JPH0618287Y2 - Material anisotropy measuring device - Google Patents

Material anisotropy measuring device

Info

Publication number
JPH0618287Y2
JPH0618287Y2 JP1986021956U JP2195686U JPH0618287Y2 JP H0618287 Y2 JPH0618287 Y2 JP H0618287Y2 JP 1986021956 U JP1986021956 U JP 1986021956U JP 2195686 U JP2195686 U JP 2195686U JP H0618287 Y2 JPH0618287 Y2 JP H0618287Y2
Authority
JP
Japan
Prior art keywords
cavity resonator
anisotropy
directions
electric
vibrations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1986021956U
Other languages
Japanese (ja)
Other versions
JPS62134054U (en
Inventor
茂芳 大崎
良彦 藤井
Original Assignee
神崎製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神崎製紙株式会社 filed Critical 神崎製紙株式会社
Priority to JP1986021956U priority Critical patent/JPH0618287Y2/en
Publication of JPS62134054U publication Critical patent/JPS62134054U/ja
Priority to JP20023187U priority patent/JPH0714870Y2/en
Application granted granted Critical
Publication of JPH0618287Y2 publication Critical patent/JPH0618287Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】 イ産業上の利用分野 本考案は高周波を利用した材料の異方性測定装置に関
し、特に長く連続した材料に対して連続的に測定を行う
に適した装置を提供するものであるが、装置は分離され
た試料の個別測定にも使えるものである。
The present invention relates to an anisotropy measuring apparatus for materials using high frequency, and particularly to an apparatus suitable for continuously measuring long continuous materials. However, the device can also be used for individual measurement of separated samples.

ロ従来の技術 シート状或は線状の材料で、材料を構成している繊維或
は分子が一方向に揃うと、材料の機械的および物理的特
性に異方性が現れる。この異方性は材料の伸縮率とか強
度が方向によつて異ると云つた不都合な場合もあるが、
反対に繊維或は分子を配向させて引張強度を高めると云
うように意識的に異方性を与える場合もある。何れの場
合にしても、シート状或は線状の材料について、その分
子或は繊維の配向度を検出することは材料の品質管理上
重要なことである。
(B) Conventional technology In a sheet-shaped or linear material, when the fibers or molecules constituting the material are aligned in one direction, anisotropy appears in the mechanical and physical properties of the material. This anisotropy may be inconvenient because the expansion ratio or strength of the material differs depending on the direction.
On the contrary, in some cases, anisotropy is intentionally given such that the fibers or molecules are oriented to increase the tensile strength. In any case, it is important for the quality control of the material to detect the degree of orientation of molecules or fibers of the sheet-shaped or linear material.

上述した異方性測定方法として従来用いられてきた方法
は材料から試験片を切取つて引張試験を行うと云う方法
であつたから、破壊試験であり、結果が判明するのに時
間がかゝるもので、製品の最終検査には役立つても、製
造過程にあるシート等の連続的な品質監視等には利用で
きない方法であつた。
The method conventionally used as the above-mentioned anisotropy measuring method is a method in which a tensile test is performed by cutting a test piece from a material, so it is a destructive test, and it takes time to determine the result. Although it is useful for the final inspection of products, it cannot be used for continuous quality monitoring of sheets in the manufacturing process.

