JPH0375082B2 - - Google Patents
Info
- Publication number
- JPH0375082B2 JPH0375082B2 JP16036286A JP16036286A JPH0375082B2 JP H0375082 B2 JPH0375082 B2 JP H0375082B2 JP 16036286 A JP16036286 A JP 16036286A JP 16036286 A JP16036286 A JP 16036286A JP H0375082 B2 JPH0375082 B2 JP H0375082B2
- Authority
- JP
- Japan
- Prior art keywords
- load
- matching
- circuit
- composite
- detection circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 claims description 11
- 230000005684 electric field Effects 0.000 claims 1
- 239000002131 composite material Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 238000003780 insertion Methods 0.000 description 7
- 230000037431 insertion Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Control Of High-Frequency Heating Circuits (AREA)
- Constitution Of High-Frequency Heating (AREA)
- Drying Of Semiconductors (AREA)
Description
【発明の詳細な説明】
イ 発明の目的
〔産業上の利用分野〕
近年マイクロ波加熱の応用分野は、食品加工・
殺菌処理・各種乾燥・プラズマ化学反応等の広範
囲に及び、なかでもプラズマ化学反応を応用した
新製品や新製法の開発が、半導体製造方面を始め
として、各産業分野において活発化している。こ
の場合、加熱物である負荷に、マイクロ波電力を
安定に供給することが、製品の品質維持に重要で
あり、このためには何らかの負荷整合回路が必要
である。[Detailed description of the invention] A. Purpose of the invention [Field of industrial application] In recent years, the application fields of microwave heating have been food processing and
It covers a wide range of fields such as sterilization, various drying, and plasma chemical reactions, and the development of new products and new manufacturing methods that apply plasma chemical reactions is becoming more active in various industrial fields, including semiconductor manufacturing. In this case, it is important to stably supply microwave power to the load, which is a heated object, in order to maintain the quality of the product, and for this purpose, some kind of load matching circuit is required.
本発明は、この負荷整合を自動的に行うことを
目的とするものである。 The present invention aims to automatically perform this load matching.
従来、マイクロ波帯における負荷整合は、負荷
への進行波電力および負荷からの反射波電力を監
視しながら、3個以上のスタブ整合器等を手動で
操作し、反射波最小で進行波電力最大の点に調整
していた。
Conventionally, load matching in the microwave band was performed by manually operating three or more stub matching devices while monitoring the forward wave power to the load and the reflected wave power from the load, and achieved the maximum forward wave power with the minimum reflected wave. It was adjusted to this point.
手動による負荷整合では、常時人員を配置して
おかねばならず、負荷インピーダンスの全域整合
には3個以上のスタブを必要とするために非常に
面倒であり、急激な負荷の変化や変動に対応する
ことは不可能である。
Manual load matching requires the presence of personnel at all times, is very cumbersome as it requires three or more stubs to match the load impedance across the entire range, and is difficult to deal with sudden load changes and fluctuations. It is impossible to do so.
とくに最近注目を集めている半導体製造工業の
エツチング工程や、マイクロ波によるプラズマ
CVD装置などにおいては、その製品の品質管理
基準および生産コスト低減の要求を満足する新し
い自動負荷整合技術が求められている。 In particular, the etching process in the semiconductor manufacturing industry, which has recently attracted attention, and plasma using microwaves.
For CVD equipment and the like, there is a need for new automatic load matching technology that satisfies product quality control standards and demands for lower production costs.
ロ 発明の構成
〔問題点を解決するための手段〕
従来のスタブ整合方式では、インピーダンスの
全域整合として、3個以上のスタブを必要とし、
そのため例えこれらの調整を自動化しても繁雑で
あり、時間も掛ることになつて不可能に近い。本
発明は差動的に挿入長が連続変化する複合スタブ
を2組使用することにより、2個の電動機駆動に
よつて簡単且つ迅速に自動負荷整合を完了させ
る。B. Structure of the invention [Means for solving the problem] In the conventional stub matching method, three or more stubs are required for overall impedance matching,
Therefore, even if these adjustments were automated, it would be complicated and time consuming, making it nearly impossible. By using two sets of composite stubs whose insertion lengths are differentially and continuously varied, the present invention can easily and quickly complete automatic load matching by driving two electric motors.
