JPS63239777A - Operation method for fuel cell power generating plant - Google Patents

Operation method for fuel cell power generating plant

Info

Publication number
JPS63239777A
JPS63239777A JP62071523A JP7152387A JPS63239777A JP S63239777 A JPS63239777 A JP S63239777A JP 62071523 A JP62071523 A JP 62071523A JP 7152387 A JP7152387 A JP 7152387A JP S63239777 A JPS63239777 A JP S63239777A
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
expansion turbine
power generation
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62071523A
Other languages
Japanese (ja)
Inventor
Nobuo Nagasaki
伸男 長崎
Yoshiki Noguchi
芳樹 野口
Kenji Yokosuka
横須賀 建志
Yoichi Hattori
洋市 服部
Narihisa Sugita
杉田 成久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP62071523A priority Critical patent/JPS63239777A/en
Publication of JPS63239777A publication Critical patent/JPS63239777A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve the power generation efficiency in a partial load operation by using a multispindle type expansion turbine, driving an air compressor and a generator with separate expansion turbines, and controlling the expansion turbine to drive the generator at a constant rotation frequency. CONSTITUTION:A multispindle expansion turbine is used, an air compressor 36 and a generator 38 are driven by separate turbines, the rotation frequency of the turbine 37 to drive the air compressor 36 is varied to make the flow of the air 27 variable, and the turbine 75 to drive the generator 38 is operated at a constant rotation frequency. Since the energy of the high temperature and high pressure fuel cell exhaust gas can be collected by the driving force as an electric output, and the feeding amount of the air 27 in a partial load operation can be reduced, the motive force for the air compressor can be reduced. Consequently, the power generation efficiency of the power generating plant in a partial load operation can be maintained at a high rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池発電プラントの制御方法に係り、部分
負荷でも高い発電効率を達成するのに好適な燃料電池発
電プラントの運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of controlling a fuel cell power plant, and more particularly to a method of operating a fuel cell power plant suitable for achieving high power generation efficiency even at partial load.

〔従来の技術〕[Conventional technology]

従来の燃料電池発電プラントでは、特公昭58−562
31号公報で開示のように、燃料電池アノードの未反応
燃料を改質器燃焼部へ供給して熱回収を行うこと等によ
り、定格での発電効率の向上を図つていた。しかし、部
分負荷での発電効率を考慮してプラントの制御を行うこ
とについては、部分負荷時の特性検討が行なわれていな
かった。
In conventional fuel cell power generation plants,
As disclosed in Publication No. 31, an attempt was made to improve the power generation efficiency at the rated value by supplying unreacted fuel from the fuel cell anode to the combustion section of the reformer and recovering heat. However, with regard to controlling the plant in consideration of power generation efficiency at partial load, characteristics at partial load have not been studied.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

すなわち、従来技術は1部分負荷での発電効率向上につ
いて考慮がなされておらず、定格負荷運転時の発電効率
向上のために、膨張タービン、圧縮機を設置し、加圧の
発電プラントを構成しているので、膨張タービン、気縮
機の運転上の制約、すなわち、一定回転数で燃料電池へ
一定圧力の空気を供給する必要があるため、膨張タービ
ン、圧縮機を通過するガス流量、温度ををほぼ一定に保
つことが必要となり、膨張タービンへ補助燃料を供給す
るので、燃料電池本体の発電効率が向上するにもかかわ
らず、プラント全体として、部分負荷での発電効率が低
下するという問題があった。
In other words, the conventional technology does not take into consideration the improvement of power generation efficiency under one partial load, and in order to improve power generation efficiency during rated load operation, an expansion turbine and a compressor are installed to configure a pressurized power generation plant. Therefore, there are operating constraints on the expansion turbine and air compressor, i.e., it is necessary to supply air at a constant pressure to the fuel cell at a constant rotation speed, so the gas flow rate and temperature that pass through the expansion turbine and compressor must be Since it is necessary to maintain a constant value, and auxiliary fuel is supplied to the expansion turbine, the power generation efficiency of the fuel cell itself improves, but the problem is that the power generation efficiency of the plant as a whole decreases at partial load. there were.

また、補助燃料系統が必要であるため1部分負荷での補
助燃料、補助空気量の制御方法及び装置が複雑になると
いう問題があった。
Furthermore, since an auxiliary fuel system is required, there is a problem in that the method and apparatus for controlling the amount of auxiliary fuel and air at one partial load are complicated.

本発明の目的は、加圧の燃料電池発電プラントの部分負
荷の発電効率を高く維持できるプラントの運転方法を提
供することにある。
An object of the present invention is to provide a method of operating a pressurized fuel cell power plant that can maintain high partial load power generation efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、多軸型膨張タービンを用い、空気圧縮機と
、発電機を別の膨張タービンで駆動し、空気圧縮機の回
転数番変化させ空気供給量を可変とし、燃料電池負荷信
号、または、燃料電池反応温度信号、あるいは、燃料電
池酸化剤ガス供給温度、あるいは、膨張タービン入口ガ
ス温度信号の高値を選択して燃料を供給することにより
達成される。
The above purpose uses a multi-shaft expansion turbine, drives an air compressor and a generator with separate expansion turbines, changes the rotational speed of the air compressor to vary the air supply amount, and outputs a fuel cell load signal or This is achieved by supplying fuel by selecting a high value of the fuel cell reaction temperature signal, the fuel cell oxidant gas supply temperature, or the expansion turbine inlet gas temperature signal.

〔作用〕[Effect]

多軸型膨張タービンを用い、空気圧縮機と発電機を別の
タービンで駆動し、空気圧縮機を駆動するタービンの回
転数を変化させて空気流量を可変とし、発電機を駆動す
るタービンを一定回転数とすることにより、高温、高圧
の燃料電池排ガスの持つエネルギを電気高力として動力
回収し、部分負荷時の空気供給量を少なくすることがで
きるので、空気圧縮のための動力を低減することができ
、補助燃料を゛供給し膨張タービン、空気圧縮機の運転
条件を一定に保つ運転方法に比べて2部分負荷時に余剰
となる空気を昇温するための補助燃料流量が減少するの
で1部分負荷での発電プラントの発電効率を高く維持す
ることができる。
Using a multi-shaft expansion turbine, the air compressor and generator are driven by separate turbines, and the rotational speed of the turbine that drives the air compressor is varied to vary the air flow rate, while the turbine that drives the generator is kept constant. By increasing the rotational speed, the energy contained in the high-temperature, high-pressure fuel cell exhaust gas can be recovered as electric power, and the amount of air supplied during partial load can be reduced, reducing the power required for air compression. Compared to an operation method in which auxiliary fuel is supplied and the operating conditions of the expansion turbine and air compressor are kept constant, the flow rate of auxiliary fuel to heat up the excess air during two partial loads is reduced. The power generation efficiency of the power generation plant at partial load can be maintained at a high level.

膨張タービンへ供給される熱量の変化に伴って、回転数
が変化、軸動力にバランスした空気流量、圧力となるが
、燃料電池負荷信号、または、燃料電池反応温度信号、
あるいは、燃料電池酸化剤ガス温度信号の高値を選択し
て燃料電池への供給燃料を制御する事により、空気供給
量の変化及び燃料電池運転条件の変化に対応した最適運
転条件を維持できるので部分負荷の発電プラントの発電
プラントを高く維持できる。
As the amount of heat supplied to the expansion turbine changes, the rotational speed changes, and the air flow rate and pressure balance with the shaft power.However, the fuel cell load signal or fuel cell reaction temperature signal,
Alternatively, by selecting the high value of the fuel cell oxidant gas temperature signal and controlling the fuel supplied to the fuel cell, it is possible to maintain optimal operating conditions in response to changes in the air supply amount and changes in the fuel cell operating conditions. The power generation plant of the load power generation plant can be maintained at a high level.

負荷率に対応して、燃料電池酸化剤ガス供給温度を燃料
電池へ供給する燃料で制御することにより、補助燃焼器
を設置して、少なくとも一部を燃料電池をバイパスして
補助燃料として供給する場合に比べて、燃料電池へ過剰
に燃料を供給でき、燃料電池アノード内での水素相当分
圧を高くできるので、燃料電池の電圧が上昇し、燃料電
池発電プラントの部分負荷での発電効率が向上する。
By controlling the fuel cell oxidant gas supply temperature with the fuel supplied to the fuel cell in accordance with the load factor, an auxiliary combustor is installed and at least a portion of the gas is supplied as auxiliary fuel by bypassing the fuel cell. Compared to the conventional case, it is possible to supply excess fuel to the fuel cell and increase the hydrogen equivalent partial pressure in the fuel cell anode, which increases the voltage of the fuel cell and increases the power generation efficiency at partial load of the fuel cell power plant. improves.

本実施例によれば、補助燃料系統が不要となり系統構成
が簡素化され、運転方法、制御方法及び装置を単純化す
ることができる。
According to this embodiment, an auxiliary fuel system is not required, the system configuration is simplified, and the operating method, control method, and device can be simplified.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

燃料1は、約6〜10kg/cdに加圧されて改質器4
に供給される。改質器4では天然ガス等の燃料を、改質
器反応部5で、膨張タービン75の排熱回収ボイラ41
等により生成される蒸気3と改質反応を起こさせ、燃料
を水素及び−酸化炭素を主成分とするガスに改質させる
The fuel 1 is pressurized to about 6 to 10 kg/cd and is sent to the reformer 4.
supplied to In the reformer 4, fuel such as natural gas is passed to the waste heat recovery boiler 41 of the expansion turbine 75 in the reformer reaction section 5.
A reforming reaction is caused with the steam 3 generated by the above, and the fuel is reformed into a gas containing hydrogen and carbon oxide as main components.

改質させた水素及び−酸化炭素を主成分とする反応ガス
7は約600℃で燃料電池8のアノード9へ供給される
A reaction gas 7 containing reformed hydrogen and carbon oxide as main components is supplied to an anode 9 of a fuel cell 8 at about 600°C.

燃料電池8は、燃料電池の積層体により構成され、各燃
料電池は、正極と負極とこれらの両極の間に配置された
電解質10と、正極の非電解質側に設けられたガス通路
(正極及び正極ガス通路をカソード11と呼ぶ)と負極
の非電解質側に設けられたガス通路(負極及び負極ガス
通路をアノードと呼ぶ)とを含む。
The fuel cell 8 is composed of a stack of fuel cells, and each fuel cell includes a positive electrode, a negative electrode, an electrolyte 10 disposed between these two electrodes, and a gas passage (positive and negative electrodes) provided on the non-electrolyte side of the positive electrode. The positive electrode gas passage is called a cathode 11) and the gas passage provided on the non-electrolyte side of the negative electrode (the negative electrode and the negative electrode gas passage are called an anode).

本実施例では、電解質に炭酸リチウム、炭酸カリウムな
どの炭酸塩を用い、それが溶融状態になる約550℃〜
700℃の温度で運転する溶融炭酸塩を用いている。
In this example, carbonates such as lithium carbonate and potassium carbonate are used as the electrolyte, and the temperature ranges from about 550°C to molten state.
A molten carbonate operating at a temperature of 700°C is used.

7ノード9へ供給された反応ガス7は、カソード11へ
供給される空気と炭酸ガスの混合ガス(酸化剤ガス)3
0と反応する。カソード11では、酸化剤ガス電子を受
は取って炭酸イオンになり、電解質の中に入る。アノー
ド9では、水素と電解質中の炭酸イオンが反応して炭酸
ガス及び水を生成し電子を放出する。この結果、アノー
ドからカソードへ電子が移動し電流が発生する。
7 The reaction gas 7 supplied to the node 9 is a mixed gas of air and carbon dioxide gas (oxidant gas) 3 supplied to the cathode 11.
Reacts with 0. At the cathode 11, the oxidant gas receives electrons and becomes carbonate ions, which enter the electrolyte. At the anode 9, hydrogen and carbonate ions in the electrolyte react to generate carbon dioxide gas and water, and release electrons. As a result, electrons move from the anode to the cathode and a current is generated.

燃料電池8の7ノード排ガス12には、反応ガス7中の
水素、−酸化炭素と、炭酸イオンとの反応により生成し
た炭酸ガス、水を含んでいる。
The seven-node exhaust gas 12 of the fuel cell 8 contains carbon dioxide gas and water produced by the reaction between hydrogen and carbon oxide in the reaction gas 7 and carbonate ions.

燃料電池8のアノード排ガス12は、ガス/ガス熱交1
3で熱交換し、冷却される。さらに、ガス冷却器で冷却
され、気水分離器15でアノード排ガス12に生成した
水が分離される。
The anode exhaust gas 12 of the fuel cell 8 is passed through the gas/gas heat exchanger 1
3 to exchange heat and cool. Further, the anode exhaust gas 12 is cooled by a gas cooler, and water generated in the anode exhaust gas 12 is separated by a steam/water separator 15.

水分を分離したアノード排ガス17は、圧縮機18で圧
縮され、改質器燃焼部6へ供給される。
The anode exhaust gas 17 from which water has been separated is compressed by a compressor 18 and supplied to the reformer combustion section 6.

燃料1を水蒸気3と反応させて水素及び−酸化炭素に改
質する水蒸気改質反応は吸熱反応であり。
The steam reforming reaction in which the fuel 1 is reacted with the steam 3 to reform into hydrogen and carbon oxide is an endothermic reaction.

外部より熱を与える必要がある。本実施例では改質器燃
焼部6八、燃料電池8のアノード排ガス12を供給し、
ガス中に含まれる水素、−酸化炭素等の未反応燃料を燃
焼させて反応熱を供給している。改質器4の反応は、改
質器反応部5へ供給する燃料1と水蒸気3の比、及び、
反応温度が一定となるよう、燃料流量1に比例して水蒸
気3の流量を制御し、改質器燃焼部6の燃焼温度を空気
過剰率を制御することにより行なっている。
It is necessary to apply heat from the outside. In this embodiment, the anode exhaust gas 12 of the fuel cell 8 is supplied to the reformer combustion section 68,
The reaction heat is supplied by burning unreacted fuel such as hydrogen and carbon oxide contained in the gas. The reaction of the reformer 4 depends on the ratio of fuel 1 and steam 3 supplied to the reformer reaction section 5, and
In order to keep the reaction temperature constant, the flow rate of steam 3 is controlled in proportion to the fuel flow rate 1, and the combustion temperature in the reformer combustion section 6 is controlled by controlling the excess air ratio.

燃料電池8のカソード11へ供給される空気と炭酸ガス
の混合ガスである酸化剤ガス3oは、空気については空
気圧縮機36で、定格負荷運転時6〜10kg/aJに
加圧され圧縮空気27として供給される。一方、炭酸ガ
スについては、改質器燃焼部排ガス21として供給され
る。排ガス21は、燃料となるアノード排ガス20を昇
圧圧縮機18で加圧すること、空気27を圧縮機36で
加圧することにより、定格負荷運転時6〜10kg/c
otに加圧される。
The oxidant gas 3o, which is a mixed gas of air and carbon dioxide, is supplied to the cathode 11 of the fuel cell 8, and the air is pressurized by an air compressor 36 to 6 to 10 kg/aJ during rated load operation. Supplied as. On the other hand, carbon dioxide gas is supplied as the reformer combustion section exhaust gas 21. The exhaust gas 21 is produced at a rate of 6 to 10 kg/c during rated load operation by pressurizing the anode exhaust gas 20 serving as fuel with the booster compressor 18 and pressurizing the air 27 with the compressor 36.
Pressurized to ot.

燃料電池8は、反応圧力、反応温度、反応ガス中の燃料
濃度が高いほど反応ガスの持つ熱量より電気出力として
取り出せる割合である発電効率が高いことが知られてい
る。
It is known that the higher the reaction pressure, reaction temperature, and fuel concentration in the reaction gas, the higher the power generation efficiency of the fuel cell 8, which is the ratio of the amount of heat that can be extracted as electrical output than the amount of heat possessed by the reaction gas.

反応ガス温度については、燃料電池の発電効率は高圧は
ど高くなるが、法規制上の制約より10kg/a+f以
下とするのが一般的である。
Regarding the reaction gas temperature, although the power generation efficiency of a fuel cell increases at high pressure, it is generally set to 10 kg/a+f or less due to legal and regulatory restrictions.

燃料電池で反応したガスの持つ熱量のうち電気出力とし
て取り出すことのできない熱量は、分極接触抵抗等の抵
抗により熱に変換されるため、燃料電池は冷却する必要
がある。
Of the heat contained in the gas reacted in the fuel cell, the heat that cannot be extracted as electrical output is converted into heat by resistance such as polarization contact resistance, so the fuel cell needs to be cooled.

溶融炭酸塩を電解質として用いる燃料電池は反応温度が
約550℃〜700℃と高いため、水で冷却する場合は
、冷却されるガスと冷却する水との温度差が大きく熱応
力等の問題がある。
Fuel cells that use molten carbonate as an electrolyte have a high reaction temperature of about 550°C to 700°C, so when cooling with water, there is a large temperature difference between the gas being cooled and the water being cooled, causing problems such as thermal stress. be.

燃料電池は、燃料電池8のアノード9及びカソード11
へ多量のガスを流して冷却している。
The fuel cell has an anode 9 and a cathode 11 of the fuel cell 8.
It is cooled by flowing a large amount of gas into it.

燃料電池カソード排ガス32は、第一段膨張タービン3
7で仕事をして圧縮機36を駆動し、第二段膨張タービ
ン75で発電機38を駆動して電気出力を発生し熱回収
している。
The fuel cell cathode exhaust gas 32 is passed through the first stage expansion turbine 3
7 performs work to drive the compressor 36, and the second stage expansion turbine 75 drives the generator 38 to generate electrical output and recover heat.

燃料電池発電プラントは、改質器4、燃料電池8、膨張
タービン37.75が相互にバランスして有効な熱回収
システムを構成することにより、定格負荷運転時のプラ
ント総合発電効率55〜60%を達成できる。
A fuel cell power generation plant has a reformer 4, a fuel cell 8, and an expansion turbine 37.75 that balance each other to form an effective heat recovery system, resulting in an overall plant power generation efficiency of 55 to 60% during rated load operation. can be achieved.

燃料電池8の部分負荷運転時の発電効率は、電池を流れ
る電流が減少し、抵抗が減るため電圧が上昇するので向
上する。
The power generation efficiency of the fuel cell 8 during partial load operation is improved because the current flowing through the cell is reduced, the resistance is reduced, and the voltage is increased.

燃料電池発電プラントの発電効率は、第2図に示す従来
技術では、定格負荷運転時の発電効率向上のため、膨張
タービン37を用いた熱回収システムを用いているので
、部分負荷の発電効率は低下する。これは、膨張タービ
ン37が、高温高圧の燃料電池カソード排ガス32を熱
回収して圧縮機36を駆動し、余剰の熱量で発電機38
を駆動し、電気出力を発生しているため、発電機は発生
電力の周波数を一定とする必要があるので、全負荷帯で
一定回転数で運転することになる。従って。
The power generation efficiency of a fuel cell power plant is as follows: In the conventional technology shown in Figure 2, a heat recovery system using an expansion turbine 37 is used to improve power generation efficiency during rated load operation, so the power generation efficiency at partial load is descend. The expansion turbine 37 recovers heat from the high-temperature, high-pressure fuel cell cathode exhaust gas 32 to drive the compressor 36, and the excess heat is used to generate the generator 38.
Since the generator drives the generator and generates electrical output, it is necessary to keep the frequency of the generated power constant, so it is operated at a constant rotation speed in the entire load range. Therefore.

発電機38を駆動する膨張タービン37も一定回転数で
運転することになる。燃料電池運転圧力を部分負荷運転
時にも一定に保つ運転を行う場合には、第3図に示す圧
縮機の特性曲線より、圧縮機の吐出空気量を一定とする
運転が必要となる。
The expansion turbine 37 that drives the generator 38 also operates at a constant rotation speed. In order to maintain the fuel cell operating pressure constant even during partial load operation, it is necessary to operate the compressor to maintain a constant discharge air amount, according to the compressor characteristic curve shown in FIG.

燃料電池8で部分負荷運転時に必要とする空気流量は、
燃料電池8の冷却という点からみると。
The air flow rate required by the fuel cell 8 during partial load operation is:
From the point of view of cooling the fuel cell 8.

電池電圧が上昇し、電池冷却のために必要な熱量は減少
する。第4図及び第5図に燃料電池8の部分負荷特性を
示す。第4図は、定格負荷運転時の燃料電池8への入熱
を100とした比率を示す。
The battery voltage increases and the amount of heat required to cool the battery decreases. Part load characteristics of the fuel cell 8 are shown in FIGS. 4 and 5. FIG. 4 shows the ratio when the heat input to the fuel cell 8 during rated load operation is set as 100.

燃料電池8への供給される熱量80は、部分負荷運転時
、電池の電圧が上昇し、発電効率が向上するので、負荷
の低下に比べて過剰に低下することになる。電池の冷却
熱量82は、少なく供給された燃料で高い発電効率で発
電するため、負荷率に比べて過剰に減少する。第5図は
、各負荷での燃料電池8への入熱を100として第4図
を書き直したものであるが、負荷の低下に従って電池の
冷却熱jft82は、相対的に減少することがわかる。
The amount of heat 80 supplied to the fuel cell 8 decreases excessively compared to the decrease in load because the voltage of the battery increases during partial load operation and the power generation efficiency improves. The cooling heat amount 82 of the battery is excessively reduced compared to the load factor because power is generated with high power generation efficiency using a small amount of fuel supplied. FIG. 5 is a redrawing of FIG. 4 with the heat input to the fuel cell 8 at each load being 100, and it can be seen that the cooling heat jft82 of the cell decreases relatively as the load decreases.

燃料電池の冷却は、アノード9とカソード11を通過す
るガスによって行なわれるが、アノードガスによる冷却
熱量83は、燃料入熱80に比例して減少するので、第
5図に示すとおり、燃料入熱80に対する比は一定とな
る。燃料電池8へ冷却用としてカソード11へ供給する
空気は、燃料電池8へ供給される燃料の減少分と、電池
電圧の上昇による冷却熱量の減少分に合わせて供給する
ことが必要となる。
Cooling of the fuel cell is performed by gas passing through the anode 9 and cathode 11, but the amount of cooling heat 83 due to the anode gas decreases in proportion to the fuel heat input 80, so as shown in FIG. The ratio to 80 remains constant. The air supplied to the cathode 11 for cooling the fuel cell 8 needs to be supplied in accordance with the decrease in fuel supplied to the fuel cell 8 and the decrease in cooling heat amount due to an increase in cell voltage.

第2図の従来技術では、膨張タービン37の入口に補助
燃焼器71を設置し1部分負荷運転時、燃料電池8及び
改質器燃焼部6で余剰となる空気44で補助燃料45を
燃焼し、高温ガスとして膨張タービン3°7に供給する
ことにより膨張タービン37での仕事量を一定に保って
いるため、燃料電池発電プラントの部分負荷での発電効
率は低下する。
In the prior art shown in FIG. 2, an auxiliary combustor 71 is installed at the inlet of the expansion turbine 37, and during 1 part load operation, the auxiliary fuel 45 is combusted with surplus air 44 in the fuel cell 8 and the reformer combustion section 6. Since the amount of work in the expansion turbine 37 is kept constant by supplying the high temperature gas to the expansion turbine 3°7, the power generation efficiency of the fuel cell power generation plant at partial load decreases.

第1図の実施例によると、空気圧縮機36を駆動する膨
張タービン37と、発電機38を駆動する膨張タービン
75を別軸として、発電機38を駆動する膨張タービン
75を一定回転数に制御することにより、定格負荷運転
時の有効な熱回収を図ることができ1部分負荷運転時の
空気供給量を減少することができるので、補助燃料を低
減でき発電プラントの発電効率は向上する。
According to the embodiment shown in FIG. 1, the expansion turbine 37 that drives the air compressor 36 and the expansion turbine 75 that drives the generator 38 are separate shafts, and the expansion turbine 75 that drives the generator 38 is controlled to a constant rotation speed. By doing so, effective heat recovery can be achieved during rated load operation, and the amount of air supplied during partial load operation can be reduced, so that the amount of auxiliary fuel can be reduced and the power generation efficiency of the power generation plant can be improved.

第3図は、空気圧縮機37の流量、圧力特性の一例を示
したものである。第一段膨張タービン37の圧縮機36
は、部分負荷運転時、膨張タービン37の入口熱量の低
下に伴い、特性曲線88に示されるとおり、回転数、圧
力比が低下し、流量は減少する。従って、部分負荷での
空気余剰量が減少し、補助燃料量を少なくできるので1
部分負荷運転時の発電効率は、従来例にべて向上する。
FIG. 3 shows an example of the flow rate and pressure characteristics of the air compressor 37. Compressor 36 of first stage expansion turbine 37
During partial load operation, as the inlet heat amount of the expansion turbine 37 decreases, as shown in the characteristic curve 88, the rotation speed and pressure ratio decrease, and the flow rate decreases. Therefore, the amount of surplus air at partial load is reduced, and the amount of auxiliary fuel can be reduced.
The power generation efficiency during partial load operation is improved compared to the conventional example.

また1本実施例では、燃料電池の反応温度の制御が、燃
料電池負荷信号62と燃料電池反応温度信号(セパレー
タのメタル温度信号63)の高値を選択して燃料供給す
ることにより行なわれ、圧縮機吐出空気27の流量の変
化、及び燃料電池の電圧上昇による電池放熱量の相対的
低下の運転状態の変化に対応したプラントの負荷運用が
可能となる。
Furthermore, in this embodiment, the reaction temperature of the fuel cell is controlled by supplying fuel by selecting the high value of the fuel cell load signal 62 and the fuel cell reaction temperature signal (separator metal temperature signal 63). It becomes possible to operate the plant under load in response to changes in the operating state such as changes in the flow rate of the machine discharge air 27 and a relative decrease in the amount of heat dissipated from the fuel cell due to an increase in the voltage of the fuel cell.

第2図の従来技術では、カソード出ロガス33のリサイ
クル流量により行っており1部分負荷時、電池電圧の上
昇に伴って、電池放熱量が低下すると、リサイクル流量
33が増加し、リサイクル圧縮機34の動力が増加する
という問題がある。
In the prior art shown in FIG. 2, this is performed using the recycled flow rate of the cathode output log gas 33, and when the battery heat dissipation amount decreases as the battery voltage increases during one partial load, the recycled flow rate 33 increases and the recycle compressor 34 There is a problem that the power of

また、本発明によると燃料電池アノード9へは、燃料電
池で発電するために必要な燃料流量に比べて、燃料電池
の反応温度を維持するために必要な燃料分だけ相対的に
過剰に供給されることになり。
Further, according to the present invention, the fuel cell anode 9 is supplied in relatively excess amount by the amount of fuel necessary to maintain the reaction temperature of the fuel cell compared to the fuel flow rate necessary for generating electricity with the fuel cell. That's what happened.

アノード9出口でのガス中の未反応燃料が増加し、電池
電圧も従来技術に孔入で高くなる。
Unreacted fuel in the gas at the outlet of the anode 9 increases, and the cell voltage also increases compared to the prior art.

本実施例による部分負荷運転時の発電効率の向上値を二
号五千KW級以上の発電所をベースに説明する。
The improved value of power generation efficiency during partial load operation according to this embodiment will be explained based on a No. 2 5,000 KW class or higher power plant.

従来例では、燃料電池の50%負荷時、定格燃料流量の
46%に相当する燃料1が供給され、定格16%に相対
する燃料が補助燃料45として供給される。膨張タービ
ン37は定格負荷運転を行なっており、定格時の電気出
力は、燃料電池56%、膨張タービン5%であるので、
50%燃料電池負荷時は、燃料電池28%、膨張タービ
ン5%の合計33%となる。従って、発電効率は61%
から約53%と13%低下する。
In the conventional example, when the fuel cell is loaded at 50%, fuel 1 corresponding to 46% of the rated fuel flow rate is supplied, and fuel corresponding to 16% of the rated fuel flow rate is supplied as the auxiliary fuel 45. The expansion turbine 37 is operating at rated load, and the electrical output at the rated time is 56% for the fuel cell and 5% for the expansion turbine.
When the fuel cell is loaded at 50%, the fuel cell is 28% and the expansion turbine is 5%, resulting in a total of 33%. Therefore, the power generation efficiency is 61%
This will be approximately 53%, a decrease of 13%.

本実施例では、燃料電池の50%負荷運転時、定格燃料
の55%を燃料電池8へ供給する。燃料電池8では、ア
ノード中の燃料濃度が増加するので定格時の45%の熱
量で定格時の50%の燃料電池出力を得る。余剰の10
%の熱量は膨張タービン37へ供給されるので、膨張タ
ービンの空気量は約60%まで減少し、電気出力も約6
0%となる。従って、定格燃料の55%人熱で、定格燃
料比31%の出力を得る事ができ、発電効率は約56%
と、約6%相当値従来技術に比べて向上する。
In this embodiment, 55% of the rated fuel is supplied to the fuel cell 8 when the fuel cell is operated at 50% load. In the fuel cell 8, since the fuel concentration in the anode increases, a fuel cell output of 50% of the rated value is obtained with a calorific value of 45% of the rated value. surplus 10
% of the heat amount is supplied to the expansion turbine 37, so the air amount of the expansion turbine is reduced to about 60%, and the electrical output is also reduced to about 60%.
It becomes 0%. Therefore, with 55% human heat of the rated fuel, it is possible to obtain an output of 31% of the rated fuel ratio, and the power generation efficiency is approximately 56%.
This is an improvement of about 6% compared to the conventional technology.

第6図は、本発明の実施例二の例を示す。実施例二では
、燃料電池反応温度を、カソード出入ロガス温度信号6
7.68として与えている。本発明は、燃料電池の反応
温度を燃料流量1で制御することに特徴があり、温度の
検出方法を特定するものではない。
FIG. 6 shows a second embodiment of the present invention. In Example 2, the fuel cell reaction temperature is determined by the cathode inlet/outlet log gas temperature signal 6.
It is given as 7.68. The present invention is characterized in that the reaction temperature of the fuel cell is controlled by the fuel flow rate 1, and does not specify a temperature detection method.

第7図は、本発明の実施例三の例を示す。実施例三では
、改質器出口の酸化剤ガス21の温度を制御することに
特徴がある。酸化剤ガス温度を一定とすれば、電池電圧
の上昇に伴う冷却熱量の減少分だけ電池反応温度は低下
する。例えば、定格負荷運転時0.85  V/セル、
燃料利用率80%の条件では、50%燃料電池出力時、
約50’CIa化剤ガス温度を供給すれば実施例1.2
と同様の効果が得られる。
FIG. 7 shows a third embodiment of the present invention. The third embodiment is characterized in that the temperature of the oxidizing gas 21 at the exit of the reformer is controlled. If the oxidant gas temperature is kept constant, the battery reaction temperature will decrease by the amount of decrease in the amount of cooling heat accompanying the increase in battery voltage. For example, 0.85 V/cell during rated load operation,
Under the condition of 80% fuel utilization rate, at 50% fuel cell output,
Example 1.2 by supplying a temperature of about 50' CIa converting agent gas
The same effect can be obtained.

第8図は、本発明の実施例4の例を示す。本実施例では
膨張タービン入口ガス温度32を制御している。
FIG. 8 shows an example of Embodiment 4 of the present invention. In this embodiment, the expansion turbine inlet gas temperature 32 is controlled.

燃料電池負荷信号、又は、燃料電池反応温度信号、ある
いは、酸化剤供給温度信号の高値を選択して燃料流量を
制御する事により、空気流量の変化及び燃料電池熱バラ
ンスの変化に対応した運転を行うことができる。
By controlling the fuel flow rate by selecting the high value of the fuel cell load signal, fuel cell reaction temperature signal, or oxidizer supply temperature signal, operation corresponding to changes in air flow rate and fuel cell heat balance can be performed. It can be carried out.

部分負荷運転時、電気抵抗の減少による電池電圧の上昇
による電池熱損失の低下及び、空気流量の相対的過剰に
よる燃料電池の過冷却防止を、燃料電池への供給燃料に
より行うため、燃料電池アノードでの燃料ガス濃度が増
加し、電池電圧が上昇するのでプラント効率が向上する
During partial load operation, the fuel supplied to the fuel cell reduces cell heat loss due to an increase in cell voltage due to a decrease in electrical resistance, and prevents overcooling of the fuel cell due to relatively excessive air flow. The fuel gas concentration at the fuel cell increases and the cell voltage increases, improving plant efficiency.

補助燃料系統、補助空気系統のバスパス系統が削除でき
、系統構成が簡素化できる。
The bus pass system for the auxiliary fuel system and auxiliary air system can be deleted, simplifying the system configuration.

プラントの負荷の制御を燃料電池へ供給する燃料流量の
制御により行うことができるので運転制御が単純となる
Since the load on the plant can be controlled by controlling the flow rate of fuel supplied to the fuel cell, operational control becomes simple.

第9@は、本発明によるプラントの発電効率と、従来の
プラント発電効率との偏差を、燃料電池負荷率との関係
で示したものである。
No. 9 @ shows the deviation between the power generation efficiency of the plant according to the present invention and the power generation efficiency of a conventional plant in relation to the fuel cell load factor.

補助燃料の減少により発電効率は85のように向上、燃
料電池アノード中の燃料ガス濃度の上昇により86のよ
うに向上するが、燃料電池の運転圧力の低下により87
のように低減するので、プラント発電効率の向上値は8
4のようになる。図中65は燃料流量調節弁、66はマ
スター制御装置、70は補助燃料調節弁、72は余剰空
気調整弁である。
Power generation efficiency improves to 85 by reducing the amount of auxiliary fuel, increases to 86 by increasing the fuel gas concentration in the fuel cell anode, but increases to 87 by decreasing the operating pressure of the fuel cell.
The improvement value of plant power generation efficiency is 8.
It will be like 4. In the figure, 65 is a fuel flow control valve, 66 is a master control device, 70 is an auxiliary fuel control valve, and 72 is an excess air control valve.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、多軸型膨張タービンを用い、空気圧縮
機と発電機を別の膨張タービンで駆動し、発電機を駆動
する膨張タービンを一定回転数に制御することにより、
圧縮機駆動膨張タービン入熱の減少に従って、空気流量
が減少するので、部分負荷運転時、補助燃料の低減が図
れ、プラント効率が向上する。
According to the present invention, by using a multi-shaft expansion turbine, driving the air compressor and the generator with separate expansion turbines, and controlling the expansion turbine that drives the generator to a constant rotation speed,
As the compressor-driven expansion turbine heat input decreases, the air flow rate decreases, resulting in less auxiliary fuel and improved plant efficiency during part-load operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第6図は、本発明の一実施例の系統図、第7
図は実施例二の系統図、第8図は実施例三の系統図、第
2図は従来の系統図、第3図は圧縮機の特性曲線図、第
4図、第5図は燃料電池発電プラントの部分負荷特性図
、第9図は本発明の効果を示す図である。 4・・・改質器、5・・・改質器反応部、6・・・改質
器燃焼枠 基 3 回 4v[有]んC尺
1 and 6 are system diagrams of one embodiment of the present invention, and FIG.
Figure 8 is a system diagram of Embodiment 2, Figure 8 is a system diagram of Embodiment 3, Figure 2 is a conventional system diagram, Figure 3 is a compressor characteristic curve diagram, Figures 4 and 5 are fuel cell FIG. 9, a partial load characteristic diagram of a power generation plant, is a diagram showing the effects of the present invention. 4...Reformer, 5...Reformer reaction section, 6...Reformer combustion frame base 3 times 4v [with] C scale

Claims (1)

【特許請求の範囲】 1、改質装置、燃料電池、前記燃料電池の排ガスで駆動
する膨張タービン、前記膨張タービンで駆動する空気圧
縮機及び発電機からなる燃料電池発電プラントにおいて
、 多軸型膨張タービンを用い前記空気圧縮機を駆動する前
記膨張タービンと前記発電機を駆動する前記膨張タービ
ンを別置とし、前記発電機を駆動する前記膨張タービン
を一定回転数に制御することにより、圧縮機吐出空気流
量を可変とし、かつ、電気出力とし前記燃料電池の排ガ
スの熱量を回収することを特徴とする燃料電池発電プラ
ントの運転方法。 2、特許請求の範囲第1項において、 前記燃料電池の負荷信号と前記燃料電池の反応温度信号
の高値を選択して前記燃料電池への供給燃料流量を制御
することを特徴とする燃料電池発電プラントの運転方法
。 3、特許請求の範囲第1項または第2項において、前記
燃料電池の反応温度信号のかわりに、前記燃料電池の酸
化剤ガス供給温度を用いることを特徴とする燃料電池発
電プラントの運転方法。 4、特許請求の範囲第1項または第2項において、前記
燃料電池の反応温度信号のかわりに、前記膨張タービン
の入口または出口ガス温度を用いることを特徴とする燃
料電池発電プラントの運転方法。
[Scope of Claims] 1. A fuel cell power generation plant comprising a reformer, a fuel cell, an expansion turbine driven by the exhaust gas of the fuel cell, an air compressor driven by the expansion turbine, and a generator, comprising: By using a turbine, the expansion turbine that drives the air compressor and the expansion turbine that drives the generator are installed separately, and the expansion turbine that drives the generator is controlled to a constant rotation speed, thereby reducing compressor discharge. A method of operating a fuel cell power generation plant, characterized in that the air flow rate is made variable and the amount of heat from the exhaust gas of the fuel cell is recovered as electrical output. 2. The fuel cell power generation according to claim 1, wherein a high value of a load signal of the fuel cell and a reaction temperature signal of the fuel cell is selected to control the flow rate of fuel supplied to the fuel cell. How to operate the plant. 3. A method of operating a fuel cell power generation plant according to claim 1 or 2, characterized in that the oxidant gas supply temperature of the fuel cell is used instead of the reaction temperature signal of the fuel cell. 4. The method of operating a fuel cell power plant according to claim 1 or 2, characterized in that the inlet or outlet gas temperature of the expansion turbine is used instead of the reaction temperature signal of the fuel cell.
JP62071523A 1987-03-27 1987-03-27 Operation method for fuel cell power generating plant Pending JPS63239777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62071523A JPS63239777A (en) 1987-03-27 1987-03-27 Operation method for fuel cell power generating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62071523A JPS63239777A (en) 1987-03-27 1987-03-27 Operation method for fuel cell power generating plant

Publications (1)

Publication Number Publication Date
JPS63239777A true JPS63239777A (en) 1988-10-05

Family

ID=13463170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62071523A Pending JPS63239777A (en) 1987-03-27 1987-03-27 Operation method for fuel cell power generating plant

Country Status (1)

Country Link
JP (1) JPS63239777A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675188A (en) * 1993-07-23 1997-10-07 Hitachi, Ltd. Adjustable speed gas turbine power generation apparatus and its operation method independent of ambient temperature
US6887609B2 (en) 2000-05-19 2005-05-03 Ballard Power Systems Ag Fuel cell system and method for operating the fuel cell system
JP2010510642A (en) * 2006-11-20 2010-04-02 エーエーセーテー ベスローテン フェンノートシャップ System comprising a high temperature fuel cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675188A (en) * 1993-07-23 1997-10-07 Hitachi, Ltd. Adjustable speed gas turbine power generation apparatus and its operation method independent of ambient temperature
US6887609B2 (en) 2000-05-19 2005-05-03 Ballard Power Systems Ag Fuel cell system and method for operating the fuel cell system
JP2010510642A (en) * 2006-11-20 2010-04-02 エーエーセーテー ベスローテン フェンノートシャップ System comprising a high temperature fuel cell

Similar Documents

Publication Publication Date Title
EP0246649B1 (en) Integrated power plant and method for operating the plant
US4041210A (en) Pressurized high temperature fuel cell power plant with bottoming cycle
CA1043858A (en) Pressurized fuel cell power plant with single reactant gas stream
CA1043862A (en) Pressurized fuel cell power plant
CA1043860A (en) Pressurized fuel cell power plant with air bypass
JP5004156B2 (en) Power generation equipment
KR20060044624A (en) Methods and systems for startup and transient operation of integrated fuel cell-gas turbine system
JPS6351352B2 (en)
JP2007287579A (en) Fuel cell facility and combined power generation facility
JP2002319428A (en) Molten carbonate fuel cell power generating device
JP2585210B2 (en) Fuel cell power plant
JPH06103629B2 (en) Combined fuel cell power generation facility
JPS60195880A (en) Power generation system using solid electrolyte fuel cell
JP4154680B2 (en) Fuel cell power generator that injects steam into the anode exhaust gas line
KR100405142B1 (en) Electric power system for Fuel Cell generation
JPS60258862A (en) Fuel cell generation system
JPS63239777A (en) Operation method for fuel cell power generating plant
JPH10302819A (en) Fuel cell generating set
JP4629950B2 (en) Molten carbonate fuel cell power generation system and power generation method in the power generation system
JPH0358154B2 (en)
JP3211505B2 (en) Method for controlling anode inlet temperature of molten carbonate fuel cell power generator
JPS6372072A (en) Control method of fuel cell power generating plant
JP2004111129A (en) Fuel cell-micro gas turbine combined power generation facility and its starting method
JP2004111130A (en) Thermoelectric ratio changing method for fuel cell-micro gas turbine combined power generation facility
JPH01248476A (en) Fuel cell power plant