材料の分子或は構成繊維の配向は材料の誘電率或は誘電
損失の異方性としても現われるので、高周波を利用して
異方性を測定する方法が本件出願人によつて提案され
た。この方法は空胴共振器にスリットを設けて試料を挿
入し、試料を回転させたときの空胴共振器の共振周波数
或は空胴共振器のQ値の変化を測定するものである。こ
の方法は材料から色々な方向に試験片を切出して引張試
験を行う方法に比し大へん短時間で結果が得られるが、
空胴共振器と試料を相対的に回転させる必要があるた
め、シート状材料の連続的製造工程の中間段階での測定
に用いる場合等には機械的な精度に困難がある。即ち連
続したシート状材料が空胴共振器を横断して通過するよ
うにするため、空胴共振器は上下に2分されるが、シー
トの方を回転させることができないから空胴共振器の方
を回転させなければならない。所が空胴共振器は上下に
2分されているので、それを一体的に回転させるための
機械が大へん複雑で大掛りなものとなりさらに振動の影
響を非常に受け易く、精度の高い測定が得られていない
のが現状である。
Since the molecules of the material or the orientation of the constituent fibers also appear as the anisotropy of the dielectric constant or dielectric loss of the material, a method of measuring the anisotropy using high frequency has been proposed by the present applicant. In this method, a slit is provided in the cavity resonator, a sample is inserted, and the resonance frequency of the cavity resonator or the change in the Q value of the cavity resonator when the sample is rotated are measured. This method can obtain results in a much shorter time than the method of cutting the test piece from the material in various directions and conducting the tensile test.
Since it is necessary to rotate the cavity resonator and the sample relative to each other, mechanical accuracy is difficult when used for measurement at an intermediate stage of the continuous manufacturing process of the sheet material. That is, the cavity resonator is divided into upper and lower halves in order to allow a continuous sheet-shaped material to pass across the cavity resonator, but since the sheet cannot be rotated, You have to rotate one. Since the cavity resonator is divided into upper and lower parts, the machine for rotating it integrally becomes very complicated and large, and it is very susceptible to vibrations and highly accurate measurement. Is not obtained at present.

ハ考案が解決しようとする問題点 本考案は空胴共振器を用いる材料の異方性測定装置で連
続した材料について連続的に異方性を測定する場合の上
記した問題を解決することを主たる目的としているが、
本考案は一般の異方性測定においてもきわめて簡単な構
造と測定の迅速性を提供するものである。
(C) Problems to be solved by the invention The present invention is mainly intended to solve the above-mentioned problems when continuously measuring the anisotropy of a continuous material with a material anisotropy measuring apparatus using a cavity resonator. The purpose is
The present invention provides an extremely simple structure and quickness of measurement even in general anisotropy measurement.

ニ問題点解決のための手段 断面が正方形の空胴共振器を用い、空胴共振器を励振す
る電気振動を、空胴共振器に対して電気振動の方向が互
に直交するように2方向から入力するようにし、空胴共
振器内のこの2方向の電気振動を各別に検出して、夫々
の方向について共振周波数のずれ、空胴共振器のQ或い
はマイクロ波の透過量の差を測定するようにした。
D. Means for solving the problem A cavity resonator having a square cross section is used, and electric vibrations that excite the cavity resonator are generated in two directions so that the directions of the electric vibrations are orthogonal to each other. The electric vibrations in the two directions inside the cavity resonator are separately detected, and the deviation of the resonance frequency in each direction and the difference in the Q of the cavity resonator or the difference in the amount of microwave transmission are measured. I decided to do it.

ホ作用 第2図は空胴共振器の断面を示す。空胴共振器の断面が
正方形で図のように共振器断面が90°回転させたとき
も丁度重なるような形であるときは、図でx方向の電気
振動もy方向の電気振動も同じ共振周波数を示す。本考
案は空胴共振器の中にこのような直交2方向の電気振動
の定在波を形成し、空胴共振器を横断して図の紙面に平
行に試料をセツトする。そうすると試料は直交2方向の
電気振動を受けるから、試料を90°回転させなくて
も、直交2方向の誘電率、誘電損失或いはマイクロ波透
過量の差異を検出することができる。
E action Figure 2 shows the cross section of the cavity resonator. If the cavity resonator has a square cross-section and the cavity cross-section is exactly overlapped when rotated by 90 ° as shown in the figure, the electrical vibration in the x direction and the electrical vibration in the y direction in the figure are the same resonance. Indicates the frequency. According to the present invention, a standing wave of such electrical vibration in two orthogonal directions is formed in the cavity resonator, and the sample is set across the cavity resonator and parallel to the plane of the drawing. Then, since the sample is subjected to electrical vibration in two orthogonal directions, it is possible to detect a difference in permittivity, dielectric loss or microwave transmission amount in two orthogonal directions without rotating the sample by 90 °.