方形導波管の広辺の中央に1個の金属製等のス
タブを立て、その挿入長を変化した状態を図2に
示している。同図はWRI26形方形導波管の中央
に、丸棒金属スタブを挿入したとき呈する基準化
サセプタンスを示しており、挿入比0.9以上の、
ほぼ1/4波長の挿入長では直列共振を起し、それ
以上では極性が反転して、誘導性になつてしま
う。従つて、整合器として使用する場合には、最
大挿入長が使用最低周波数でも直列共振を生じな
い所までに止める。
FIG. 2 shows a state in which a stub made of metal or the like is erected at the center of the wide side of a rectangular waveguide, and its insertion length is varied. The figure shows the normalized susceptance that occurs when a round metal stub is inserted into the center of a WRI26 rectangular waveguide.
An insertion length of approximately 1/4 wavelength causes series resonance, and beyond that the polarity reverses and becomes inductive. Therefore, when used as a matching box, the maximum insertion length should be limited to a point where series resonance does not occur even at the lowest frequency used.
図3は、このようなスタブ11および12を2
個、導波管2の広辺中央に置き使用周波数帯のほ
ぼ中心で、管内波長の(1/4)となる距離Dを隔
てて配置し、一方のスタブの挿入長が最大のとき
に、他方の挿入長はゼロとなり、その中間では、
一方の増加が他方の減少となるように、差動的に
連続して変化させる本発明の複合スタブ整合器の
一組を示している。 Figure 3 shows such stubs 1 1 and 1 2 as 2
The stubs are placed at the center of the wide side of the waveguide 2, approximately at the center of the frequency band used, and spaced apart by a distance D that is (1/4) of the wavelength inside the waveguide, and when the insertion length of one stub is at its maximum, The other insertion length is zero, and in between,
Figure 3 shows a set of composite stub matchers of the present invention that are differentially and sequentially varied such that an increase in one is a decrease in the other.
このような変化は、例えば図1中に示すように
連結子3の傾きで連動させればよい。また図4の
如く、対向する広辺から、同スタブ11,12を挿
入し、連結子3によつて、同方向に移動して、差
動的に連動させてもよい。 Such a change may be made in conjunction with the inclination of the connector 3, for example, as shown in FIG. Alternatively, as shown in FIG. 4, the stubs 1 1 and 1 2 may be inserted from the opposing wide sides, moved in the same direction by the connector 3, and differentially interlocked.
今負荷側のスタブから負荷を見た規準化コンダ
クタンスをGlとし、負荷の規準化サセプタンス
はゼロとしたとき、2個のスタブの差動連動によ
る入力アドミツタンスのスミス線図上の変化を図
5に示している。図中1,2,3,…7の実線は
それぞれGl=5、2、1.25、1、0.8、0.5、0.2の
時の値を示しており、図4中のl1が最大(即ちl2
がゼロ)から、l1が短くなるにつれて、特性は図
中左から右へ移動し、l1がゼロ、l2が最大となる
と、右端のサセプタンス10の円弧上に集つてい
る。これはl2の示す最大サセプタンスを10とし
ているからである。 When the normalized conductance viewed from the load-side stub is Gl, and the normalized susceptance of the load is zero, Figure 5 shows the change in input admittance on the Smith diagram due to differential interlocking of the two stubs. It shows. The solid lines 1, 2, 3,...7 in the figure show the values when Gl=5, 2, 1.25, 1, 0.8, 0.5, 0.2, respectively, and l 1 in Fig. 4 is the maximum (i.e. l 2
As l 1 becomes shorter, the characteristics move from left to right in the figure, and when l 1 becomes zero and l 2 becomes maximum, they are concentrated on the arc of the susceptance 10 at the right end. This is because the maximum susceptance indicated by l 2 is set to 10.
本発明においては、このような複合スタブ整合
器を2組、平均管内波長の(1/8)隔てて(即ち
D/2)配置している。この第2の複合スタブ整
合器は、第1のものと直列に置いてもよいが、図
1の如く交互に配置すると小形にできる。 In the present invention, two sets of such composite stub matching devices are arranged at a distance of (1/8) the average tube wavelength (ie, D/2). This second composite stub matching device may be placed in series with the first one, but it can be made smaller if they are placed alternately as shown in FIG.
この第2の複合スタブ整合器の作用をスミス線
図上に示すと図5の如く、実線群を90度時計方向
(即ち負荷方向)に回転させた点線群となる。図
中1′,2′,…7′はそれぞれ実線群の1,2,
…7に相当し、各部分において、実線と点線の曲
線群は直交している。 When the action of this second composite stub matching device is shown on a Smith diagram, as shown in FIG. 5, the dotted line group is obtained by rotating the solid line group by 90 degrees clockwise (ie, in the load direction). In the figure, 1', 2', ...7' are the solid line groups 1, 2, and 7', respectively.
...corresponds to 7, and the solid line and dotted line curve groups are perpendicular to each other in each part.
図5は負荷の基準化サセプタンスをゼロにした
が、複素数アドミツタンスとなつても、同様に特
性群が描け、結局負荷アドミツタンス全域が2組
の複合スタブ整合器で整合される。即ち各複合ス
タブ整合器を駆動する電動機2個に制御電力を供
給すれば、整合がとれる。 Although the normalized susceptance of the load is set to zero in FIG. 5, a similar characteristic group can be drawn even when the load admittance is a complex number, and the entire load admittance is eventually matched by two sets of composite stub matchers. That is, matching can be achieved by supplying control power to two motors that drive each composite stub matching device.
負荷の非整合の程度を検出するには、負荷から
の反射波電力と、負荷への進行波電力を検出する
種々の方法が採用できる。即ち多探針法や方向性
結合器法である。多探針法は、インピーダンス直
視装置として採用されているので、例えば小口文
一・大田正光著“マイクロ波、ミリ波測定”(コ
ロナ社版)84〜86頁に詳述されており、五探針法
が周波数特性が広く良好だから、これに基く回路
を図6に示す。検波器付探針61,62,63,6
4,65はそれぞれ導波管広辺の中央に、平均管内
波長の(1/8)の距離に配置されている。このと
き導波管入力電力に相当する探針検出電圧振幅を
Viとし、中央の探針63から負荷を見た反射係数
をΓとする。今周波数変化による誤差を無視し、
かつ、各検波器は2乗特性とすると、各探針の出
力電圧は次式のようになる。 In order to detect the degree of mismatching of the load, various methods of detecting the reflected wave power from the load and the traveling wave power to the load can be adopted. That is, the multi-probe method and the directional coupler method. The multi-probe method is used as a direct impedance viewing device, and is described in detail in, for example, "Microwave and Millimeter Wave Measurement" by Bunichi Oguchi and Masamitsu Ota (Corona Publishing Edition), pp. 84-86. Since the needle method has wide and good frequency characteristics, a circuit based on this method is shown in FIG. Probe with detector 6 1 , 6 2 , 6 3 , 6
4 and 65 are respectively placed at the center of the wide side of the waveguide at a distance of (1/8) of the average guide wavelength. At this time, the tip detection voltage amplitude corresponding to the waveguide input power is
Let Vi be the reflection coefficient when looking at the load from the central probe 63 as Γ. Now ignoring the error due to frequency change,
Further, assuming that each detector has a square-law characteristic, the output voltage of each probe is as shown in the following equation.
V1=k|Vt|2〔1+|Γ|2−2
|Γ|cos(θ−π)〕
V2=k|Vt|2〔1+|Γ|2−2
|Γ|cos(θ−π/2)〕
V3=k|Vt|2〔1+|Γ|2−2
|Γ|cosθ〕
V4=k|Vt|2〔1+|Γ|2−2
|Γ|cos(θ+π/2)〕
V5=k|Vt|2〔1+|Γ|2−2
|Γ|cos(θ+π)〕
今、差動増幅器72の入力端に探針64と62の
出力を加えて、その差電圧出力をとると、
VA=V4−V2=4k|Vt|2|Γ|sinθ
となり、また探針61と65の出力電圧の和の(1/
2)と、探針63の出力電圧の差を、差動増幅器7
1で求めると、
VB=1/2(V1+V5)−V3
=4k|Vt|2|Γ|cosθ
となる。このVAとVBとは直交しているので、こ
れらの電圧を電力増幅器81および82に加え、そ
れらの出力で、整合器駆動用電動機を回転させ、
それぞれの複合スタブ整合器51,52を調整させ
ると、それらの整合特性が直交していることか
ら、容易に整合がとれ、VAおよびVBが共にゼロ
になつた所で、負荷は自動的に整合されることに
なる。 V 1 =k|Vt| 2 [1+|Γ| 2 −2
|Γ|cos(θ−π)] V 2 =k|Vt| 2 [1+|Γ| 2 −2
|Γ|cos(θ−π/2)] V 3 =k|Vt| 2 [1+|Γ| 2 −2
|Γ|cosθ] V 4 =k|Vt| 2 [1+|Γ| 2 −2
|Γ|cos(θ+π/2)] V 5 =k|Vt| 2 [1+|Γ| 2 −2
|Γ|cos(θ+π)] Now, if we add the outputs of the probes 64 and 62 to the input terminal of the differential amplifier 72 and take the difference voltage output, V A = V 4 − V 2 = 4k |Vt| 2 | Γ |sinθ, and ( 1 /
2) and the output voltage of the probe 63 , the differential amplifier 7
1 , V B = 1/2 (V 1 + V 5 ) − V 3 = 4k|Vt| 2 |Γ|cosθ. Since V A and V B are orthogonal, these voltages are applied to power amplifiers 8 1 and 8 2 , and their outputs rotate the matching box drive motor.
