JPH07103947A - Measuring apparatus for crystal grain - Google Patents

Measuring apparatus for crystal grain

Info

Publication number
JPH07103947A
JPH07103947A JP5246828A JP24682893A JPH07103947A JP H07103947 A JPH07103947 A JP H07103947A JP 5246828 A JP5246828 A JP 5246828A JP 24682893 A JP24682893 A JP 24682893A JP H07103947 A JPH07103947 A JP H07103947A
Authority
JP
Japan
Prior art keywords
frequency
peak
ultrasonic wave
plate thickness
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5246828A
Other languages
Japanese (ja)
Inventor
Shunei Miyake
俊英 三宅
Hitoshi Aizawa
均 相沢
Yoshinori Anabuki
善範 穴吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5246828A priority Critical patent/JPH07103947A/en
Publication of JPH07103947A publication Critical patent/JPH07103947A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4454Signal recognition, e.g. specific values or portions, signal events, signatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/048Transmission, i.e. analysed material between transmitter and receiver

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect an abnormality with high accuracy irrespective of a fluctuation in a detected sheet thickness by a method wherein the flaw-detection frequency of ultrasonic waves is changed so as to obtain a resonance frequency according to the sheet thickness. CONSTITUTION:A personal computer 32 sets a flaw-detection reference frequency and a reference voltage according to coil information on an input sheet thickness or the like, and it sends them to a peak-frequency detection circuit 34 and a function generator 36. The generator 36 generates an electric signal at a frequency and a reference voltage which are set by a peak frequency detection circuit 34, and ultrasonic waves are incident on a steel plate 10 by the use of transmission probe 22A and they are received by a reception probe 22B. The received ultrasonic waves are input to a gate peak detector 42, and an abnormal particle is detected when the level of an extracted peak voltage is at a prescribed value or lower. At this time, a flaw-detection frequency shift circuit 44 shifts a flaw-detection frequency when an input peak voltage has a shape corresponding to a normal part. Then, the circuit 34 changes the flaw-detection frequency on the basis of the relationship between a sheet thickness (d)[m] and a resonance frequency (f)[Hz] when a sheet-thickness fluctuation width is at DELTAd, it finds a peak frequency at which a sound pressure becomes maximum, and it sends the peak frequency to the generator 36. Thereby, it is possible to obtain the resonance frequency according to the sheet thickness.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、結晶方位が揃った正常
粒と揃っていない異常粒が混在する帯状被検材に、超音
波を送受信し、被検材中の各結晶の結晶方位による超音
波伝播速度の差を、被検材内の多重反射干渉による共振
現象を利用して振幅の差に変換し、異常粒が発生した時
の振幅減衰量から、被検材中の異常粒を検出する結晶粒
測定装置に係り、特に、方向性珪素鋼板の結晶粒方向の
異常を検出する際に用いるのに好適な、板厚変動による
誤差が生じない結晶粒測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention sends and receives ultrasonic waves to and from a strip-shaped test material in which normal grains having a uniform crystal orientation and abnormal grains not having a uniform crystal orientation coexist, and the crystal orientation of each crystal in the test material is used. The difference in ultrasonic wave propagation speed is converted into the difference in amplitude by utilizing the resonance phenomenon due to multiple reflection interference in the test material, and the abnormal particles in the test material are detected from the amplitude attenuation when the abnormal particles occur. The present invention relates to a crystal grain measuring device for detecting, and more particularly, to a crystal grain measuring device which is suitable for use in detecting an abnormality in the crystal grain direction of a grain-oriented silicon steel sheet and does not cause an error due to plate thickness variation.

【0002】[0002]

【従来の技術】交流電流の昇圧トランスのコア等への適
用を目的として、圧延方向に電磁特性が優れた方向性珪
素鋼板が製造されている。この方向性珪素鋼板は、圧延
方向の2次再結晶方位を、<100>(Goss 方位)に
揃えて、磁性を大幅に向上させている。
2. Description of the Related Art Grained silicon steel sheets having excellent electromagnetic characteristics in the rolling direction have been manufactured for the purpose of application to a core of a step-up transformer for alternating current. In this grain-oriented silicon steel sheet, the secondary recrystallization orientation in the rolling direction is aligned with <100> (Goss orientation) to significantly improve the magnetism.