ヘ実施例 第1図は本考案の一実施例を示す。1は正方形断面の空
胴共振器で、長さの中央で空胴を横断するスリツト2に
よつて上下に分かれており、夫々はフレーム3に固定さ
れて一体化されている。4は被測定試料の帯状材でスリ
ツト2を通って矢印方向に移送されている。空胴共振器
の両端には夫々同軸導波管変換器5,6が接続され、同
軸導波管変換器5の隣接2側面には互に直交する方向に
アンテナ7,8が挿入されている。これらのアンテナに
は発振器9の出力がマジツクT10で2分割され、同軸
ケーブルを介して供給されており、この高周波によつて
空胴共振器1内には電界が直交する二つの共振状態の定
在波が形成され、スリツト2はこの電界の定在波の丁度
腹の所に位置するようになつている。アンテナ7,8に
供給される高周波の位相関係は任意である。下側の同軸
導波管変換器6にはアンテナ7,8と同じ方向で二つの
受信用アンテナ11,12が挿入されており、x方向y
方向の電気振動を別々に受信するようになつている。ア
ンテナ11,12は夫々同軸ケーブルで検波回路13,
14に接続されており、検波回路13,14の出力電圧
は差動マンプ15に入力されるようになつている。差動
アンプ15の2入力のうち検波回路13の出力は摺動抵
抗16で減衰率が調節できるようにしてある。この構成
でスリツト2に標準の試料を挿入して差動アンプ15の
出力側に接続された検流計17の振れが0になるように
摺動抵抗を調節しておいて、被測定試料をスリツトに通
すと、検流計17の針の正,負方向への振れによつて被
測定材料の配向性が基準より過剰か不足かが直ちに読取
れる。また差動アンプ15の出力を連続的に記録するよ
うにしてもよい。
F. Embodiment FIG. 1 shows an embodiment of the present invention. Reference numeral 1 denotes a cavity resonator having a square cross section, which is divided into upper and lower parts by a slit 2 which crosses the cavity at the center of its length, and each is fixed to a frame 3 to be integrated. Reference numeral 4 is a strip-shaped material of the sample to be measured, which is transported in the direction of the arrow through the slit 2. Coaxial waveguide converters 5 and 6 are connected to both ends of the cavity resonator, and antennas 7 and 8 are inserted in two adjacent side surfaces of the coaxial waveguide converter 5 in directions orthogonal to each other. . The output of the oscillator 9 is divided into two by a magic T10 and supplied to these antennas via a coaxial cable. Due to this high frequency, two resonance states in which the electric fields are orthogonal to each other in the cavity resonator 1 are determined. A standing wave is formed, and the slit 2 is positioned just at the antinode of the standing wave of this electric field. The phase relationship of the high frequencies supplied to the antennas 7 and 8 is arbitrary. Two receiving antennas 11 and 12 are inserted in the lower coaxial waveguide converter 6 in the same direction as the antennas 7 and 8, and are arranged in the x direction y.
The directional electric vibrations are received separately. The antennas 11 and 12 are detection circuits 13 and 13 using coaxial cables, respectively.
The output voltage of the detection circuits 13 and 14 is connected to the differential amplifier 15, and is input to the differential mamp 15. The output of the detection circuit 13 out of the two inputs of the differential amplifier 15 can be adjusted in attenuation rate by the sliding resistance 16. With this configuration, a standard sample is inserted into the slit 2 and the sliding resistance is adjusted so that the deflection of the galvanometer 17 connected to the output side of the differential amplifier 15 becomes 0. When passing through the slit, it is possible to immediately read whether the orientation of the material to be measured is over or under the reference due to the deflection of the needle of the galvanometer 17 in the positive and negative directions. Further, the output of the differential amplifier 15 may be continuously recorded.

次に、周波数を掃引することにより得られた共振周波数
値、Q値、誘電率値或いは誘電損失値などから材料の異
方性を求める場合の一実施例を示す。第3図に示すよう
に、第1図の発振器9を掃引型のものに、マジツクT1
0を方向性給合器18に変え、また演算部19を設けて
これに受信アンテナ(11及び12)を経て検波した信
号と発振器9からの周波数値を入力しておく。
Next, an example of obtaining the anisotropy of the material from the resonance frequency value, the Q value, the dielectric constant value, the dielectric loss value or the like obtained by sweeping the frequency will be shown. As shown in FIG. 3, the oscillator 9 shown in FIG.
0 is changed to the directional coupler 18, and a calculation unit 19 is provided to input the signal detected through the receiving antennas (11 and 12) and the frequency value from the oscillator 9.

発振アンテナ(7及び8)から例えばノコギリ刃型に直
線偏波を周波数を掃引しながら発振する。受信アンテナ
(11及び12)に受信された信号は検波され、その値
が演算部19に入力されるので、演算部では入力された
各値からまず共振周波数値とQ値を計算し、次にかかる
値から誘電率値と誘電損失値を求める。これら2方向の
共振周波数値、Q値、誘電率値、誘電損失値などの比或
いは差により材料の異方性が求めるものである。
For example, a linearly polarized wave is oscillated while sweeping the frequency from the oscillating antennas (7 and 8) to a saw blade type. The signals received by the receiving antennas (11 and 12) are detected, and the values are input to the arithmetic unit 19. Therefore, the arithmetic unit first calculates the resonance frequency value and the Q value from the input values, and then From these values, the dielectric constant value and the dielectric loss value are obtained. The anisotropy of the material is obtained by the ratio or difference of the resonance frequency value, Q value, dielectric constant value, dielectric loss value, etc. in these two directions.

上述実施例で2方向の電気振動の位相は任意であるが、
受信アンテナでは直交する方向の電気振動も幾分か受信
されるので試料のわずかな配向性を高感度で検出したい
ようなときには位相差を90°にする方がよい。このよ
うにすると、一方向の電界が最大のとき他方向の電界は
0であるから、検波側で2方向の電気振動が干渉するの
が防がれる。励振高周波の位相の調整はマジツクTから
アンテナまでの同軸ケーブルの長さを両方で異らせれば
よい。
In the above embodiment, the phases of the electric vibrations in the two directions are arbitrary,
Since some electric vibrations in the orthogonal direction are also received by the receiving antenna, it is better to set the phase difference to 90 ° when it is desired to detect a slight orientation of the sample with high sensitivity. With this configuration, when the electric field in one direction is maximum and the electric field in the other direction is 0, it is possible to prevent electric vibrations in two directions from interfering with each other on the detection side. The phase of the excitation high frequency may be adjusted by changing the lengths of the coaxial cables from the magic T to the antenna.

上述実施例では2方向の電気振動を同時に空胴共振器に
印加しているが、2方向の電気振動は機械的或は電気的
に切換え手段で交互に空胴共振器に印加するようにして
もよい。
In the above-mentioned embodiment, the electric vibrations in two directions are simultaneously applied to the cavity resonator, but the electric vibrations in two directions are alternately applied mechanically or electrically to the cavity resonator by the switching means. Good.

ト効果 本考案装置は上述したような構成で空胴共振器に対して
試料を回転させる必要がないので、機構的に大変簡単で
しかも連続的に移送されている帯状連続体の異方性の連
続的測定と云うようなことも簡単に行うことができる。
G. Effect Since the device of the present invention does not need to rotate the sample with respect to the cavity resonator in the above-described structure, it is mechanically very simple and the anisotropic property of the continuous strip that is continuously transferred. What is called continuous measurement can be easily performed.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例の斜視図、第2図は空胴共振
器内の電界の方向を説明する断面図である。第3図は、
本考案の他の一実施例を示す斜視図である。
FIG. 1 is a perspective view of an embodiment of the present invention, and FIG. 2 is a sectional view for explaining the direction of an electric field in a cavity resonator. Figure 3 shows
FIG. 7 is a perspective view showing another embodiment of the present invention.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】断面正方形の空胴共振器を横断するスリッ
トを設け、このスリットに試料を挿入するようにし、こ
の空胴共振器に電界が空胴共振器の2側面と平行で互に
直交する2方向の電気振動を与えて空胴共振器を励振す
るようにし、空胴共振器内の上記2方向の電気振動を各
別に検出する手段を設けて、空胴共振器における上記2
方向の電気振動に対する共振周波数或いはマイクロ波の
透過量を検出し、これらの検出データを比較するように
した材料の異方性測定装置。
1. A slit crossing a cavity resonator having a square cross section is provided, and a sample is inserted into the slit, and an electric field in the cavity resonator is parallel to two side surfaces of the cavity resonator and orthogonal to each other. The two-direction electric vibrations in the cavity resonator are provided by providing means for separately exciting the two-direction electric vibrations in the cavity resonator by exciting the two-direction electric vibrations.
An apparatus for measuring anisotropy of materials, which detects a resonance frequency or an amount of microwave transmission with respect to electric vibration in a direction and compares the detected data.
JP1986021956U 1986-02-18 1986-02-18 Material anisotropy measuring device Expired - Lifetime JPH0618287Y2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1986021956U JPH0618287Y2 (en) 1986-02-18 1986-02-18 Material anisotropy measuring device
JP20023187U JPH0714870Y2 (en) 1986-02-18 1987-12-28 High frequency characteristic measuring device for sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986021956U JPH0618287Y2 (en) 1986-02-18 1986-02-18 Material anisotropy measuring device

Publications (2)

Publication Number Publication Date
JPS62134054U JPS62134054U (en) 1987-08-24
JPH0618287Y2 true JPH0618287Y2 (en) 1994-05-11

Family

ID=30818878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986021956U Expired - Lifetime JPH0618287Y2 (en) 1986-02-18 1986-02-18 Material anisotropy measuring device

Country Status (1)

Country Link
JP (1) JPH0618287Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163645A (en) * 1987-12-21 1989-06-27 Kanzaki Paper Mfg Co Ltd Instrument for measuring high frequency character of sheetlike material
JP2006200985A (en) * 2005-01-19 2006-08-03 Mie Tsuda Denki Sangyo Kk Receiving antenna, nondestructive inspection device, and inspection method for nondestructive inspection

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027349U (en) * 1983-07-29 1985-02-23 株式会社日本特殊計測器製作所 Moisture content and basis weight measuring device for sheet-like objects

Also Published As

Publication number Publication date
JPS62134054U (en) 1987-08-24

Similar Documents

Publication Publication Date Title
Li et al. Ultra-sensitive NEMS magnetoelectric sensor for picotesla DC magnetic field detection
Chakyar et al. Complex permittivity measurement using metamaterial split ring resonators
JP4072601B2 (en) Apparatus for measuring complex permittivity using cavity resonators
US4943778A (en) Instrument for measuring high frequency characteristics of sheet-like materials
JP3691812B2 (en) Method for measuring complex permittivity using a resonator and apparatus for carrying out said method
US20150035546A1 (en) High Sensitivity Tunable Radio Frequency Sensors
JPH0776777B2 (en) Method of measuring dielectric constant of material in three dimensions
Hasar Accurate complex permittivity inversion from measurements of a sample partially filling a waveguide aperture
EP0177011B1 (en) Method of measuring orientation of sheet or web like materials
JPH0618287Y2 (en) Material anisotropy measuring device
US20080012578A1 (en) System for detecting molecular structure and events
Olyphant et al. Strip-line methods for dielectric measurements at microwave frequencies
US7986140B2 (en) Systems and methods for RF magnetic-field vector detection based on spin rectification effects
Lin et al. Precision measurement of complex permittivity and permeability by microwave cavity perturbation technique
RU2079144C1 (en) Device for measurement of complex reflection factor in quasi-optical sections
RU2059229C1 (en) Method for measurement of properties of anisotropic dielectric material and device for its embodiment
Arakawa et al. Magnetic polarization selective spectroscopy of magnetic thin films probed by wideband crossed microstrip circuit in GHz regime
RU94003307A (en) METHOD AND DEVICE FOR MEASUREMENT OF PROPERTIES OF ANISOTROPIC DIELECTRIC MATERIAL
US3529235A (en) Magnetic induction spectrometer employing a pair of coupled resonant cavities
Takahashi et al. Note: Force-and torque-detection of high frequency electron spin resonance using a membrane-type surface-stress sensor
Abalkhail et al. Split-Ring Resonator Excited by a U-Shaped Transmission Line for Material Characterization
Shimizu et al. 50GHz measurements of temperature dependence of complex permittivity of dielectric plates by a cut-off circular waveguide method
JPH0375082B2 (en)
JPH0714870Y2 (en) High frequency characteristic measuring device for sheet
RU2094783C1 (en) Method intended for determination of surface resistance of high-conductance materials