By adjusting the respective composite stub matching devices 5 1 and 5 2 , since their matching characteristics are orthogonal, matching is easily achieved, and when both V A and V B become zero, the load is reduced. It will be automatically aligned.
また、方向性結合器2個を使用し、反射波電力
および進行波電力に相当する電圧を得て、自動整
合を行う方法は、VHF以下の周波数帯で適用で
きるものとして、本出願人の先の提案(実開昭52
−50032号(実公昭61−30332号公報)に係る自動
負荷整合装置があり、実用化している。この検出
回路に本発明の複合スタブ整合回路を加えマイク
ロ波帯で使用することは容易である。 In addition, the method of using two directional couplers to obtain voltages corresponding to reflected wave power and traveling wave power and performing automatic matching is applicable to the frequency band below VHF, as proposed by the applicant. Proposal (1977)
There is an automatic load matching device according to No.-50032 (Japanese Utility Model Publication No. 61-30332), which has been put into practical use. It is easy to add the composite stub matching circuit of the present invention to this detection circuit and use it in the microwave band.
この検出回路は図7のように構成されている。
即ち、端子9を経て入射された進行波電力成分
は、方向性結合器11で抽出され、この出力は信
号分割回路13で二分され、それぞれ合成検波器
151と152に印加される。 This detection circuit is configured as shown in FIG.
That is, the traveling wave power component input through the terminal 9 is extracted by the directional coupler 11, and its output is divided into two by the signal dividing circuit 13 and applied to the composite detectors 15 1 and 15 2 , respectively.
一方負荷から反射されて来た反射波成分は、方
向性結合器12で抽出され、この出力は90度成分
発生器14によつて、同相と90度位相差を有する
二信号に分割され、合成検波器151と152の他
の入力端子に加えられている。この合成検波器は
両端子入力の和と差の電圧を二乗検波して合成す
るもので、一方の合成検波器の出力電圧は
V1=4k|a|2|Γ|cosθ
また他方の合成検波器の出力電圧は、入力信号
の一方が90度の位相差を持つために
V2=4k|a|2|Γ|sinθ
となり、多探針法と同じ特性を示すので、同様に
自動整合回路の検出回路として使用できる。 On the other hand, the reflected wave component reflected from the load is extracted by the directional coupler 12, and this output is divided by the 90-degree component generator 14 into two signals having the same phase and a 90-degree phase difference, and the two signals are combined. It is added to the other input terminals of detectors 15 1 and 15 2 . This composite detector performs square-law detection and synthesizes the sum and difference voltages of both terminal inputs, and the output voltage of one composite detector is V 1 = 4k | a | 2 | Γ | cos θ and the output voltage of the other composite detector is Since one of the input signals has a phase difference of 90 degrees, the output voltage of the device is V 2 = 4k | a | 2 | Γ | sinθ, which shows the same characteristics as the multi-probe method, so an automatic matching circuit is also used. It can be used as a detection circuit.
実施例においては検出回路として五探針法を採
用し、2組の複合スタブ整合器と組み合わせて図
6の如くマイクロ波自動負荷整合回路を構成し、
周波数2450MHz、進行波電力50kW(整合時)に
おいて動作させた結果、電圧定在波比10(即ち反
射電力1.65kW)の負荷を自動的に3秒以内で反
射電力50W以下に整合できた。この整合状態は、
反射係数で0.1、電圧定在波比では1.22以下であ
り、非常に良好である。
In the embodiment, a five-probe method is adopted as the detection circuit, and in combination with two sets of composite stub matching devices, a microwave automatic load matching circuit is configured as shown in FIG.