【0003】前記Goss 方位に近い結晶粒が多いほど、
電磁特性が優れた方向性珪素鋼板となるわけであるが、
実際の製造工程では、必ずしもGoss 方位に近い結晶粒
のみを作れるわけではなく、製造条件の変化や外乱によ
って2次再結晶が不充分であると、このGoss 方位から
大きくずれた結晶粒、いわゆる異常粒ができてしまい、
磁気特性が悪化して、品質上不合格となる。
As the number of crystal grains closer to the Goss orientation increases,
Although it is a grain-oriented silicon steel sheet with excellent electromagnetic characteristics,
In the actual manufacturing process, it is not always possible to make only crystal grains close to the Goss orientation, and if secondary recrystallization is insufficient due to changes in manufacturing conditions or disturbance, crystal grains that are greatly deviated from the Goss orientation, so-called abnormal Grain is created,
The magnetic properties deteriorate and the quality fails.

【0004】この異常粒10Aができた製品鋼板10の
模式図を図1に示す。Goss 方位に近い正常粒10B
は、粒径が数mm〜数十mmと大きいが、異常粒10Aでは
一般に粒径が数mm以下で、結晶粒の方位はランダムな向
きになっており、図1に示した如く、圧延方向に長く延
びて分布する。
FIG. 1 shows a schematic view of a product steel plate 10 having these abnormal grains 10A. Normal grain 10B close to Goss direction
Has a large grain size of several mm to several tens of mm, but in the abnormal grain 10A, the grain size is generally several mm or less, and the orientation of the crystal grains is random. As shown in FIG. Distributed over a long period of time.

【0005】このような方向性珪素鋼板の異常粒を検出
する装置として、出願人は既に特開平1−229962
号で、正常粒と異常粒との超音波伝播速度の差を、鋼板
内の多重反射干渉による共振現象を利用して振幅の差に
変換し、異常粒が発生したときの振幅減衰量から異常粒
を検出するようにした方向性珪素鋼板の結晶粒方位分布
測定装置を提案している。
As a device for detecting abnormal grains of such grain-oriented silicon steel sheet, the applicant has already disclosed in Japanese Patent Laid-Open No. 1-229962.
In No. 5, the difference in ultrasonic wave propagation velocity between normal grains and abnormal grains is converted into a difference in amplitude using the resonance phenomenon due to multiple reflection interference in the steel sheet, and the amplitude attenuation amount when abnormal grains occur We have proposed a crystal grain orientation distribution measuring device for grain-oriented silicon steel sheets that detects grains.

【0006】この測定装置は、図2に透過型の場合で原
理を示す如く、結晶方位で弾性係数が異なり、正常粒と
異常粒では板厚方向の超音波伝播速度が異なるので、共
振を利用して伝播速度の差を振幅の差に変換し、信号の
減衰量から異常粒を判定している。即ち、正常粒である
場合には、共振条件2d =λ(d は板厚、λは超音波の
波長)下で超音波が共振しているため、図2(A)に示
す如く、受信側の超音波探触子22Bに大きな振幅の超
音波が入射しているのに対して、異常粒が存在する部位
では、図2(B)に示す如く、超音波伝播速度が異なる
ため共振せず、振幅が減少するため、この差を利用し
て、異常粒を検出する。図2において、22Aは送信側
の超音波探触子である。
As shown in the principle of the transmission type in FIG. 2, this measuring apparatus uses resonance because the elastic coefficient differs depending on the crystal orientation and the ultrasonic propagation velocity in the plate thickness direction differs between normal grains and abnormal grains. Then, the difference in the propagation velocity is converted into the difference in the amplitude, and the abnormal particle is judged from the attenuation amount of the signal. That is, in the case of normal grains, the ultrasonic wave resonates under the resonance condition 2d = λ (d is the plate thickness, λ is the wavelength of the ultrasonic wave), and as shown in FIG. While ultrasonic waves with a large amplitude are incident on the ultrasonic probe 22B, the ultrasonic wave does not resonate at the site where abnormal particles are present, as shown in FIG. , The amplitude decreases, and this difference is used to detect abnormal grains. In FIG. 2, 22A is an ultrasonic probe on the transmission side.

【0007】又、特開昭51−29187号にも、超音
波により珪素鋼板の結晶粒の大小を判定する結晶粒度判
定方法が記載されている。
Further, Japanese Patent Application Laid-Open No. 51-29187 also discloses a crystal grain size determination method for determining the size of crystal grains of a silicon steel sheet by ultrasonic waves.

【0008】このような結晶粒測定装置によれば、珪素
鋼板の異常粒をオンラインで非破壊測定することが可能
である。
With such a crystal grain measuring device, it is possible to perform nondestructive on-line measurement of abnormal grains of a silicon steel sheet.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、特に前
者の特開平1−229962号で開示した結晶粒測定装
置の場合、鋼板10の板厚d が変化すると、超音波の波
長λが一定のままでは、共振条件が満足されなくなっ
て、正常粒であっても受信側の超音波探触子22Bで観
測される信号レベルが減衰し、異常粒との区別が困難に
なる場合があるという問題点を有していた。
However, particularly in the case of the crystal grain measuring apparatus disclosed in the former Japanese Patent Laid-Open No. 1-229962, when the plate thickness d of the steel plate 10 changes, the wavelength λ of the ultrasonic wave remains constant. However, since the resonance condition is not satisfied and the signal level observed by the ultrasonic probe 22B on the receiving side is attenuated even with normal particles, it may be difficult to distinguish it from abnormal particles. Had.

【0010】本発明は、前記従来の問題点を解消するべ
くなされたもので、被検材の板厚が変化しても、共振条
件を満足することができ、従って、異常粒を高精度で検
出することが可能な結晶粒測定装置を提供することを目
的とする。
The present invention has been made to solve the above-mentioned conventional problems, and can satisfy the resonance condition even if the plate thickness of the material to be tested changes, and therefore abnormal particles can be accurately detected. An object is to provide a crystal grain measuring device capable of detecting.

【0011】[0011]

【課題を解決するための手段】本発明は、結晶方位が揃
った正常粒と揃っていない異常粒が混在する被検材に超
音波を送受信し、被検材中の各結晶の結晶方位による超
音波伝播速度の差を、被検材内の多重反射干渉による共
振現象を利用して振幅の差に変換し、異常粒が発生した
時の振幅減衰量から、被検材中の異常粒を検出する結晶
粒測定装置において、被検材の板厚を検出する手段と、
検出された板厚に応じて、共振周波数が得られるよう
に、超音波の探傷周波数を変更する手段とを備えること
により、前記目的を達成したものである。
According to the present invention, ultrasonic waves are transmitted and received to and from a test material in which normal grains having a uniform crystal orientation and abnormal grains having a non-uniform crystal orientation coexist, and the crystal orientation of each crystal in the test material is used. The difference in ultrasonic wave propagation speed is converted into the difference in amplitude by utilizing the resonance phenomenon due to multiple reflection interference in the test material, and the abnormal particles in the test material are detected from the amplitude attenuation when the abnormal particles occur. In the crystal grain measuring device for detecting, means for detecting the plate thickness of the test material,
The above object is achieved by providing a means for changing the flaw detection frequency of ultrasonic waves so that the resonance frequency can be obtained according to the detected plate thickness.

【0012】又、前記板厚検出手段を、異常粒検出用の
前記超音波を利用し、被検材中の超音波伝播時間から板
厚を検出するものとしたものである。
Further, the plate thickness detecting means uses the ultrasonic waves for detecting abnormal grains and detects the plate thickness from the ultrasonic wave propagation time in the test material.

【0013】又、前記板厚検出手段を、異常粒検出用の
前記超音波を利用し、正常部で該超音波の探傷周波数を
変化させて、受信信号のピークレベルが最大となるピー
ク周波数を求め、該ピーク周波数を探傷周波数とするも
のとしたものである。
Further, the plate thickness detecting means uses the ultrasonic wave for detecting abnormal particles, and the flaw detection frequency of the ultrasonic wave is changed in the normal portion to determine the peak frequency at which the peak level of the received signal becomes maximum. Then, the peak frequency is used as the flaw detection frequency.

【0014】[0014]

【作用】本発明においては、被検材の板厚を検出し、検
出された板厚に応じて、共振周波数が得られるように、
超音波の探傷周波数をダイナミックに変更するようにし
たので、板厚が変動しても、常に共振条件を満足させる
ことができる。従って、板厚変化により正常部での信号
レベルが減衰することがなく、板厚が変動しても、異常
粒を高精度で検出することができる。
In the present invention, the plate thickness of the material to be tested is detected, and the resonance frequency is obtained according to the detected plate thickness.
Since the ultrasonic inspection frequency is dynamically changed, the resonance condition can always be satisfied even if the plate thickness changes. Therefore, the signal level in the normal portion is not attenuated by the change in the plate thickness, and the abnormal grain can be detected with high accuracy even if the plate thickness changes.

【0015】なお、異常粒検出用の超音波を利用し、被
検材中の超音波伝播時間から板厚を検出するようにした
場合には、別体の板厚検出手段が不要であり、構成が簡
略である。
When the ultrasonic wave for detecting abnormal particles is used to detect the plate thickness from the ultrasonic wave propagation time in the test material, a separate plate thickness detecting means is unnecessary, The configuration is simple.

【0016】又、同じく異常粒検出用の超音波を利用
し、正常部で該超音波の探傷周波数を変化させて、受信
信号のピークレベルが最大となるピーク周波数を求め、
該ピーク周波数を探傷周波数とするようにした場合に
は、共振条件を満足する探傷周波数(共振周波数)を正
確に検出して、設定することができる。
Similarly, an ultrasonic wave for detecting abnormal particles is used, and the flaw detection frequency of the ultrasonic wave is changed in the normal portion to obtain the peak frequency at which the peak level of the received signal is maximum,
When the peak frequency is used as the flaw detection frequency, it is possible to accurately detect and set the flaw detection frequency (resonance frequency) satisfying the resonance condition.

【0017】[0017]

【実施例】以下図面を参照して、本発明の実施例を詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0018】本実施例は、図3に示す如く構成されてお
り、上位のプロセスコンピュータ30から結晶粒測定装
置のパーソナルコンピュータ(パソコン)32へ、板
厚、幅等のコイル情報が供給される。パソコン32は、
上位プロセスコンピュータ30から提供されるコイル情
報に応じて、探傷周波数の基準値(以下、基準周波数と
称する)、探傷信号の振幅(以下、基準電圧と称する)
を設定すると共に、鋼板10の移動量からその長さ(コ
イル長さと称する)を測定する。
This embodiment is constructed as shown in FIG. 3, and coil information such as plate thickness and width is supplied from a host process computer 30 to a personal computer (personal computer) 32 of a crystal grain measuring apparatus. The personal computer 32 is
A reference value of a flaw detection frequency (hereinafter referred to as a reference frequency) and an amplitude of a flaw detection signal (hereinafter referred to as a reference voltage) according to coil information provided from the host process computer 30.
And the length (referred to as coil length) of the steel plate 10 is measured from the amount of movement of the steel plate 10.

【0019】パソコン32で設定された探傷基準周波数
及び基準電圧は、それぞれピーク周波数検出回路34及
び関数発生器36に送られる。関数発生器36では、ピ
ーク周波数検出回路34から設定される周波数を用い、
且つ、パソコン32で設定される基準電圧(振幅)を有
する電気信号を発生し、送信アンプ38に入力する。送
信アンプ38は、関数発生器36の出力を増幅して送信
探触子22に送り、超音波を鋼板10に入射させる。
The flaw detection reference frequency and reference voltage set by the personal computer 32 are sent to the peak frequency detection circuit 34 and the function generator 36, respectively. The function generator 36 uses the frequency set from the peak frequency detection circuit 34,
Moreover, an electric signal having a reference voltage (amplitude) set by the personal computer 32 is generated and input to the transmission amplifier 38. The transmission amplifier 38 amplifies the output of the function generator 36, sends the output to the transmission probe 22, and makes the ultrasonic wave incident on the steel plate 10.

【0020】鋼板10を透過した超音波は、受信探触子
22Bで受信され、受信アンプ40を経て、ゲートピー
ク検出器42に入力される。このゲートピーク検出器4
2で雑音成分等が分離されて抽出されたピーク電圧のレ
ベルに応じて、該レベルが所定値以下である時に異常粒
が検出される。
The ultrasonic wave transmitted through the steel plate 10 is received by the reception probe 22B, and is input to the gate peak detector 42 via the reception amplifier 40. This gate peak detector 4
In accordance with the level of the peak voltage extracted by separating the noise component and the like in 2, abnormal particles are detected when the level is below a predetermined value.

