JPH07103917A - Measuring method for anisotropy of material - Google Patents

Measuring method for anisotropy of material

Info

Publication number
JPH07103917A
JPH07103917A JP26991493A JP26991493A JPH07103917A JP H07103917 A JPH07103917 A JP H07103917A JP 26991493 A JP26991493 A JP 26991493A JP 26991493 A JP26991493 A JP 26991493A JP H07103917 A JPH07103917 A JP H07103917A
Authority
JP
Japan
Prior art keywords
sample
thickness
frequency
resonance
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26991493A
Other languages
Japanese (ja)
Inventor
Shinichi Nagata
伸一 永田
Kyoji Imagawa
恭次 今川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
New Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Oji Paper Co Ltd filed Critical New Oji Paper Co Ltd
Priority to JP26991493A priority Critical patent/JPH07103917A/en
Publication of JPH07103917A publication Critical patent/JPH07103917A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an accurate measured value from which an effect of thickness is removed, by a method wherein a half-width of a resonance curve is determined, a resonance frequency difference between maximum and minimum detection outputs is calculated reversely from the ratio between them and the resonance frequency difference between samples different in the thickness is calculated on the basis of that resonance frequency difference. CONSTITUTION:A half-width H0 of a resonance curve of a cavity resonator 1 and the thickness T of a sample S are stored 6 beforehand. This sample S is put in the resonator 1, the resonator 1 is excited with a resonance frequency f0 at the time of absence of the sample and an angular position A of the sample S at which a detection output of a detector 4 is maximum is searched for by rotating the sample S. The sample S being fixed at this position A, the resonance curve of the resonator 1 is measured and a half-width H is determined. Then, the excitation frequency of the resonator 1 is set at a frequency fm at the time when the sample S is present at the position A, and the frequency of the detector 4 is set at fm+H. While the sample S is rotated, a value R of a detection output Imax/ Imin is determined and a resonance frequency difference DELTAf is calculated reversely from the value R. Besides a half-width H1 and a difference DELTAf at the time of a thickness T1 are calculated from DELTAf and T1/T and the value R at the time when the thickness of the sample is T1 is computed by using the width H1 and the difference DELTAf1. Thereby an accurate measured value is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高周波電磁界を利用した
材料の異方性測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring material anisotropy using a high frequency electromagnetic field.

【0002】[0002]

【従来の技術】延伸した高分子材料のように誘電率が方
向によって異る材料の異方性を測定するのに高周波を利
用する方法がある。この方法は空胴共振器の中で試料を
回わすと、試料の方向によって共振器の共振周波数がず
れるので、試料の方向と共振周波数のずれとの関係から
試料の異方性を求めるものである。この方法の実施に当
り従来は、共振周波数のずれの検出を感度,精度共に良
く検出するため、周波数と空胴共振器内の電界強度との
関係曲線即ち共振曲線の中腹辺に検出周波数を固定し、
その周波数での電界検出強度の変化によって周波数のず
れを検出するようにしていた。
2. Description of the Related Art There is a method of using a high frequency to measure anisotropy of a material such as a stretched polymer material whose permittivity varies depending on the direction. In this method, when the sample is rotated in the cavity resonator, the resonance frequency of the resonator shifts depending on the direction of the sample.Therefore, the anisotropy of the sample is obtained from the relationship between the direction of the sample and the deviation of the resonance frequency. is there. In the practice of this method, in the past, in order to detect the deviation of the resonance frequency with high sensitivity and accuracy, the detection frequency was fixed to the middle curve of the resonance curve, that is, the relationship curve between the frequency and the electric field strength in the cavity resonator. Then
The frequency shift is detected by the change in the electric field detection intensity at that frequency.

【0003】周波数のずれを検出する従来の方法を図5
によって詳述する。図5で横軸が周波数、縦軸が或る周
波数における電界強度の検出値である。共振曲線がA,
B,Cの3本画かれているが、Aは試料の方向が共振周
波数最大の場合、Bは試料をそれより90°回した共振
周波数最小の場合の共振曲線である。試料方位が上記
A,Bの中間の45°の方向のときの共振曲線がCで、
このCの共振曲線で共振ピークの半分の高さの周波数f
sを基準にして、検出周波数をfsに固定し、試料を回
わすと、検出出力はIcを中心にIaとIbの範囲で変
動する。そこでIa/Ib=Rによって共振周波数のず
れを表わすことができる。
A conventional method for detecting a frequency shift is shown in FIG.
Will be described in detail. In FIG. 5, the horizontal axis is the frequency and the vertical axis is the detected value of the electric field strength at a certain frequency. The resonance curve is A,
Although three lines B and C are drawn, A is a resonance curve when the direction of the sample is the maximum resonance frequency, and B is a resonance curve when the sample is rotated 90 ° from that and the resonance frequency is the minimum. The resonance curve is C when the sample orientation is in the direction of 45 ° between A and B,
With this resonance curve of C, the frequency f half the height of the resonance peak
When the detection frequency is fixed to fs with s as the reference and the sample is rotated, the detection output fluctuates in the range of Ia and Ib with Ic at the center. Therefore, the deviation of the resonance frequency can be expressed by Ia / Ib = R.

【0004】上述した共振周波数のずれは異方性が等し
い同種試料でも試料の厚さが増すと、増大する性質があ
る。これは共振周波数のずれが試料の異方性と共に空胴
共振器内の試料の体積によって決まるからである。従っ
て共振周波数のずれによって材料の異方性を測定する場
合は試料の厚さを統一しなければならない。しかし実際
には試料の厚さを揃えることは困難なので、試料の厚さ
を別途測定し、実測されたIa/Ibの値から比例計算
で或る一定厚さの場合の測定値を求めるようにしてい
る。
The above-mentioned shift of the resonance frequency has a property of increasing even if the thickness of the sample is increased even in the case of the same type sample having the same anisotropy. This is because the deviation of the resonance frequency is determined by the anisotropy of the sample and the volume of the sample in the cavity resonator. Therefore, when measuring the anisotropy of the material by the shift of the resonance frequency, the thickness of the sample must be unified. However, in practice, it is difficult to make the thickness of the sample uniform, so the thickness of the sample should be measured separately, and the measured value for a certain fixed thickness should be obtained by proportional calculation from the measured value of Ia / Ib. ing.

【0005】[0005]

【発明が解決しようとする課題】上述した従来方法は試
料の厚さの違いが余り大きくないときは、実用可能な結
果を与えるが、試料の厚さが最大と最小とで10倍程度
も異なっているような場合には誤差が大きい。それは図
5において共振曲線の半値幅の辺りは周波数のずれが小
さい間は直線とみて支障がないが、周波数のずれが大き
くなると、固定された検出周波数の位置が共振曲線の裾
の辺に来て共振曲線の曲がりのため周波数のずれが実際
より小さいように観測されるからである。また試料が厚
くなると共振曲線の半値幅が広くなるので、この点から
も見掛上の共振周波数のずれが小さくなる。本発明は試
料の厚さの広い範囲にわたって共振曲線のずれを正しく
検出し、試料の厚さの影響を除いた異方性の測定値を得
ようとするものである。
The above-mentioned conventional method gives a practicable result when the difference in sample thickness is not so large, but the maximum and minimum sample thickness differ by about 10 times. The error is large in such cases. In Fig. 5, the half-width of the resonance curve is considered as a straight line as long as the deviation of the frequency is small. However, if the deviation of the frequency becomes large, the position of the fixed detection frequency comes to the edge of the resonance curve. Because of the bending of the resonance curve, the frequency shift is observed to be smaller than it actually is. Further, as the sample becomes thicker, the half-value width of the resonance curve becomes wider, so that the apparent deviation of the resonance frequency also becomes small. The present invention is intended to correctly detect the deviation of the resonance curve over a wide range of the thickness of the sample and obtain an anisotropy measurement value excluding the influence of the thickness of the sample.

【0006】[0006]

【課題を解決するための手段】前述したような異方性の
測定方法において、試料を空胴共振器に挿入したときの
共振曲線のピーク高さの所定割合の高さにおけるピーク
幅例えば半値幅と試料の厚さとの関係が直線的であるこ
とを利用して試料を空胴共振器に入れたときの共振曲線
を実測して、その試料に対する半値幅Hから基準厚さの
試料の場合の半値幅H 1を求め、共振曲線が半値幅の関
数であることを利用し、その関数式に上記H 1を代入し
て基準厚さの試料を空胴共振器に挿入したときの共振曲
線の式を求め、実試料に対する検出出力の最大と最小の
ときの共振周波数差から比例的に基準厚さの試料に対す
る共振周波数の差を求めて、基準厚さの試料に対する共
振曲線の式に代入して、基準厚さの試料に対する検出出
力の最大値と最小値を算出して、その比Rを求めるよう
にした。
In the method of measuring anisotropy as described above, a peak width, for example, a half width at a height of a predetermined ratio of the peak height of a resonance curve when a sample is inserted into a cavity resonator. By utilizing the fact that the relationship between the sample and the thickness of the sample is linear, the resonance curve when the sample is placed in the cavity resonator is actually measured, and the half value width H from the sample to the reference thickness Using the fact that the resonance curve is a function of the full width at half maximum, the full width at half maximum H 1 is obtained, and the above H 1 is substituted into the functional equation to obtain the resonance curve of the resonance curve when the sample of the reference thickness is inserted into the cavity resonator. Calculate the formula, find the difference in resonance frequency for the sample with the reference thickness proportionally from the resonance frequency difference between the maximum and minimum detection output for the actual sample, and substitute it into the formula for the resonance curve for the sample with the reference thickness. The maximum and minimum values of the detection output for the sample with the reference thickness Was calculated and the ratio R was calculated.

【0007】[0007]

【作用】共振曲線は例えばローレンツの関数で表わされ
るとして、 I(f)=I 0/{1+{(f−fc)/H}2 } …(1) で表わされる。こゝでfは任意周波数,fcは試料が基
準方位のときの共振周波数,Hは半値幅で、I 0は共振
点における電界検出値である。共振曲線で電界強度が共
振点におけるそれの半分になる周波数を半値幅における
周波数と云うことにして、これをfsとすると、fsに
おいてはI(f)=I 0/2である。測定周波数をfs
に置いて、共振周波数がΔfだけずれたときのfsにお
ける電界強度の検出値I 1は(1)式でfの値をfc+
Δf+Hと置いた場合のI(f)であるから、 I 1=I 0/{1+{(H+Δf)/H}2 } 実測されるのは試料の基準方位におけるI(fs)とこ
のI 1でI(fs)はI 0/2であるから、試料の基準
方位を試料の誘電率最大の方向が空胴共振器内の電界の
方向であるときとし、I 1はI(f)の最小値とする
と、 R=(I 0/2)/I 1={1+{H+Δf)/H}2 } …(2) でRは実測から求まっているので、上式からΔfを計算
すると、 Δf=H√(2R−1)−H …(3) この(3)の式で周波数のずれが大きいときでも、周波
数を固定したときの電界強度の検出値から周波数のずれ
を正確に求めることができる。
The resonance curve is expressed by the Lorentz function, for example, I (f) = I 0 / {1 + {(f-fc) / H} 2 } (1). Here, f is an arbitrary frequency, fc is a resonance frequency when the sample is in the reference orientation, H is a half value width, and I 0 is an electric field detection value at the resonance point. The frequency of the electric field strength in the resonance curve becomes half of that in the resonance point and to say the frequency of the half-value width, which upon the fs, in fs is I (f) = I 0/ 2. Measurement frequency fs
The detected value I 1 of the electric field strength at fs when the resonance frequency is deviated by Δf is expressed by the equation (1) and the value of f is fc +
Because it is I (f) when placing a Delta] f + H, with I 1 = I 0 / {1 + {(H + Δf) / H} 2} I in the reference orientation of the sample being measured (fs) Toko of I 1 since I (fs) is I 0/2, a reference orientation of the sample and when the dielectric constant maximum direction of the sample is the direction of the electric field within the cavity resonator, I 1 is the minimum value of I (f) When, because R = (I 0/2) / I 1 = {1+ {H + Δf) / H} 2} in ... (2) R is been obtained from actual measurement of the calculation of the Delta] f from the above equation, Delta] f = H √ (2R-1) -H (3) Even if the frequency shift is large in the equation (3), the frequency shift can be accurately obtained from the detected value of the electric field strength when the frequency is fixed.