As a result of operating at a frequency of 2450 MHz and a traveling wave power of 50 kW (when matched), a load with a voltage standing wave ratio of 10 (i.e., reflected power of 1.65 kW) was automatically matched to a reflected power of 50 W or less within 3 seconds. This consistent state is
The reflection coefficient is 0.1 and the voltage standing wave ratio is 1.22 or less, which is very good.
この複合スタブ整合器を使用すると、調整個所
が2個所となり、その特性がほぼ全域に亘つて直
交するので、容易に迅速に自動整合ができること
が、特徴である。 When this composite stub matching device is used, there are two adjustment points, and the characteristics thereof are orthogonal over almost the entire area, so automatic matching can be easily and quickly performed.
ハ 発明の効果
従来手動で行われていたマイクロ波帯の負荷の
整合が自動的に、しかも数秒以内の短時間で良好
な整合状態に達し得ることは、画期的な発明であ
る。C. Effects of the Invention It is an epoch-making invention that the microwave band load matching, which was conventionally performed manually, can automatically reach a good matching state in a short period of time, within a few seconds.
従つて、この発明は、多くのマイクロ波電力応
用分野において広範囲の利用が期待される。 Therefore, the present invention is expected to find widespread use in many microwave power applications.
図1は本発明に使用する複合整合器回路、図2
は1個の金属スタブの挿入長による基準化サセプ
タンス特性、図3および図4は1組の複合スタブ
整合器、図5は複合スタブ整合器の特性を示すス
ミス線図、図6は五探針検出回路を使用した本発
明のマイクロ波自動負荷整合回路、図7は方向性
結合器を利用した本発明の検出回路を示す。
11,12,13,14は金属製等のスタブ、2は
導波管、3は連結子、41,42は駆動用電動機、
51,52な複合スタブ整合器、61,62,63,6
4,65は検波器付探針、71,72は差動増幅器、
81,82は電動機駆動用電力増幅器、9は入力端
子、10は負荷端子、11は進行波成分用方向性
結合器、12は反射波成分用方向性結合器、13
は信号分割回路、14は90度成分発生器、151,
152は合成検波器。
Figure 1 shows the composite matching circuit used in the present invention, Figure 2
is the normalized susceptance characteristic based on the insertion length of one metal stub, Figures 3 and 4 are a set of composite stub matching devices, Figure 5 is a Smith diagram showing the characteristics of the composite stub matching device, and Figure 6 is the five-point probe. Microwave automatic load matching circuit of the present invention using a detection circuit FIG. 7 shows a detection circuit of the present invention using a directional coupler. 1 1 , 1 2 , 1 3 , 1 4 are metal stubs, 2 is a waveguide, 3 is a connector, 4 1 , 4 2 is a driving motor,
5 1 , 5 2 composite stub matching device, 6 1 , 6 2 , 6 3 , 6
4 and 6 5 are probes with detectors, 7 1 and 7 2 are differential amplifiers,
8 1 and 8 2 are motor drive power amplifiers, 9 is an input terminal, 10 is a load terminal, 11 is a directional coupler for traveling wave components, 12 is a directional coupler for reflected wave components, 13
is a signal dividing circuit, 14 is a 90 degree component generator, 15 1 ,
15 2 is a composite detector.
Claims (1)
路の間に検出回路並びに整合回路を置き、検出し
た進行波成分並びに反射成分の強度およびその位
相差に基き、負荷の反射係数|Γ|とその余弦
cosθ、正弦sinθの積に比例した検出回路出力を得
て、これにより整合回路を駆動して負荷の整合を
行う回路において、 導波管の電界に平行に、平均管内波長の約(1/
4)の距離に、2個のスタブを立て、一方と他方
とを差動的かつ連続的に連動させ、これを電動機
で駆動させる如くし、かつこの複合スタブ整合器
を2組平均管内波長の約(1/8)距てて配置し、
検出回路出力により電動機を駆動して負荷を整合
させる如くしたマイクロ波自動負荷整合回路。[Claims] 1. In the microwave band, a detection circuit and a matching circuit are placed between a high-frequency power supply and a load circuit, and the reflection coefficient of the load is determined based on the intensity and phase difference of the detected traveling wave component and reflected component. Γ| and its cosine
In a circuit that obtains a detection circuit output proportional to the product of cos θ and sine sin θ, and uses this to drive a matching circuit to match the load, the output is applied in parallel to the electric field of the waveguide, approximately (1/1/1) of the average tube wavelength.