【0021】一方、ゲートピーク検出器42出力のピー
ク電圧は、探傷周波数シフト回路44に入力される。こ
の探傷周波数シフト回路44は、例えば前記パソコン3
2で測定されたコイル長さに応じて、データサンプリン
グタイミング判定回路46から所定のサンプリングタイ
ミング毎に入力されるタイミング信号に応じて動作し、
前記ゲートピーク検出器42から入力されるピーク電圧
が、正常部に対応する所定形状である時に、探傷周波数
をシフトする。
On the other hand, the peak voltage output from the gate peak detector 42 is input to the flaw detection frequency shift circuit 44. The flaw detection frequency shift circuit 44 is provided, for example, in the personal computer 3
2 operates according to the timing signal input from the data sampling timing determination circuit 46 at each predetermined sampling timing according to the coil length measured in 2,
When the peak voltage input from the gate peak detector 42 has a predetermined shape corresponding to the normal portion, the flaw detection frequency is shifted.

【0022】前記ピーク周波数検出回路34は、この探
傷周波数シフト回路44により探傷周波数f をシフトし
た時の、例えば図4に示すような波形から、例えば半価
幅法等により、受信信号のピークレベルが最大となるピ
ーク周波数を検出する。即ち、板厚 d(m )と共振周波
数 f(Hz )の関係は、測定原理より次式で示される。
The peak frequency detection circuit 34 detects the peak level of the received signal from the waveform as shown in FIG. 4 when the flaw detection frequency shift circuit 44 shifts the flaw detection frequency f by, for example, the half width method. Detects the peak frequency at which is maximum. That is, the relationship between the plate thickness d (m) and the resonance frequency f (Hz) is expressed by the following formula based on the measurement principle.

【0023】f =v /2d …(1)F = v / 2d (1)

【0024】ここで、v は超音波の音速( m/s )であ
る。
Here, v is the speed of sound (m / s) of ultrasonic waves.

【0025】従って板厚変動幅がΔd の場合、探傷周波
数を下記の範囲で、例えば設定周波数の0.1%毎に変
更し、音圧が最大となるピーク周波数を求める。
Therefore, when the thickness variation width is Δd, the flaw detection frequency is changed within the following range, for example, every 0.1% of the set frequency, and the peak frequency at which the sound pressure is maximized is obtained.

【0026】 周波数上限値 fmax = v/2( d−Δd ) …(2) 周波数下限値 fmax = v/2( d+Δd ) …(3)Upper frequency limit fmax = v / 2 (d−Δd) (2) Lower frequency limit fmax = v / 2 (d + Δd) (3)

【0027】検出されたピーク周波数を前記関数発生器
36に設定して、該ピーク周波数が探傷周波数となるよ
うにする。なお、ピーク周波数検出回路34には、周波
数上下限設定器48が接続されており、探傷周波数が、
予め設定した上下限値の範囲を越えてしまわないように
制限されている。
The detected peak frequency is set in the function generator 36 so that the peak frequency becomes the flaw detection frequency. A frequency upper / lower limit setting device 48 is connected to the peak frequency detection circuit 34, and the flaw detection frequency is
It is restricted so that it does not exceed the preset upper and lower limits.

【0028】前記探傷周波数のシフト及びピーク周波数
の検出は、例えば、コイルラインのルーパ入側にセンサ
を設置して、所定長さ毎又はコイル毎にラインを停止さ
せ、正常粒の部位で行うことができる。探触子が複数チ
ャンネル設けられている場合には、チャンネル毎に行う
と、なお良い。
The shift of the flaw detection frequency and the detection of the peak frequency are performed, for example, at a normal grain portion by installing a sensor on the looper entrance side of the coil line and stopping the line for each predetermined length or for each coil. You can When the probe is provided with a plurality of channels, it is more preferable to perform it for each channel.

【0029】本実施例においては、異常粒検出用の超音
波を利用し、適当な間隔で結晶粒測定装置を板厚計に切
換えて、正常部における共振周波数を測定し、これを探
傷周波数とするようにしたので、常に板厚に対応した周
波数で測定を行うことができる。
In the present embodiment, ultrasonic waves for detecting abnormal grains are used, and the crystal grain measuring device is switched to a plate thickness meter at appropriate intervals to measure the resonance frequency in the normal portion. Since this is done, the measurement can always be performed at the frequency corresponding to the plate thickness.

【0030】なお、鋼板10の板厚d を検出して、共振
周波数が得られるように超音波の探傷周波数を変更する
方法はこれに限定されず、例えば、鋼板10中の超音波
伝播時間から板厚を検出して、該検出された板厚に応じ
て、検出共振条件を満足するように超音波の探傷周波数
を計算して、変更することも可能である。又、板厚検出
手段も、超音波を利用するものに限定されない。
The method of detecting the plate thickness d of the steel plate 10 and changing the flaw detection frequency of the ultrasonic wave so as to obtain the resonance frequency is not limited to this. For example, from the ultrasonic wave propagation time in the steel plate 10, It is also possible to detect the plate thickness and calculate and change the flaw detection frequency of the ultrasonic wave so as to satisfy the detection resonance condition according to the detected plate thickness. Further, the plate thickness detecting means is not limited to the one using ultrasonic waves.

【0031】なお、前記実施例においては、鋼板を透過
した超音波が検出されていたが、送信側探触子22Aと
同じ側に受信側探触子22Bを配置し、鋼板10の底面
によって反射された超音波を検出する反射型の結晶粒測
定装置にも、本発明が同様に適用できることは明らかで
ある。
Although ultrasonic waves transmitted through the steel plate are detected in the above embodiment, the receiving probe 22B is arranged on the same side as the transmitting probe 22A and is reflected by the bottom surface of the steel plate 10. It is obvious that the present invention can be similarly applied to the reflection type crystal grain measuring device for detecting the generated ultrasonic waves.

【0032】[0032]

【発明の効果】以上説明したとおり、本発明によれば、
板厚変動に応じて超音波の探傷周波数が変更されるの
で、常に共振条件を満足することができ、板厚変動に拘
らず、高精度の異常粒検出を行うことができる。特に結
晶粒検出用と板厚測定用を兼用させることにより、連続
処理ラインでの省スペース、及び設備費用の大幅な低減
効果がある。
As described above, according to the present invention,
Since the ultrasonic flaw detection frequency is changed according to the plate thickness variation, the resonance condition can always be satisfied, and highly accurate abnormal grain detection can be performed regardless of the plate thickness variation. In particular, by using both the crystal grain detection and the plate thickness measurement, there is a space saving effect in a continuous processing line and a significant reduction in equipment cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の測定対象の一例である異常粒を含んだ
珪素鋼板を模式的に示す斜視図
FIG. 1 is a perspective view schematically showing a silicon steel sheet containing abnormal grains, which is an example of a measurement target of the present invention.

【図2】結晶粒の測定原理を示す断面図FIG. 2 is a sectional view showing the measurement principle of crystal grains.

【図3】本発明に係る結晶粒測定装置の実施例の構成を
示すブロック線図
FIG. 3 is a block diagram showing a configuration of an embodiment of a crystal grain measuring device according to the present invention.

【図4】前記実施例におけるピーク周波数検出方法を示
す線図
FIG. 4 is a diagram showing a peak frequency detecting method in the embodiment.

【符号の説明】[Explanation of symbols]