【0008】次に試料の厚さの問題を考える。異方性が
同じ同材質の試料では周波数のずれは厚さに比例してい
るので、もし共振曲線の半値幅が試料の厚さによって変
らなければ、試料の厚さを直接測定することで、前記
(3)式によって、試料の厚さが一定値のときの共振周
波数のずれを計算で求めることができるが、半値幅が変
るのでその補正が必要となる。実験した所、この半値幅
と試料の厚さとの間には直線的な関係があることが分か
った。図6はこの関係の一例を示す。試料の厚さはT直
接測定できるので、その試料について周波数を変えて共
振曲線を実測し、半値幅Hを実測的に求める。このHを
用いて、測定周波数を決め前記(3)式によってΔfを
求める。他方試料を入れないときの空胴共振器の共振曲
線を実測して半値幅を求めこれをH 0とすると、試料厚
さがT 1のときの半値幅H 1は図6を参照して H 1=H 0+(H−H 0)T 1/T …(4) となる。また厚さT 1の試料の共振周波数のずれΔf 1
は比例計算で Δf 1=Δf・T 1/T …(5) これらのH 1,Δf 1を前記(2)式に入れて厚さT 1
の試料に対するRを求めることができる。このようにし
て任意の厚さの試料についての実測値から、一定厚さT
1におけるRを求めることができ厚さの異る試料でも異
方性を比較することができる。
Next, consider the problem of sample thickness. For samples of the same material with the same anisotropy, the frequency shift is proportional to the thickness, so if the full width at half maximum of the resonance curve does not change with the thickness of the sample, directly measure the thickness of the sample. Although the deviation of the resonance frequency when the thickness of the sample has a constant value can be calculated by the equation (3), the half-width changes, so that the correction is necessary. As a result of experiments, it was found that there is a linear relationship between the half width and the sample thickness. FIG. 6 shows an example of this relationship. Since the thickness of the sample can be directly measured by T, the resonance curve is actually measured by changing the frequency of the sample, and the half-value width H is actually obtained. Using this H, the measurement frequency is determined and Δf is calculated by the above equation (3). When actually measuring the resonance curve of the cavity resonator seeking half-width which is referred to as H 0 when not put the other samples, the half-width H 1 when the specimen thickness is T 1 refers to FIG. 6 H 1 = H 0 + (H−H 0 ) T 1 / T (4) The thickness T 1 of the resonant frequency of the sample shift Delta] f 1
Is a proportional calculation Δf 1 = Δf · T 1 / T (5) These H 1 and Δf 1 are put into the equation (2) to obtain the thickness T 1
It is possible to obtain R for each sample. In this way, from the measured value of the sample of arbitrary thickness, the constant thickness T
R in 1 can be obtained, and anisotropy can be compared even in samples having different thicknesses.

【0009】[0009]

【実施例】図1は本発明方法を実施する装置の一例を示
す。1は空胴共振器で、中央を横断するようにスリット
2が設けてあり、このスリットに試料Sを挿入する。試
料Sはシート状で、空胴共振器の軸を中心に回せるよう
になっている。空胴共振器は両端近くに夫々仕切11が
あって、この仕切の間が共振空間になっており、空胴中
央のスリットの所が電界の腹になる。仕切11には夫々
小孔hが穿たれており、空胴共振器の一端と仕切との間
にアンテナ12が挿入されてそのアンテナが励振用高周
波電源3に接続してある。空胴共振器の他端と仕切との
間にはアンテナ13が挿入され、このアンテナは検出器
4に接続されている。試料Sはモータ5によって回動せ
られ、試料の角位置とそのときの検出器4の検出出力が
制御装置6に取込まれ、データ処理が行われる。
1 shows an example of an apparatus for carrying out the method of the present invention. Reference numeral 1 is a cavity resonator, which is provided with a slit 2 so as to cross the center thereof, and the sample S is inserted into this slit. The sample S has a sheet shape and can be rotated around the axis of the cavity resonator. The cavity resonator has partitions 11 near both ends thereof, a resonance space is provided between the partitions, and a slit at the center of the cavity serves as an antinode of the electric field. Each partition 11 has a small hole h, and an antenna 12 is inserted between one end of the cavity resonator and the partition, and the antenna 12 is connected to the exciting high frequency power source 3. An antenna 13 is inserted between the other end of the cavity resonator and the partition, and this antenna is connected to the detector 4. The sample S is rotated by the motor 5, the angular position of the sample and the detection output of the detector 4 at that time are taken into the control device 6, and data processing is performed.

【0010】図2は上記装置を用い、本発明を実行する
場合の測定動作の手順を示すフローチャートである。予
め空胴共振器1の共振曲線を実測し、空胴共振器自身の
共振曲線の半値幅H 0を求めて、制御装置6に記憶させ
ておく(イ)。試料についての実際の測定はまず、試料
の厚さTをマイクロメータ等で測っ制御装置6に記憶さ
せる(ロ)。次にその試料を空胴共振器に入れ、空胴共
振器を試料がないときの共振周波数f 0で励振し、検出
器4の検出周波数をf 0より大きいf’に設定して試料
Sを回わし、検出出力が最大になる試料の角位置Aを探
す(ハ)。この試料の角位置は試料の試料面に沿う誘電
率の最大の方向が空胴共振器内の試料位置における電界
の方向と同じになる方向である。次に試料を角位置Aに
固定して空胴共振器の共振曲線を測定する(ニ)。共振
器曲線の測定は励振周波数と検出周波数を同じに保ちな
がら、それらの周波数を変えて検出器4の出力を測定す
ればよい。この結果から試料を入れたときの共振曲線の
半値幅Hを求める(ホ)。空胴共振器の励振周波数を試
料の方位がAのときの共振周波数fmに設定し、それよ
り検出器4の検出周波数をfm+Hに設定して試料を角
位置Aから出発して一回点させると、検出出力は最大値
Imaxから中間値Iを経てAから90°回った所で最
小値Iminとなり、ImaxとIminとの間で変化
しながら、一回点の間に2周期の上下を行いながら最大
値に戻る。この変化を図3に極座標によって示す。
(ヘ)のステップでこの図3のデータを採取する。この
データからR=Imax/Iminが求まる。(ト)。
このRの実測値から前記式(3)によってΔfを算出
(4)する。また試料厚さがT 1のときの共振曲線の半
値幅H1を前記(4)式によって算出する(リ)。更に
試料厚さがT 1のときの周波数のずれΔf 1を前記
(5)式によって算出する(ヌ)。このようにして求ま
ったH 1,Δf 1を用い前記(2)式によって試料厚さ
がT 1のときのRを計算(ル)して、測定動作は終る。
FIG. 2 is a flow chart showing the procedure of the measuring operation when the present invention is carried out using the above apparatus. The resonance curve of the cavity resonator 1 is actually measured in advance, the half value width H 0 of the resonance curve of the cavity resonator itself is obtained, and stored in the control device 6 (a). In the actual measurement of the sample, first, the thickness T of the sample is measured with a micrometer or the like and stored in the control device 6 (b). Next, the sample is put in a cavity resonator, the cavity resonator is excited at a resonance frequency f 0 when there is no sample, the detection frequency of the detector 4 is set to f ′ higher than f 0, and the sample S is set. Turn to find the angular position A of the sample that maximizes the detection output (C). The angular position of this sample is such that the direction of the maximum dielectric constant along the sample surface of the sample becomes the same as the direction of the electric field at the sample position in the cavity resonator. Next, the sample is fixed at the angular position A and the resonance curve of the cavity resonator is measured (d). The resonator curve may be measured by keeping the excitation frequency and the detection frequency the same while measuring the output of the detector 4 while changing the frequencies. From this result, the full width at half maximum H of the resonance curve when the sample is inserted is obtained (e). The excitation frequency of the cavity resonator is set to the resonance frequency fm when the orientation of the sample is A, and the detection frequency of the detector 4 is set to fm + H, and the sample is started from the angular position A and then pointed once. Then, the detection output reaches a minimum value Imin at a position 90 degrees from A after passing from the maximum value Imax to the intermediate value I, and while changing between Imax and Imin, two cycles are performed up and down during one point. While returning to the maximum value. This change is shown by polar coordinates in FIG.
The data of FIG. 3 is collected in the step (f). From this data, R = Imax / Imin is obtained. (G).
From the measured value of R, Δf is calculated (4) by the equation (3). Further, the full width at half maximum H 1 of the resonance curve when the sample thickness is T 1 is calculated by the equation (4) (i). Further, the frequency deviation Δf 1 when the sample thickness is T 1 is calculated by the above equation (5) (nu). Using the values H 1 and Δf 1 obtained in this way, R when the sample thickness is T 1 is calculated (L) by the equation (2), and the measurement operation ends.

【0011】図4は厚さ100μmの同種試料を一枚か
ら8枚まで重ね枚数を変えてRを求めた結果であって、
Rは400μmの厚さの場合に換算したものである。点
線は単に実測されるImaxとIminとの比から単純
比例計算で400μmの厚さのときのRを求めたもの
で、厚さが厚すとRが見掛上小さくなっていることが分
かる。これに比し、実線で示される本発明適用の結果は
重ね枚数にかゝわらずRが略一定値を示している。
FIG. 4 is a result of obtaining R by changing the number of stacked samples of the same kind having a thickness of 100 μm from one to eight.
R is calculated in the case of a thickness of 400 μm. The dotted line shows R obtained at a thickness of 400 μm by simple proportional calculation from the ratio of Imax and Imin actually measured, and it can be seen that R becomes apparently smaller as the thickness increases. On the other hand, in the result of application of the present invention shown by the solid line, R shows a substantially constant value regardless of the number of stacked sheets.

【0012】以上の説明では空胴共振器自身の共振周波
数からの周波数のずれが最大の試料の方向における共振
曲線の半値幅の位置の周波数を基準にして、その周波数
で検出出力が最大のときと最小のときの比から周波数の
ずれの最大最小の差Δfを求めるようにしているが、本
発明はこのような形に限定されない。周波数のずれが最
大と最小との中間の値を取る試料方向(周波数のずれが
最大のときの試料の方向から45°回した方向)におけ
る共振曲線の半値幅に対応する周波数を基準にして、そ
の周波数での検出出力の中間値と最大値と最小値とか
ら、基準周波数から高い周波数への最大のずれΔfma
xと最小のずれΔfminを算出するようにしてもよ
い。この場合原理的にはΔfmaxとΔfminは絶対
値が同じで符号が逆なだけであるので、Δfmax−Δ
fminを前述したΔfととすればよい。なお、以上の
説明は、全て共振曲線の半値幅に対応する周波数を用い
ることとして行っているが、これは半値幅に限られず、
共振曲線のピークの高さの何割か所定割合の高さにおけ
るピーク幅に対応する周波数を用いてもよいものであ
る。
In the above description, when the detection output is maximum at the frequency at the position of the half-value width position of the resonance curve in the direction of the sample in which the deviation of the frequency from the resonance frequency of the cavity resonator itself is the maximum. However, the present invention is not limited to such a form. Based on the frequency corresponding to the half-value width of the resonance curve in the sample direction in which the frequency shift takes an intermediate value between the maximum and the minimum (direction rotated by 45 ° from the sample direction when the frequency shift is maximum), The maximum deviation Δfma from the reference frequency to the high frequency from the intermediate value, the maximum value, and the minimum value of the detection output at that frequency.
The minimum deviation Δfmin from x may be calculated. In this case, in principle, Δfmax and Δfmin have the same absolute value and opposite signs, so Δfmax−Δ
It is sufficient to set fmin to Δf described above. In the above description, the frequency corresponding to the full width at half maximum of the resonance curve is used, but this is not limited to the full width at half maximum.
It is also possible to use a frequency corresponding to the peak width at a height of some predetermined percentage of the peak height of the resonance curve.

【0013】[0013]

【発明の効果】本発明によれば厚さの異る試料であって
も、同じ厚さの場合に正確に換算したRの値で相互比較
できるので、試料を延伸したときの延伸率と異方性との
関係の測定のように厚さが異る試料の異方性の測定が容
易正確にできるようになる。
EFFECTS OF THE INVENTION According to the present invention, even samples having different thicknesses can be compared with each other by accurately converting the values of R in the case of the same thickness. This makes it possible to easily and accurately measure the anisotropy of samples having different thicknesses such as the measurement of the relationship with the directionality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施する装置の一例のブロック図FIG. 1 is a block diagram of an example of an apparatus for carrying out the method of the present invention.

【図2】上記装置による測定動作のフローチャートFIG. 2 is a flowchart of a measurement operation by the above device.

【図3】検出器出力と試料の角位置との関係の一例のグ
ラフ
FIG. 3 is a graph showing an example of the relationship between detector output and sample angular position.

【図4】試料の重ね枚数とRとの関係のグラフFIG. 4 is a graph showing the relationship between the number of stacked samples and R.

【図5】本発明の原理を説明するグラフFIG. 5 is a graph illustrating the principle of the present invention.

【図6】試料の厚さと共振曲線の半値幅Hとの関係のグ
ラフ
FIG. 6 is a graph showing the relationship between the thickness of the sample and the full width at half maximum H of the resonance curve.

【符号の説明】[Explanation of symbols]

1 空胴共振器 2 スリット S 試料 3 高周波電源 4 検出器 5 モータ 6 制御装置 1 cavity resonator 2 slit S sample 3 high frequency power source 4 detector 5 motor 6 controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 空胴共振器の中で試料の向きを変えると
きの共振周波数の変化を検出周波数を一定に設定した検
出器の検出出力の変化として検出し、この検出出力の最
大と最小との比によって試料の異方性を表わす異方性測
定方法において、空胴共振器内に試料を挿入した状態で
予め空胴共振器の共振曲線を測定して、共振曲線のピー
ク高さの所定割合の高さにおけるピーク幅Hを求め、共
振曲線がこのピーク幅の関数であることから、上記検出
出力の最大と最小との間の共振周波数の差Δfを逆算
し、試料厚さが基準厚さであるときの上記検出出力の最
大,最小に対する共振周波数差Δf 1をΔfから試料厚
さに対する比例関係から算出し、共振曲線のピーク幅と
試料厚さとの関係が直線的であることに基づいて上記基
準厚さの試料に対する共振曲線のピーク幅H 0を計算
し、共振曲線の関数式にこのピーク幅H 0と上記Δf 1
を代入して基準厚さの試料に対する前記検出出力の最大
と最小との比を算出することにより、実試料に対する測
定値から基準厚さの試料の検出出力の比Rを求めること
を特徴とする材料の異方性測定方法。
1. A change in the resonance frequency when the orientation of a sample is changed in a cavity resonator is detected as a change in the detection output of a detector having a constant detection frequency, and the maximum and minimum of the detection output are detected. In the anisotropy measuring method that expresses the anisotropy of the sample by the ratio of, the resonance curve of the cavity resonator is measured in advance with the sample inserted in the cavity resonator, and the peak height of the resonance curve is determined. The peak width H at the height of the ratio is obtained, and since the resonance curve is a function of this peak width, the difference Δf in the resonance frequency between the maximum and the minimum of the above detection output is calculated backward, and the sample thickness is the reference thickness. The resonance frequency difference Δf 1 with respect to the maximum and the minimum of the above detection output is calculated from the proportional relationship with Δf from the sample thickness, and the relationship between the peak width of the resonance curve and the sample thickness is linear. For samples of the above standard thickness The peak width H 0 of the curve were calculated, the peak width function formula of the resonance curve H 0 and the Delta] f 1
By calculating the ratio of the maximum and the minimum of the detection output to the sample of the reference thickness by substituting for the ratio R of the detection output of the sample of the reference thickness from the measured value for the actual sample. Method for measuring material anisotropy.
JP26991493A 1993-09-30 1993-09-30 Measuring method for anisotropy of material Pending JPH07103917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26991493A JPH07103917A (en) 1993-09-30 1993-09-30 Measuring method for anisotropy of material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26991493A JPH07103917A (en) 1993-09-30 1993-09-30 Measuring method for anisotropy of material

Publications (1)

Publication Number Publication Date
JPH07103917A true JPH07103917A (en) 1995-04-21

Family

ID=17478983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26991493A Pending JPH07103917A (en) 1993-09-30 1993-09-30 Measuring method for anisotropy of material

Country Status (1)

Country Link
JP (1) JPH07103917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0973025A1 (en) * 1997-03-28 2000-01-19 Oji Paper Co., Ltd. Orientation measuring instrument
WO2000019186A1 (en) * 1998-09-25 2000-04-06 Oji Paper Co., Ltd. Method and device for measuring dielectric constant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0973025A1 (en) * 1997-03-28 2000-01-19 Oji Paper Co., Ltd. Orientation measuring instrument
EP0973025A4 (en) * 1997-03-28 2003-02-12 Oji Paper Co Orientation measuring instrument
WO2000019186A1 (en) * 1998-09-25 2000-04-06 Oji Paper Co., Ltd. Method and device for measuring dielectric constant
US6496018B1 (en) 1998-09-25 2002-12-17 Oji Paper Co., Ltd. Method and device for measuring dielectric constant

Similar Documents

Publication Publication Date Title
US10067075B2 (en) Biosensor with integrated antenna and measurement method for biosensing applications
SE448322B (en) MICROWAVE PROCEDURE AND DEVICE FOR DENSITY INDEPENDENT SEATING OF A FORMAL RELATIVE MOISTURE CONTENT
US11079339B2 (en) Biosensor with integrated antenna and measurement method for biosensing applications
US9287606B2 (en) Dual-mode microwave resonator device and method of electron spin resonance measurement
US9791275B2 (en) Method for calibrating yaw rate sensors
AU3136501A (en) Magnetic particle detection
Abdallah et al. Measurement error estimation and quality factor improvement of an electrodynamic-acoustic resonator sensor for viscosity measurement
JP2004045262A (en) Method for measuring complex dielectric constant using resonator, and instrument for executing the method
JP2004085276A (en) Film-thickness measuring method and film-thickness measuring apparatus
JPH07103917A (en) Measuring method for anisotropy of material
US6791326B2 (en) NMR detector for supported monolayer and multilayer films
US20050241373A1 (en) Method and apparatus for determination of food quality and authenticity
Mazúr et al. Analysis of the radial and longitudinal effect in a double TE104 and a single TE102 rectangular cavity
EP2228640B1 (en) Method for determining the moisture content of wood
US6713969B2 (en) Method and apparatus for determination and control of plasma state
JP2007051905A (en) Auto-balance circuit for measuring impedance
Cumpson Quartz crystal microbalance: A new design eliminates sensitivity outside the electrodes, often wrongly attributed to the electric fringing field
JP2002286442A (en) Measurement technology for very thin film oxide
US3448380A (en) Method for use in spectroscopic analysis
JP6572726B2 (en) Sample measuring apparatus and sample measuring method
US10663410B2 (en) Method and system for determining a permittivity of a substance layer
JPH0618287Y2 (en) Material anisotropy measuring device
CN115421083A (en) Magnetic field testing device and method based on high-frequency magnetic sensor
JP5029421B2 (en) Orientation measuring device
JPH02228538A (en) Gas identification sensor system