell according to claim 1, wherein the air blower is set so as to control the rotation speed of the electric blower so that is equal to or less than a predetermined value.
JP25264793A 1993-10-08 1993-10-08 Air supply device for fuel cell Expired - Fee Related JP3262145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25264793A JP3262145B2 (en) 1993-10-08 1993-10-08 Air supply device for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25264793A JP3262145B2 (en) 1993-10-08 1993-10-08 Air supply device for fuel cell

Publications (2)

Publication Number Publication Date
JPH07105963A true JPH07105963A (en) 1995-04-21
JP3262145B2 JP3262145B2 (en) 2002-03-04

Family

ID=17240268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25264793A Expired - Fee Related JP3262145B2 (en) 1993-10-08 1993-10-08 Air supply device for fuel cell

Country Status (1)

Country Link
JP (1) JP3262145B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349535B1 (en) 1998-12-08 2002-02-26 Daimlerchrysler Ag Process and apparatus for two-stage supercharging of process air for a fuel cell
US6844094B2 (en) * 2000-07-18 2005-01-18 Honda Giken Kogyo Kabushiki Kaisha Gas-supplying apparatus for fuel cell
JP2008196617A (en) * 2007-02-14 2008-08-28 Agp Corp Duct structure, and method of extending/contracting duct structure
WO2008104195A1 (en) * 2007-02-28 2008-09-04 Daimler Ag Gas supply system for a fuel cell arrangement, and method for the operation of a fuel cell system comprising the gas supply system
CN102770996A (en) * 2010-02-26 2012-11-07 丰田自动车株式会社 Fuel cell system
WO2014069408A1 (en) * 2012-10-31 2014-05-08 三菱重工業株式会社 Power generation system, and methods for starting and operating fuel cell in power generation system
JP2014089930A (en) * 2012-10-31 2014-05-15 Mitsubishi Heavy Ind Ltd Power generation system and method for starting up fuel cell in power generation system
CN112993326A (en) * 2019-12-13 2021-06-18 中车时代电动汽车股份有限公司 Fuel cell and proton exchange membrane protection method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349535B1 (en) 1998-12-08 2002-02-26 Daimlerchrysler Ag Process and apparatus for two-stage supercharging of process air for a fuel cell
US6662566B2 (en) 1998-12-08 2003-12-16 Ballard Power Systems Inc. Process and apparatus for two-stage supercharging of process air for a fuel cell
US6844094B2 (en) * 2000-07-18 2005-01-18 Honda Giken Kogyo Kabushiki Kaisha Gas-supplying apparatus for fuel cell
JP2008196617A (en) * 2007-02-14 2008-08-28 Agp Corp Duct structure, and method of extending/contracting duct structure
WO2008104195A1 (en) * 2007-02-28 2008-09-04 Daimler Ag Gas supply system for a fuel cell arrangement, and method for the operation of a fuel cell system comprising the gas supply system
US20120308908A1 (en) * 2010-02-26 2012-12-06 Toyota Jidosha Kabushiki Kaisha Fuel cell system
CN102770996A (en) * 2010-02-26 2012-11-07 丰田自动车株式会社 Fuel cell system
DE112010005307B4 (en) * 2010-02-26 2014-07-10 Toyota Jidosha Kabushiki Kaisha The fuel cell system
CN102770996B (en) * 2010-02-26 2015-02-25 丰田自动车株式会社 Fuel cell system
US8986901B2 (en) * 2010-02-26 2015-03-24 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2014069408A1 (en) * 2012-10-31 2014-05-08 三菱重工業株式会社 Power generation system, and methods for starting and operating fuel cell in power generation system
JP2014089930A (en) * 2012-10-31 2014-05-15 Mitsubishi Heavy Ind Ltd Power generation system and method for starting up fuel cell in power generation system
US9806358B2 (en) 2012-10-31 2017-10-31 Mitsubishi Hitachi Power Systems, Ltd. Power generation system, and methods for starting and operating fuel cell in power generation system
CN112993326A (en) * 2019-12-13 2021-06-18 中车时代电动汽车股份有限公司 Fuel cell and proton exchange membrane protection method

Also Published As

Publication number Publication date
JP3262145B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
JP6228752B2 (en) Power generation system and method for starting power generation system
JPH07105963A (en) Air supply device for fuel cell
JP3804204B2 (en) Fuel cell power generator with multi-stage turbine compressor
JP4097193B2 (en) Combined power generation facilities for fuel cells and gas turbines and their start / stop methods
JP3344439B2 (en) Combustion device and combustion method for turbine compressor
JPH1167251A (en) Fuel cell power generating device
JP2000348749A (en) Starting method of fuel cell power generation plant
JP3513933B2 (en) Fuel cell power generator
JP3312499B2 (en) Fuel cell generator
JP3312498B2 (en) Fuel cell generator
JP4212322B2 (en) Combined power generation facilities for fuel cells and micro gas turbines and their startup methods
JP4158131B2 (en) Fuel cell power generator
JPH0845527A (en) Operating method of fuel cell power generation device
JP3582131B2 (en) Molten carbonate fuel cell power generator
JP2004111130A (en) Thermoelectric ratio changing method for fuel cell-micro gas turbine combined power generation facility
JP3467759B2 (en) Control method of outlet temperature of reformer
JPH0353457B2 (en)
JP3505742B2 (en) Fuel cell power generator
JPH1167252A (en) Fuel cell power generating device
JP4212089B2 (en) Combined power generation facilities for fuel cells and micro gas turbines and their startup methods
JP3509132B2 (en) Fuel cell power generator
JP3271677B2 (en) Fuel cell generator
JP3508229B2 (en) Air blower control unit for molten carbonate fuel cell power generator
JPH10223236A (en) Fuel cell electricity-generating apparatus
JP3570570B2 (en) Molten carbonate fuel cell power generator

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees