JPH07105660B2 - Received power density equalizer - Google Patents

Received power density equalizer

Info

Publication number
JPH07105660B2
JPH07105660B2 JP4141121A JP14112192A JPH07105660B2 JP H07105660 B2 JPH07105660 B2 JP H07105660B2 JP 4141121 A JP4141121 A JP 4141121A JP 14112192 A JP14112192 A JP 14112192A JP H07105660 B2 JPH07105660 B2 JP H07105660B2
Authority
JP
Japan
Prior art keywords
incident
radio wave
power density
received power
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4141121A
Other languages
Japanese (ja)
Other versions
JPH05315830A (en
Inventor
幸男 瀧本
Original Assignee
株式会社ミリウェイブ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミリウェイブ filed Critical 株式会社ミリウェイブ
Priority to JP4141121A priority Critical patent/JPH07105660B2/en
Publication of JPH05315830A publication Critical patent/JPH05315830A/en
Publication of JPH07105660B2 publication Critical patent/JPH07105660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、受信電力密度均一化装
置に係り、特に、LAN(Local Area Ne
twork:建物内等におけるコンピュータ等のネット
ワークシステム)におけるアンテナからの電波輻射等に
好適な受信電力密度均一化装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a received power density equalizing device, and more particularly to a LAN (Local Area Ne).
(work: a network system such as a computer in a building or the like) relates to a reception power density equalizing device suitable for radio wave radiation from an antenna in a network.

【0002】[0002]

【従来の技術】従来、LAN等における電波輻射におい
ては、電波の指向特性の狭いアンテナが用いられること
が一般的であった。
2. Description of the Related Art Heretofore, it has been general to use an antenna having a narrow directional characteristic of radio waves for radio wave radiation in a LAN or the like.

【0003】[0003]

【発明が解決しようとする課題】しかし、LAN等にお
いては、例えば、親局のアンテナを部屋の天井や部屋の
壁面上に設置した場合、アンテナの直下や正面位置で
は、受信電力密度が強いのに対し、正面位置から外れる
にしたがって、電界強度は弱まっていく。これは、一つ
には、図10(A)に示すように、電波源である通常の
単一アンテナ10の輻射パターン自体が、その正面位置
が最も強く正面位置からの角度が増大するにしたがって
輻射電力そのものが減少するようなパターン特性を有し
ていることによる。また、受信位置が単一アンテナの正
面位置から外れ中心軸からの角度が増大すると受信点ま
での距離も増加し、距離による伝搬損失が加わることも
他の原因として挙げられる。上記の問題点を解決すべ
く、図10(B)に示すように、その正面位置ばかりで
なく、正面からの角度が増大しても、より広い範囲でよ
り強い受信電力密度が得られるような輻射パターンを有
する単一アンテナ11も知られている。しかし、このよ
うなアンテナを用いても、上記の距離減衰を解決するこ
とはできないため、アンテナ11からの直線距離がそれ
ぞれ異なる各受信点の受信電力密度は必ずしも同一とは
ならなかった。本発明は、上記の問題点を解決するため
になされたものであり、アンテナ面から電波方向への距
離が等しい受信面上における電波の受信電力密度が一様
となるように電波を出射しうる装置を提供することを目
的とする。
However, in a LAN or the like, for example, when the antenna of the master station is installed on the ceiling of the room or on the wall surface of the room, the received power density is strong immediately below or in front of the antenna. On the other hand, the electric field strength weakens as the position deviates from the front position. This is because, as shown in FIG. 10 (A), the radiation pattern itself of the normal single antenna 10, which is a radio wave source, has the strongest front position and increases the angle from the front position. This is because it has a pattern characteristic such that the radiated power itself decreases. Another cause is that when the reception position deviates from the front position of the single antenna and the angle from the central axis increases, the distance to the reception point also increases, and a propagation loss due to the distance is added. In order to solve the above-mentioned problems, as shown in FIG. 10 (B), not only the front position but also the angle from the front is increased so that a stronger received power density can be obtained in a wider range. A single antenna 11 having a radiation pattern is also known. However, even if such an antenna is used, it is not possible to solve the above distance attenuation, so that the reception power densities at the respective reception points having different linear distances from the antenna 11 are not necessarily the same. The present invention has been made to solve the above problems, and can emit radio waves so that the reception power density of the radio waves becomes uniform on the reception surfaces at the same distance from the antenna surface in the radio wave direction. The purpose is to provide a device.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め、本発明は、誘電体からなり、アンテナのアンテナ面
から送信された電波が入射電波として入射する入射面
と、前記入射電波を出射電波として出射する出射面を有
する受信電力密度均一化装置であって、前記入射面又は
出射面のうちのいずれか一方の面は前記電波の方向の中
心軸である電波方向軸に対して垂直な平面状に形成され
るとともに前記入射面又は出射面のうちの平面状ではな
い他方の面は曲面状に形成され、前記曲面は、前記電波
方向軸から前記入射電波が前記入射面に入射した点まで
の距離をxとし、前記受信電力密度均一化装置の前記出
射面から前記出射電波が受信された受信点までの距離を
yとし、誘電率をεとし、前記曲面への前記電波の入射
角をθとし、前記入射電波の送信電力密度をptとし、
前記受信点における前記出射電波の受信電力密度をpr
としたとき、下記の式
In order to solve the above-mentioned problems, the present invention provides an incident surface which is made of a dielectric material and on which an electric wave transmitted from an antenna surface of an antenna is incident as an incident electric wave. A received power density homogenizing device having an emission surface for emitting an incident radio wave as an outgoing radio wave, wherein either one of the incidence surface or the emission surface is on a radio wave direction axis which is a central axis in the direction of the radio wave. On the other hand, the other surface of the incident surface or the emission surface, which is not a flat surface, is formed in a plane shape that is perpendicular to the incident surface. the distance to the point where the incident is x to the output of the received power density homogenizing device
Let y be the distance from the projection surface to the receiving point where the emitted radio wave is received, be the permittivity be ε, be the incident angle of the radio wave to the curved surface be θ, and be the transmission power density of the incident radio wave. pt,
The received power density of the emitted radio wave at the receiving point is pr
Then, the following formula

【数2】 を満足するような曲面状に形成され、前記アンテナ面か
ら前記電波の方向への距離が等しい受信面上における受
信電力密度を均一化するように構成される。また、上記
の受信電力密度均一化装置において、前記入射面及び出
射面は曲面であり、前記電波方向軸から距離xの位置の
入射面に入射した前記入射電波が前記誘電体内を通過す
る通過経路長が、上記の受信電力密度均一化装置におい
て前記距離xの位置と等しい位置に入射した入射電波の
前記誘電体内の通過経路長と等しくなるように前記入射
面及び出射面の曲率が設定されるように構成してもよ
い。
[Equation 2] Is formed so as to satisfy the above condition, and is configured to equalize the received power density on the receiving surface at the same distance from the antenna surface in the direction of the radio wave. Further, in the above received power density homogenizing apparatus, the incident surface and the exit surface are curved surfaces, and a passage path through which the incident radio wave incident on the incident surface at a distance x from the radio wave direction axis passes through the dielectric body. The curvatures of the incident surface and the emission surface are set so that the length becomes equal to the path length of the incident radio wave incident on the position equal to the position of the distance x in the dielectric in the above-mentioned received power density homogenizing device. It may be configured as follows.

【0005】[0005]

【作用】上記構成を有する本発明によれば、誘電体のい
ずれか一面を電波方向軸に垂直な平面に形成し、他面を
下記の式
According to the present invention having the above-mentioned structure, one of the surfaces of the dielectric is formed in a plane perpendicular to the radio wave direction axis, and the other surface is formed by the following formula.

【数3】 を満足するような曲面状に形成したので、誘電体の表面
から電波が入射し再び出射する際の電波の進行方向の屈
折作用と、誘電体を通過する電波の拡散作用により、ア
ンテナ等の電波輻射器からの電波を受信点に向けて拡散
することができ、かつアンテナ面から電波の方向への距
離が等しい受信面上における受信電力密度が一様となる
ように出射電波を出射面から出射させることができる。
また、上記の受信電力密度均一化装置において、入射面
及び出射面の両面を曲面に形成し、電波方向軸から距離
xの位置の入射面に入射した入射電波が誘電体内を通過
する通過経路長が、上記の受信電力密度均一化装置にお
いて距離xの位置と等しい位置に入射した入射電波の誘
電体内の通過経路長と等しくなるように入射面及び出射
面の曲率を設定すれば、両側曲面の誘電体を用いて、上
記の場合と同様にアンテナ等の電波輻射器から電波の方
向への距離が等しい受信面上における受信電力密度が一
様となるように出射電波を出射面から出射させることが
できる。
[Equation 3] Since it is formed into a curved surface that satisfies the above conditions, when the radio wave is incident on the surface of the dielectric and then re-emitted, it is refracted in the traveling direction of the radio wave and the diffusion of the radio wave that passes through the dielectric allows Radio waves from the radiator can be diffused toward the reception point, and the emitted radio waves are emitted from the emission surface so that the reception power density is uniform on the reception surface where the distance from the antenna surface to the direction of the radio waves is equal. Can be made.
Further, in the above-mentioned received power density homogenizing device, both the entrance surface and the exit surface are formed into curved surfaces, and the path length of the incident radio wave incident on the entrance surface at the distance x from the radio wave direction axis passes through the dielectric. However, if the curvatures of the incident surface and the emission surface are set so as to be equal to the path length of the incident radio wave incident on the position equal to the position of the distance x in the above-mentioned received power density homogenizer, Using a dielectric, emit radio waves from the emission surface so that the reception power density becomes uniform on the reception surface where the distance from the radio wave radiator such as an antenna in the direction of the radio waves is the same as in the above case. You can

【0006】[0006]

【実施例】以下に、本発明の好適な実施例を図面に基づ
いて説明する。図1に、本発明の第1実施例の構成を示
す。図1に示すように、この受信電力密度均一化装置1
は、誘電体を電波方向軸A−Aに垂直な平面S1と曲面
S2を有する略凹レンズ状に構成するとともに、アンテ
ナ4と受信面Q−Qとの間に配置して構成される。ま
た、受信電力密度均一化装置1は、電波方向軸A−Aを
回転軸とする回転体形状に形成されている。ここに、ア
ンテナ4は平行平面波をなす電力を送信するアンテナで
あり、例えば、複数の単一アンテナをアレイ状に配置し
て構成したアンテナなどである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of the first embodiment of the present invention. As shown in FIG. 1, this received power density homogenizing apparatus 1
Is configured by arranging the dielectric into a substantially concave lens shape having a flat surface S1 and a curved surface S2 perpendicular to the radio wave direction axis A-A, and is arranged between the antenna 4 and the receiving surface Q-Q. Further, the received power density homogenizing device 1 is formed in the shape of a rotary body having a radio wave direction axis A-A as a rotation axis. Here, the antenna 4 is an antenna that transmits electric power forming a parallel plane wave, and is, for example, an antenna configured by arranging a plurality of single antennas in an array.

【0007】この場合、受信面Q−Qは電波方向軸A−
Aに垂直な平面として構成されており、受信面Q−Q上
の各点におけるアンテナ4の下面(アンテナ面)からの
垂直距離(電波の方向への距離)は全て等しくrとなっ
ている。ここに、r=y+zの関係がある。
In this case, the receiving surface Q-Q is the radio wave direction axis A-
It is configured as a plane perpendicular to A, and the vertical distances (distances in the direction of radio waves ) from the lower surface (antenna surface) of the antenna 4 at each point on the receiving surface Q-Q are all equal r. Here, there is a relation of r = y + z .

【0008】アンテナ4からの入射電波は送信電力密度
ptでこの受信電力密度均一化装置1の平面S1に入射
し、曲面S2から出射される。したがって、平面S1は
入射面であって、曲面S2は出射面となる。
An incident radio wave from the antenna 4 is incident on the plane S1 of the receiving power density equalizing device 1 at the transmission power density pt and is emitted from the curved surface S2. Therefore, the flat surface S1 is the incident surface and the curved surface S2 is the exit surface.

【0009】次に、本実施例の受信電力密度均一化装置
1の出射面である曲面S2のさらに詳細な構成及び本実
施例の受信電力密度均一化装置1の作用等について図6
から図9にしたがって詳細に説明する。
Next, a more detailed structure of the curved surface S2 which is the emission surface of the reception power density uniformizing apparatus 1 of this embodiment and the operation of the reception power density uniforming apparatus 1 of this embodiment will be described with reference to FIG.
9 to FIG. 9 will be described in detail.

【0010】図6は、アンテナの中心点0から放射され
た電波の各受信点における電力値を示す図である。送信
点での電力値を 、送信点から受信点までの距離をr
とすると、受信点での電力値 は、下記の式
FIG. 6 is a diagram showing the power value at each reception point of the radio wave radiated from the center point 0 of the antenna. The power value at the transmission point is P t , and the distance from the transmission point to the reception point is r
Then, the power value P r at the receiving point is calculated by the following equation.

【数4】 で表すことができる。ここに、kは比例定数である。し
たがって、上式(1)より、受信点における電力値
は、送信点での電力値 に比例し、送信点から受信点
までの距離rの2乗に反比例することになる。
[Equation 4] Can be expressed as Here, k is a proportional constant. Therefore, from the above equation (1), the power value P r at the receiving point
Is proportional to the power value P t at the transmission point and inversely proportional to the square of the distance r from the transmission point to the reception point.

【0011】また、図7は、誘電率が1の空間M1から
誘電率がεの誘電体M2に電波が入射する場合の入射角
θ1と屈折角θ2との関係を示したものであり、入射角
θ1と屈折角θ2との間には、下記の式
FIG. 7 shows the relationship between the incident angle θ1 and the refraction angle θ2 when a radio wave enters from the space M1 having a dielectric constant of 1 to the dielectric M2 having a dielectric constant of ε. Between the angle θ1 and the refraction angle θ2, the following equation

【数5】 で表される関係がある。上式(2)において、εは誘電
率を示している。空気中ではεの値は略1.0(ファラ
ッド/m)である。
[Equation 5] There is a relationship represented by. In the above formula (2), ε represents the dielectric constant. In air, the value of ε is about 1.0 (farad / m).

【0012】図8は、本実施例の原理を説明した図であ
る。まず、アンテナ4から送信電力密度ptの平面波電
力が受信電力密度均一化装置1の入射面である平面S1
に入射する。この場合、電波方向軸A−Aから半径xの
位置における微小幅dxの円環全体の電力の値 は、
下記の式 =pt・2π・x・dx ……………………(3) で表すことができる。
FIG. 8 is a diagram for explaining the principle of this embodiment. First, the plane wave power of the transmission power density pt from the antenna 4 is the plane S1 which is the incident surface of the reception power density uniformizing device 1.
Incident on. In this case, the value P t of the power of the entire ring having the minute width dx at the position of the radius x from the radio wave direction axis A-A is
Can be represented by the formula P t = pt · 2π · x · dx ........................ below (3).

【0013】一方、受信電力密度均一化装置1の出射面
S2から距離yだけ離れた受信面Q上の投影写像となる
受信電力の値 は、受信電力密度をprとすると、下
記の式 =pr・2π{x+y・tan(θo−θ)}dx ………………(4) で表すことができる。
On the other hand, the value P r of the received power, which is a projected image on the receiving surface Q separated by the distance y from the emission surface S2 of the receiving power density homogenizing apparatus 1, is given by the following equation, where pr is the receiving power density. P r = pr · 2π {x + y · tan (θo−θ)} dx can be expressed by (4).

【0014】入射面である平面S1では通過する電波の
進行方向に対して垂直であるため電波の屈折は生じない
が、出射面である曲面S2は通過する電波の進行方向に
対して垂直ではないので、図8に示すような屈折が生じ
るからである。ここに、角度θは、曲面S2への入射角
となる。したがって、上記の式(4)において、角度θ
oは、上式(2)より、角度θを用いて下記の式
Since the plane S1 which is the incident surface is perpendicular to the traveling direction of the passing radio wave, refraction of the radio wave does not occur, but the curved surface S2 which is the emitting surface is not perpendicular to the traveling direction of the passing radio wave. Therefore, refraction as shown in FIG. 8 occurs. Here, the angle θ is the angle of incidence on the curved surface S2. Therefore, in the above equation (4), the angle θ
o is the following equation using the angle θ from the above equation (2).

【数6】 のように表すことができる。[Equation 6] Can be expressed as

【0015】また、送信電力 と受信電力 の値は
等しくなければならないから、下記の式 =P ……………………(6) で表される関係がある。
Further, since the values of the transmission power P t and the reception power P r must be equal, there is a relation expressed by the following equation P t = P r .

【0016】したがって、上記の式(3)と式(4)と
を代入して整理すると、下記の式
Therefore, by substituting the above equations (3) and (4) for rearranging, the following equation is obtained.

【数7】 に示すような関係が導ける。[Equation 7] The relationship shown in can be derived.

【0017】通常の場合、受信電力密度均一化装置1の
出射面S2から受信面Qまでの距離yは受信電力密度均
一化装置1の電波方向軸A−Aからの距離xに比較して
非常に大きい。したがって、1はy/xに対して無視す
ることができる範囲であるから、1を無視し、上記の式
(5)を式(7)に代入して整理すると、下記の式
In the usual case, the distance y from the emission surface S2 of the reception power density uniformizing device 1 to the reception surface Q is extremely large compared to the distance x from the radio wave direction axis AA of the reception power density uniformizing device 1. Is very large. Therefore, 1 is a range that can be ignored with respect to y / x. Therefore, by ignoring 1 and substituting the above equation (5) into equation (7), the following equation is obtained.

【数8】 のように表すことができる。電波方向軸A−Aからの距
離xの位置における受信電力密度均一化装置1の出射面
S2の形状は、この式(8)から定めることができる。
[Equation 8] Can be expressed as The shape of the emission surface S2 of the reception power density uniformizing device 1 at the position of the distance x from the radio wave direction axis A-A can be determined from the equation (8).

【0018】すなわち、送信電力密度ptが一定のとき
には受信電力密度prを一定にするのであるから、上式
(8)においてpt/prを一定にするようにすれば、
出射面S2の形状を決定することができる。
That is, since the reception power density pr is made constant when the transmission power density pt is constant, if pt / pr is made constant in the above equation (8),
The shape of the emission surface S2 can be determined.

【0019】上記の式(8)に具体的な数値を代入して
得た試算結果を下記の表
The following table shows the trial calculation results obtained by substituting specific numerical values into the above equation (8).

【表1】 に示す。ここに、θとx以外の数値パラメータは、pt
/pr=100,y=2000mm,ε=4.0ファラ
ッド/mとした。
[Table 1] Shown in. Numerical parameters other than θ and x are pt
/ Pr = 100, y = 2000 mm, ε = 4.0 farad / m.

【0020】表1の数値から曲面S2の具体的形状を求
めるためには、xについて積分を行う必要があるが、曲
面S2の形状を概略的に図示したものが図9である。図
9からもわかるように、この曲面S2は、凹レンズの曲
面に似ているが、通常の球面状の凹レンズとは異なる非
球面曲面であり、通常の球面状の凹レンズとは異なり焦
点はなく、電波方向軸A−Aからの距離xが増大するに
つれ曲面の曲率半径が増大していくような曲面である。
また、受信電力密度均一化装置1の出射面S2から受信
面Qまでの距離yが変れば受信電力密度均一化装置の形
状も変化することになる。
In order to obtain the concrete shape of the curved surface S2 from the numerical values in Table 1, it is necessary to perform integration on x, and FIG. 9 schematically shows the shape of the curved surface S2. As can be seen from FIG. 9, this curved surface S2 is similar to the curved surface of a concave lens, but is an aspherical curved surface different from a normal spherical concave lens and has no focus unlike a normal spherical concave lens, The radius of curvature of the curved surface increases as the distance x from the radio wave direction axis A-A increases.
Further, if the distance y from the emission surface S2 of the reception power density uniformizing device 1 to the reception surface Q changes, the shape of the reception power density uniforming device also changes.

【0021】次に、本発明の第2実施例について説明す
る。図2に示すように、この受信電力密度均一化装置2
は、誘電体を電波方向軸A−Aに垂直な平面S3と曲面
S4を有する回転体の凹レンズ状に構成するとともに、
アンテナ5と受信位置Q−Qとの間に配置して構成され
ている。ここに、アンテナ5は平行平面波ではない電力
を送信するアンテナであり、例えば、図10(A)に示
すような輻射パターンを有する通常の単一アンテナなど
である。
Next, a second embodiment of the present invention will be described. As shown in FIG. 2, this received power density equalizing device 2
Is configured as a concave lens of a rotating body having a flat surface S3 and a curved surface S4 perpendicular to the radio wave axis AA, and
It is arranged between the antenna 5 and the receiving position Q-Q. Here, the antenna 5 is an antenna that transmits electric power that is not a parallel plane wave, and is, for example, a normal single antenna having a radiation pattern as shown in FIG.

【0022】上記のような場合には、送信電力密度pt
は電波方向軸A−Aからの距離xによって変化する。こ
の場合に受信電力密度均一化装置2の出射側曲面S4の
形状を求めるには、受信電力密度均一化装置1に入射す
る電波の送信電力密度pt(x)を知った上で、受信電
力密度prが一定になるようにし、曲面への電波の入射
角をθとして、上式(8)により、出射面S3の形状を
決定すればよい。
In the above case, the transmission power density pt
Varies depending on the distance x from the radio wave direction axis A-A. In this case, in order to obtain the shape of the outgoing-side curved surface S4 of the reception power density uniformization device 2, the reception power density pt (x) of the radio wave incident on the reception power density uniformization device 1 is known, and then the reception power density is obtained. The shape of the emission surface S3 may be determined by the above equation (8) with pr kept constant and the incident angle of the radio wave on the curved surface being θ.

【0023】また、上記の受信電力密度均一化装置1,
2は、入射面と出射面とを逆にして設置しても上記と全
く同様の効果を奏する。具体的には図3に示す第3実施
例および図4に示す第4実施例のような場合である。こ
の場合には、曲面への電波の入射角をθとして上式
(8)により曲面の形状を決定すればよい。
Further, the above-mentioned received power density uniformizing device 1,
With No. 2, even if the entrance surface and the exit surface are reversed, the same effect as described above can be obtained. Specifically, this is the case as in the third embodiment shown in FIG. 3 and the fourth embodiment shown in FIG. In this case, the shape of the curved surface may be determined by the above equation (8) with the incident angle of the radio wave on the curved surface being θ.

【0024】また、図4は、非平行平面波を送信する輻
射器としてホーンアンテナ6を備えた例を示している。
Further, FIG. 4 shows an example in which a horn antenna 6 is provided as a radiator for transmitting a non-parallel plane wave.

【0025】上記した実施例では、電波の入射面または
出射面の一方が平面であるような受信電力密度均一化装
置の例であったが、これは、光線の場合と全く同様に誘
電体内を通過する電波の通過経路長が上記の実施例と同
一のものであれば、他の形状の受信電力密度均一化装置
であっても良い。例えば、図5に示す第5実施例の受信
電力密度均一化装置3のように入射面及び出射面ともに
曲面であるような場合である。この場合、電波方向軸A
−Aからの距離xの位置に入射した電波の誘電体内の通
過経路長TXは、例えば図1における受信電力密度均一
化装置1のそれと等しくなるように入射面及び出射面の
曲率が設定される。この場合にも上記した各実施例と同
様に、曲面への電波の入射角をθとして上式(8)によ
り曲面の形状を決定すればよい。
In the above-mentioned embodiment, the receiving power density homogenizing device is one in which one of the incident surface and the emitting surface of the radio wave is a flat surface. As long as the path length of the radio wave passing therethrough is the same as that in the above-described embodiment, the received power density equalizing device having another shape may be used. For example, there is a case where both the entrance surface and the exit surface are curved surfaces as in the received power density homogenizing device 3 of the fifth embodiment shown in FIG. In this case, the radio wave direction axis A
The curvatures of the entrance surface and the exit surface are set such that the transmission path length TX of the radio wave incident on the position of the distance x from −A in the dielectric body becomes equal to that of the reception power density uniformizing device 1 in FIG. 1, for example. . Also in this case, similarly to each of the above-described embodiments, the shape of the curved surface may be determined by the above equation (8) with the incident angle of the radio wave on the curved surface being θ.

【0026】さらに、上記の例の他に、光学式レンズに
おいてレンズ厚さを減らすための手法として用いられて
いるフレネルレンズの考え方を本発明に応用し、誘電体
をフレネルレンズ形状に形成して用いることも有効であ
り、本発明の技術的範囲に属する。
Further, in addition to the above example, the concept of a Fresnel lens used as a method for reducing the lens thickness in an optical lens is applied to the present invention to form a dielectric in a Fresnel lens shape. It is also effective to use and belongs to the technical scope of the present invention.

【0027】また、従来例である図10(A)、(B)
の輻射パターン特性を有する単一アンテナ10、11を
用いることも可能である。その場合には、上記の距離x
やyの値によりアンテナ自体の輻射パターンを可変制御
するように構成すればよい。あるいは、アンテナの一次
輻射器と受信電力密度均一化装置との間の距離を調節す
ることにより、送信電力の距離減衰を利用して近似的に
輻射パターンの可変制御を行うこともできる。
Further, FIGS. 10A and 10B showing a conventional example.
It is also possible to use the single antennas 10 and 11 having the radiation pattern characteristics of. In that case, the above distance x
The radiation pattern of the antenna itself may be variably controlled according to the value of y or y. Alternatively, the radiation pattern can be approximately variably controlled by adjusting the distance between the primary radiator of the antenna and the received power density equalizing device, utilizing the distance attenuation of the transmission power.

【0028】なお、本発明は、上記実施例に限定される
ものではない。上記実施例は、例示であり、本発明の特
許請求の範囲に記載された技術的思想と実質的に同一な
構成を有し、同様な作用効果を奏するものは、いかなる
ものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-mentioned embodiment is an exemplification, has substantially the same configuration as the technical idea described in the scope of the claims of the present invention, and has any similar effect to the present invention. It is included in the technical scope of the invention.

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
誘電体のいずれか一面を電波方向軸に垂直な平面に形成
し、他面を下記の式
As described above, according to the present invention,
One of the dielectrics is formed on a plane perpendicular to the radio wave direction axis, and the other surface is

【数9】 を満足するような曲面状に形成したので、誘電体の表面
から電波が入射し再び出射する際の電波の進行方向の屈
折作用と、誘電体を通過する電波の拡散作用により、ア
ンテナ等の電波輻射器からの電波を受信点に向けて拡散
することができ、かつアンテナ面から電波の方向への距
離が等しい受信面上における受信電力密度が一様となる
ように出射電波を出射面から出射させることができる。
また、上記の受信電力密度均一化装置において、入射面
及び出射面の両面を曲面に形成し、電波方向軸から距離
xの位置の入射面に入射した入射電波が誘電体内を通過
する通過経路長が、上記の受信電力密度均一化装置にお
いて距離xの位置と等しい位置に入射した入射電波の誘
電体内の通過経路長と等しくなるように入射面及び出射
面の曲率を設定すれば、両側曲面の誘電体を用いて、上
記の場合と同様にアンテナ等の電波輻射器から電波の方
向への距離が等しい受信面上における受信電力密度が一
様となるように出射電波を出射面から出射させることが
できる。
[Equation 9] Since it is formed into a curved surface that satisfies the above conditions, when the radio wave is incident on the surface of the dielectric and then re-emitted, it is refracted in the traveling direction of the radio wave and the diffusion of the radio wave that passes through the dielectric allows Radio waves from the radiator can be diffused toward the reception point, and the emitted radio waves are emitted from the emission surface so that the reception power density is uniform on the reception surface where the distance from the antenna surface to the direction of the radio waves is equal. Can be made.
Further, in the above-mentioned received power density homogenizing device, both the entrance surface and the exit surface are formed into curved surfaces, and the path length of the incident radio wave incident on the entrance surface at the distance x from the radio wave direction axis passes through the dielectric. However, if the curvatures of the incident surface and the emission surface are set so as to be equal to the path length of the incident radio wave incident on the position equal to the position of the distance x in the above-mentioned received power density homogenizer, Using a dielectric, emit radio waves from the emission surface so that the reception power density becomes uniform on the reception surface where the distance from the radio wave radiator such as an antenna in the direction of the radio waves is the same as in the above case. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例である受信電力密度均一化
装置の構成を示す概念図である。
FIG. 1 is a conceptual diagram showing a configuration of a received power density equalizing apparatus that is a first embodiment of the present invention.

【図2】本発明の第2実施例である受信電力密度均一化
装置の構成を示す概念図である。
FIG. 2 is a conceptual diagram showing a configuration of a received power density equalizing device that is a second embodiment of the present invention.

【図3】本発明の第3実施例である受信電力密度均一化
装置の構成を示す概念図である。
FIG. 3 is a conceptual diagram showing the configuration of a received power density equalizing device that is a third embodiment of the present invention.

【図4】本発明の第4実施例である受信電力密度均一化
装置の構成を示す概念図である。
FIG. 4 is a conceptual diagram showing the configuration of a received power density equalizing apparatus that is a fourth embodiment of the present invention.

【図5】本発明の第5実施例である受信電力密度均一化
装置の構成を示す概念図である。
FIG. 5 is a conceptual diagram showing the configuration of a received power density equalizing apparatus that is a fifth embodiment of the present invention.

【図6】アンテナから放射された電波の受信点における
電力を説明する図である。
FIG. 6 is a diagram illustrating power at a reception point of radio waves radiated from an antenna.

【図7】誘電体の境界面における電波の屈折を説明する
図である。
FIG. 7 is a diagram illustrating refraction of radio waves at a boundary surface of a dielectric.

【図8】図1に示す受信電力密度均一化装置の原理を説
明する概念図である。
FIG. 8 is a conceptual diagram illustrating the principle of the received power density equalizing device shown in FIG.

【図9】図1に示す受信電力密度均一化装置の曲面形状
の例を示す図である。
9 is a diagram showing an example of a curved surface shape of the reception power density uniformizing device shown in FIG.

【図10】従来のアンテナにおける電界強度を示す図で
ある。
FIG. 10 is a diagram showing electric field strength in a conventional antenna.

【符号の説明】[Explanation of symbols]

1,2,3 受信電力密度均一化装置 4,5 アンテナ 6 ホーンアンテナ 10,11 アンテナ 1,2,3 Received power density equalizer 4,5 Antenna 6 Horn antenna 10,11 Antenna

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 誘電体からなり、アンテナのアンテナ面
から送信された電波が入射電波として入射する入射面
と、前記入射電波を出射電波として出射する出射面を有
する受信電力密度均一化装置であって、 前記入射面又は出射面のうちのいずれか一方の面は前記
電波の方向の中心軸である電波方向軸に対して垂直な平
面状に形成されるとともに前記入射面又は出射面のうち
の平面状ではない他方の面は曲面状に形成され、前記曲
面は、前記電波方向軸から前記入射電波が前記入射面に
入射した点までの距離をxとし、前記受信電力密度均一
化装置の前記出射面から前記出射電波が受信された受信
点までの距離をyとし、誘電率をεとし、前記曲面への
前記電波の入射角をθとし、前記入射電波の送信電力密
度をptとし、前記受信点における前記出射電波の受信
電力密度をprとしたとき、下記の式 【数1】 を満足するような曲面状に形成され、 前記アンテナ面から前記電波の方向への距離が等しい受
信面上における受信電力密度を均一化することを特徴と
する受信電力密度均一化装置。
1. A uniform received power density having an incident surface made of a dielectric material, on which an electric wave transmitted from an antenna surface of an antenna enters as an incident electric wave, and an emitting surface for emitting the incident electric wave as an outgoing electric wave. In either of the incident surface and the emission surface, one of the incident surface and the emission surface is formed in a plane shape perpendicular to the radio wave direction axis which is the central axis of the radio wave direction, and the incident surface or the emission surface. The other surface of the surfaces, which is not a flat surface, is formed into a curved surface, and the curved surface has a distance x from the radio wave direction axis to a point where the incident radio wave is incident on the incident surface, and the reception power density is uniform.
From the exit surface of the apparatus the outgoing distance radio to the receiving point, which is received and y, the dielectric constant and epsilon, to the curved surface
When the incident angle of the radio wave is θ, the transmission power density of the incident radio wave is pt, and the reception power density of the outgoing radio wave at the reception point is pr, the following equation is obtained: The received power density equalizing device is formed to have a curved surface satisfying the condition (1), and uniformizes the received power density on the receiving surface at the same distance from the antenna surface in the direction of the radio wave.
【請求項2】 前記入射面及び出射面は曲面であり、前
記電波方向軸から距離xの位置の入射面に入射した前記
入射電波が前記誘電体内を通過する通過経路長が、請求
項1記載の受信電力密度均一化装置において前記距離x
の位置と等しい位置に入射した入射電波の前記誘電体内
の通過経路長と等しくなるように前記入射面及び出射面
の曲率が設定されることを特徴とする請求項記載の受
信電力密度均一化装置。
2. The entrance path and the exit surface are curved surfaces, and a passing path length through which the incident radio wave incident on the entrance surface at a distance x from the radio wave direction axis passes through the dielectric body, In the received power density equalizing device, the distance x
The received power density homogenization of claim 1, wherein the dielectric of the incident surface so as to be equal to the passing path length and the exit surface curvature, characterized in that the set of the incident radio wave incident on the same position the position of the apparatus.
JP4141121A 1992-05-07 1992-05-07 Received power density equalizer Expired - Lifetime JPH07105660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4141121A JPH07105660B2 (en) 1992-05-07 1992-05-07 Received power density equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4141121A JPH07105660B2 (en) 1992-05-07 1992-05-07 Received power density equalizer

Publications (2)

Publication Number Publication Date
JPH05315830A JPH05315830A (en) 1993-11-26
JPH07105660B2 true JPH07105660B2 (en) 1995-11-13

Family

ID=15284649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4141121A Expired - Lifetime JPH07105660B2 (en) 1992-05-07 1992-05-07 Received power density equalizer

Country Status (1)

Country Link
JP (1) JPH07105660B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7301504B2 (en) 2004-07-14 2007-11-27 Ems Technologies, Inc. Mechanical scanning feed assembly for a spherical lens antenna
JP6314732B2 (en) * 2014-08-04 2018-04-25 富士通株式会社 Wireless communication module
CN112436290A (en) * 2020-11-12 2021-03-02 佛山蓝谱达科技有限公司 Dielectric lens, antenna and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613810A (en) * 1979-07-13 1981-02-10 Mitsubishi Electric Corp Horn antenna
JPS58219802A (en) * 1982-06-14 1983-12-21 Komatsu Ltd Horn antenna
JPS6074802A (en) * 1983-09-30 1985-04-27 Nec Corp Antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613810A (en) * 1979-07-13 1981-02-10 Mitsubishi Electric Corp Horn antenna
JPS58219802A (en) * 1982-06-14 1983-12-21 Komatsu Ltd Horn antenna
JPS6074802A (en) * 1983-09-30 1985-04-27 Nec Corp Antenna

Also Published As

Publication number Publication date
JPH05315830A (en) 1993-11-26

Similar Documents

Publication Publication Date Title
Kock Metal-lens antennas
AU625255B2 (en) Loudspeaker and horn therefor
US8649742B2 (en) Radio communication system
CN108701905B (en) Horn antenna
KR20010020361A (en) antenna for high frequency radio signal transmission
JP2005137009A (en) High frequency, multiple beam antenna system
JPH07105660B2 (en) Received power density equalizer
JPS5911007A (en) Antenna device in common use as two-frequency band
Silveirinha et al. Shaped double-shell dielectric lenses for wireless millimeter wave communications
US5616892A (en) Virtual imaging multiple transducer system
Dragone New grids for improved polarization diplexing of microwaves in reflector antennas
US5764783A (en) Variable beamwidth transducer
JPS58219802A (en) Horn antenna
JPH0444843B2 (en)
CN113644423B (en) Guiding antenna and design method thereof
US4591864A (en) Frequency independent twisted wave front constant beamwidth lens antenna
US3911440A (en) Antenna feed system
US2611870A (en) Directive antenna system
JPS60178709A (en) Offset multi-reflector antenna
JP2001127537A (en) Lens antenna system
JPS603211A (en) Antenna in common use for multi-frequency band
JP3034262B2 (en) Aperture antenna device
JP2004180246A (en) Fixed wireless device and area information service system
JPS59231903A (en) Electromagnetic lens antenna
JP2002198730A (en) Modified mirror surface antenna