10…鋼板 22A、22B…超音波探触子 34…ピーク周波数検出回路 36…関数発生器 42…ゲートピーク検出器 44…探傷周波数シフト回路 46…データサンプリングタイミング判定回路 48…周波数上下限設定器 10 ... Steel plate 22A, 22B ... Ultrasonic probe 34 ... Peak frequency detection circuit 36 ... Function generator 42 ... Gate peak detector 44 ... Flaw detection frequency shift circuit 46 ... Data sampling timing determination circuit 48 ... Frequency upper / lower limit setting device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】結晶方位が揃った正常粒と揃っていない異
常粒が混在する被検材に超音波を送受信し、被検材中の
各結晶の結晶方位による超音波伝播速度の差を、被検材
内の多重反射干渉による共振現象を利用して振幅の差に
変換し、異常粒が発生した時の振幅減衰量から、被検材
中の異常粒を検出する結晶粒測定装置において、 被検材の板厚を検出する手段と、 検出された板厚に応じて、共振周波数が得られるよう
に、超音波の探傷周波数を変更する手段と、 を備えたことを特徴とする結晶粒測定装置。
1. An ultrasonic wave is transmitted to and received from a test material in which normal grains having a uniform crystal orientation and abnormal grains not having a uniform crystal orientation are mixed, and the difference in the ultrasonic wave propagation velocity due to the crystal orientation of each crystal in the test material is calculated. Converted to a difference in amplitude using the resonance phenomenon due to multiple reflection interference in the test material, from the amount of amplitude attenuation when abnormal particles occur, in the crystal grain measuring device to detect abnormal particles in the test material, A crystal grain characterized by comprising a means for detecting the plate thickness of the material to be inspected, and a means for changing the flaw detection frequency of the ultrasonic wave so that the resonance frequency can be obtained according to the detected plate thickness. measuring device.
【請求項2】請求項1において、前記板厚検出手段が、
異常粒検出用の前記超音波を利用し、被検材中の超音波
伝播時間から板厚を検出するものである結晶粒測定装
置。
2. The plate thickness detecting means according to claim 1,
A crystal grain measuring device for detecting a plate thickness from an ultrasonic wave propagation time in a test material by using the ultrasonic wave for detecting abnormal grains.
【請求項3】請求項1において、前記板厚検出手段が、
異常粒検出用の前記超音波を利用し、正常部で該超音波
の探傷周波数を変化させて、受信信号のピークレベルが
最大となるピーク周波数を求め、該ピーク周波数を探傷
周波数とするものである結晶粒測定装置。
3. The plate thickness detecting means according to claim 1,
Using the ultrasonic wave for abnormal particle detection, by changing the flaw detection frequency of the ultrasonic wave in a normal part, the peak level of the peak level of the received signal is obtained, and the peak frequency is used as the flaw detection frequency. A crystal grain measuring device.
JP5246828A 1993-10-01 1993-10-01 Measuring apparatus for crystal grain Pending JPH07103947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5246828A JPH07103947A (en) 1993-10-01 1993-10-01 Measuring apparatus for crystal grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5246828A JPH07103947A (en) 1993-10-01 1993-10-01 Measuring apparatus for crystal grain

Publications (1)

Publication Number Publication Date
JPH07103947A true JPH07103947A (en) 1995-04-21

Family

ID=17154305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5246828A Pending JPH07103947A (en) 1993-10-01 1993-10-01 Measuring apparatus for crystal grain

Country Status (1)

Country Link
JP (1) JPH07103947A (en)

Similar Documents

Publication Publication Date Title
US5467655A (en) Method for measuring properties of cold rolled thin steel sheet and apparatus therefor
US4309905A (en) Method for detecting non-uniformities of magnetic materials and device for effecting same
WO1991013348A1 (en) Nondestructive ultrasonic evaluation of formability of metallic sheets
EP0146638B1 (en) Method for measuring transformation rate
JPH07103947A (en) Measuring apparatus for crystal grain
JP2001013118A (en) Electromagnetic ultrasonic probe
JP3132263B2 (en) Abnormality judgment method of crystal grain measuring device
RU2818648C1 (en) Device for determining homogeneity of mechanical properties of articles made from ferromagnetic materials and detecting zones with abnormal hardness therein
JPH1038862A (en) Method and device for iron loss value evaluation
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
Kažys et al. Ultrasonic non-destructive on-line estimation of the tensile stiffness of a running paper web
JP2773535B2 (en) Ultrasonic applied measuring device
RU2780147C1 (en) Method for determining the susceptibility of rolled metal to bending and a device for its implementation
RU2146363C1 (en) Process of ultrasonic inspection of cylindrical articles and gear for its implementation
JPH09251009A (en) Method and device for evaluating iron loss value
JP2988326B2 (en) Method and apparatus for evaluating iron loss value of grain-oriented electrical steel sheet
SU1229688A1 (en) Method of inspecting quality of metal articles
JP2611714B2 (en) Ultrasonic applied measuring device
JPH0679018B2 (en) Evaluation method for deep drawability of thin metal sheets
JPS59151030A (en) Vortex type axial force measuring method
JP3037897B2 (en) Ear ratio measurement method for thin metal plates
JPH0777465A (en) Measuring method for surface layer average temperature and thickness direction temperature distribution
JPH0749944B2 (en) Simultaneous measurement of material thickness and sound velocity
JPH01214757A (en) Apparatus for evaluating deep drawing of thin metal plate
JPH1164309A (en) Method and apparatus for measuring material characteristic of roll material