4) Two stubs are erected at the distance, one and the other are differentially and continuously interlocked, and this is driven by an electric motor. Place it at a distance of about (1/8),
A microwave automatic load matching circuit that drives a motor using the detection circuit output to match the load.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16036286A JPS6315502A (en) | 1986-07-08 | 1986-07-08 | Microwave automatic load matching circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16036286A JPS6315502A (en) | 1986-07-08 | 1986-07-08 | Microwave automatic load matching circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6315502A JPS6315502A (en) | 1988-01-22 |
JPH0375082B2 true JPH0375082B2 (en) | 1991-11-29 |
Family
ID=15713331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16036286A Granted JPS6315502A (en) | 1986-07-08 | 1986-07-08 | Microwave automatic load matching circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6315502A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD509025S1 (en) | 2004-06-09 | 2005-08-30 | American Safety Razor Company | Razor |
USD509322S1 (en) | 2004-06-09 | 2005-09-06 | American Safety Razor Company | Razor with protective cap |
USD527491S1 (en) | 2004-06-09 | 2006-08-29 | American Safety Razor Company | Razor lube bar |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0775282B2 (en) * | 1989-01-31 | 1995-08-09 | 日本高周波株式会社 | Microwave automatic load matching circuit |
JP2644872B2 (en) * | 1989-02-01 | 1997-08-25 | 株式会社日立製作所 | Microwave matching method and apparatus |
JPH0793525B2 (en) * | 1989-03-22 | 1995-10-09 | 日本高周波株式会社 | Microwave automatic load matching circuit using multi-element matching device |
JP2667023B2 (en) * | 1989-12-14 | 1997-10-22 | 株式会社東芝 | Pulse power supply |
JP2755340B2 (en) * | 1991-10-24 | 1998-05-20 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Radiation control system and radiation control method |
-
1986
- 1986-07-08 JP JP16036286A patent/JPS6315502A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD509025S1 (en) | 2004-06-09 | 2005-08-30 | American Safety Razor Company | Razor |
USD509322S1 (en) | 2004-06-09 | 2005-09-06 | American Safety Razor Company | Razor with protective cap |
USD527491S1 (en) | 2004-06-09 | 2006-08-29 | American Safety Razor Company | Razor lube bar |
Also Published As
Publication number | Publication date |
---|---|
JPS6315502A (en) | 1988-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6075498A (en) | Surface wave directional detection system and method | |
US4686473A (en) | Device for creating and/or receiving an alternating magnetic field for an apparatus using nuclear magnetic resonance | |
US9841484B2 (en) | Resonator device for electron spin resonance | |
US4195262A (en) | Apparatus for measuring microwave electromagnetic fields | |
CA1143055A (en) | Apparatus for measuring microwave electromagnetic fields | |
US3821741A (en) | Tracking system with pointing error detector | |
JPH0375082B2 (en) | ||
JPH0793525B2 (en) | Microwave automatic load matching circuit using multi-element matching device | |
JPS628741B2 (en) | ||
US2580679A (en) | High-frequency directional coupler apparatus | |
JP3027572B1 (en) | Impedance measuring device for plasma processing | |
JP2981284B2 (en) | Power supply for microwave oscillator | |
US3103627A (en) | Microwave transmission molecular identification system employing wave propagation mode detectors | |
JP2817288B2 (en) | Automatic tuning system of microwave circuit for plasma generation | |
US2547054A (en) | Coaxial line coupling | |
US3522526A (en) | Multiport radio frequency measuring and coupling circuits having matched input impedance at unknown port | |
JP3375591B2 (en) | Automatic alignment device | |
Orend et al. | S-Parameter Characterization Based on Dielectric Waveguides in D-Band | |
JPH02202202A (en) | Automatic load matching circuit using single matching element | |
Rutkowski et al. | A planar microwave frequency discriminator | |
US2903653A (en) | Broad-band hybrid junction | |
RU2094783C1 (en) | Method intended for determination of surface resistance of high-conductance materials | |
Iizuka et al. | The effect of an unbalance on the current along a dipole antenna | |
Selby et al. | Coaxial radio frequency connectors and their electrical quality | |
Monteath et al. | A method of amplitude and phase measurement in the vhf–uhf band |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |