JPH07103678A - Air-cooled radiator for refrigerator - Google Patents

Air-cooled radiator for refrigerator

Info

Publication number
JPH07103678A
JPH07103678A JP5254325A JP25432593A JPH07103678A JP H07103678 A JPH07103678 A JP H07103678A JP 5254325 A JP5254325 A JP 5254325A JP 25432593 A JP25432593 A JP 25432593A JP H07103678 A JPH07103678 A JP H07103678A
Authority
JP
Japan
Prior art keywords
air
cooling
fin
cooling water
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5254325A
Other languages
Japanese (ja)
Other versions
JP3038525B2 (en
Inventor
Yasumichi Makino
安倫 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP5254325A priority Critical patent/JP3038525B2/en
Publication of JPH07103678A publication Critical patent/JPH07103678A/en
Application granted granted Critical
Publication of JP3038525B2 publication Critical patent/JP3038525B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve moisture spreading characteristics of an air-cooled fin of an air-cooled heat exchanger and suppress dissolving of SOx, NOx in the exchanger in coolant. CONSTITUTION:An air-cooled fin 2a has an uneven slit surface 6 formed with tube holes 5 for passing heat transfer tubes in two rows and a flat surface. The flat surface has a flat face 7a around the hole 5, and a flat face 7b of a part opposed to the hole 5 of an edge disposed at an windward side of cooling air. A V-shaped cutout 8 is formed at a part of the hole 5 of the fin 2a, such a fin 2a is disposed in a sectional area of the tube through the hole 5, an introducing groove is formed by continuous cutout 8, and means for dropping coolant droplet in each groove is provided at a sprinkler.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、空冷式放熱装置に係
り、特に冷凍機の放熱装置として好適な冷凍機の空冷式
放熱装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-cooling type heat dissipation device, and more particularly, to an air-cooling type heat dissipation device suitable for a refrigerator.

【0002】[0002]

【従来の技術】従来の例えば吸収式冷凍機は、図4に示
すように、発生器24でLiBrの希溶液がガス、電気
等により加熱され、高圧の水蒸気とLiBrの濃溶液と
に分離される。高圧の水蒸気は凝縮器(熱交換手段)2
6で冷却、凝縮されて水となり、低圧の蒸発器30に流
入し蒸発する。その際、外部から気化熱を奪うことによ
り図示しない冷凍負荷との間で循環する水(液体)を冷
却する。
2. Description of the Related Art In a conventional absorption refrigerator, for example, as shown in FIG. 4, a dilute LiBr solution is heated in a generator 24 by gas, electricity or the like and separated into high-pressure steam and a concentrated solution of LiBr. It High-pressure steam is used for condenser (heat exchange means) 2
At 6, the water is cooled and condensed into water, which flows into the low-pressure evaporator 30 and evaporates. At that time, the heat of vaporization is taken from the outside to cool the water (liquid) that circulates with a refrigerating load (not shown).

【0003】蒸発器30からは水蒸気が吸収器(熱交換
手段)22に導かれる。また発生器24により分離され
たLiBrの濃溶液が吸収器22に滴下される。LiB
rの濃溶液はその水蒸気を吸収し希溶液となるととも
に、これにより吸収器22内及びこれと連通する蒸発器
30内の真空状態が維持される。このLiBrの希溶液
がポンプ27を経て発生器24に導かれる。なお、発生
器24から吸収器22側へ導かれる高温のLiBr濃溶
液と、吸収器22から発生器24側へ導かれる低温のL
iBr希溶液との間に熱交換器28が設けられ、前者か
ら後者へ熱が移動するようになっている。
Water vapor is led from the evaporator 30 to the absorber (heat exchange means) 22. Further, the concentrated LiBr solution separated by the generator 24 is dropped into the absorber 22. LiB
The concentrated solution of r absorbs the water vapor and becomes a dilute solution, whereby the vacuum state in the absorber 22 and in the evaporator 30 communicating with the absorber 22 is maintained. This dilute solution of LiBr is introduced into the generator 24 via the pump 27. The high temperature LiBr concentrated solution introduced from the generator 24 to the absorber 22 side and the low temperature LBr solution introduced from the absorber 22 to the generator 24 side.
A heat exchanger 28 is provided between the iBr dilute solution and the iBr dilute solution so that heat is transferred from the former to the latter.

【0004】この冷凍機の空冷式放熱装置には空冷式、
水冷式等があり、空冷式は、水冷式に比べて設置性、施
工性、利便性等の点で優れているが、熱伝達係数の低下
等の欠点がある。それを補うため、一方では装置を大型
化して熱交換面の確保が図られ、他方、装置をコクパク
ト化しつつ熱交換効率をさらに改善させる構造が検討さ
れ、空冷フィンに冷却水を散水させ、その蒸発潜熱で熱
交換を行う等が提案されている。
The air-cooled radiator of this refrigerator has an air-cooled type,
There are water-cooled types and the like, and the air-cooled type is superior to the water-cooled type in terms of installability, workability, convenience, etc., but has a drawback such as a decrease in heat transfer coefficient. To compensate for this, on the one hand, the device is enlarged to secure a heat exchange surface, and on the other hand, a structure for improving the heat exchange efficiency while making the device compact is studied, and cooling water is sprinkled on the air-cooled fins. It has been proposed to perform heat exchange with latent heat of vaporization.

【0005】図5及び図6は、そのような冷凍機の空冷
式放熱装置の一例を示している。図5において、上下方
向に位置する複数の伝熱管1内には液体が流通し、伝熱
管1を横断して、複数の空冷フィン2が上下方向に間隔
をおいて固定されており、空冷フィン2の表面には、上
方より散水される冷却水の拡散向上のため、ルーバ加工
等によりスリット面が形成されている。本来ルーバ加工
は空冷時の伝熱効率向上のために施されているが、結果
として濡れ性もよくなる効果がある。空冷フィン2に
は、上方の散水器3から冷却水が散布され、図6の矢印
イに示すように流下する。空冷フィン2の間には、送風
手段としてのファン4によって、外部から冷却空気(外
気)が図5の矢印ロに示すように導入され、すなわち図
6の矢印ハに示すように空冷フィン2の間を通過する。
上記構成において、散水によって濡れた空冷フィン2を
冷却空気が通過することにより、空冷フィン上の冷却水
の蒸発が促進され、その際伝熱管1から空冷フィン2に
伝達された熱が冷却水の蒸発潜熱として奪われ、液体の
放熱が行われる。
FIG. 5 and FIG. 6 show an example of such an air-cooled radiator for a refrigerator. In FIG. 5, a liquid circulates in the plurality of heat transfer tubes 1 located in the vertical direction, and a plurality of air cooling fins 2 are fixed across the heat transfer tube 1 at intervals in the vertical direction. A slit surface is formed on the surface of No. 2 by louver processing or the like in order to improve diffusion of cooling water sprinkled from above. Originally, louvering is performed to improve heat transfer efficiency during air cooling, but as a result, it has the effect of improving wettability. Cooling water is sprayed from the upper water sprayer 3 to the air-cooling fins 2 and flows down as shown by the arrow A in FIG. Cooling air (outside air) is introduced into the space between the air-cooling fins 2 from the outside by a fan 4 as a blowing means, as shown by an arrow B in FIG. 5, that is, as shown by an arrow C in FIG. Pass through.
In the above-described configuration, the cooling air passes through the air-cooled fins 2 that have been wet by sprinkling water, so that the evaporation of the cooling water on the air-cooled fins is promoted, and the heat transferred from the heat transfer tube 1 to the air-cooled fins 2 at this time is the cooling water. It is taken away as latent heat of vaporization and heat is released from the liquid.

【0006】[0006]

【発明が解決しようとする課題】従来の冷凍機の空冷式
放熱装置においては、冷却水の濡れ広がりが伝熱効率に
影響するため、濡れ広がり特性を向上させることが課題
とされる。空冷フィン上への散水には冷却空気の風上側
から放水する方式と風下側から放水する方式とが考えら
れる。前者の風上側から散水する方式はスプレーノズル
等で噴霧させるやり方がとられていたが、この噴霧散水
方式は濡れ広がり特性向上に寄与するものの、一方、空
気中に存在するNOx、SOxが冷却水噴霧に溶解しや
すくなり、その結果冷却水のPHが低くなって空冷フィ
ンの腐食、スケールの付着などが生じ、耐食性が低下す
る。一方後者の風下側からの散水方式では、図7の領域
ニに示すように冷却空気ハの流れにより冷却水の拡散が
制限され、十分な濡れ広がりを得ることができない。
SUMMARY OF THE INVENTION In the conventional air-cooling type radiator of a refrigerator, the wetting and spreading of cooling water affects the heat transfer efficiency, so that it is an object to improve the wetting and spreading characteristics. For the sprinkling of water on the air-cooled fins, a method of discharging cooling air from the windward side and a method of discharging cooling air from the leeward side can be considered. The former method of spraying water from the windward side has been done by spraying with a spray nozzle or the like. Although this spraying and spraying method contributes to improvement of wetting and spreading characteristics, on the other hand, NOx and SOx present in the air are cooling water. It easily dissolves in the spray, and as a result, the PH of the cooling water becomes low, causing corrosion of the air-cooled fins, adhesion of scales, etc., and corrosion resistance is reduced. On the other hand, in the latter case of the water spraying method from the leeward side, the diffusion of the cooling water is limited by the flow of the cooling air C as shown in the area D in FIG. 7, and sufficient wetting and spreading cannot be obtained.

【0007】本発明は、前記課題を解決し、冷凍機の空
冷式放熱装置の濡れ広がり特性を向上しつつ腐食等を抑
制して、耐食性をも向上させることを目的とする。
It is an object of the present invention to solve the above problems and to improve the wetting and spreading characteristics of an air-cooling type radiator of a refrigerator while suppressing corrosion and improving corrosion resistance.

【0008】[0008]

【課題を解決するための手段】前記課題の原因は、風上
側散水の場合、噴霧される空間が空冷フィン階層の全域
と大きいため、NOx、SOxが捕捉されやすくなる点
にある。一方、風下側散水では、濡れ広がり特性向上の
ためには、散水される空間を大きくせざるを得ず、風上
側散水と同じ結果になる他、送風方向に逆らって散水す
るには、構造上複雑になり、部品を多く要する等の不都
合が考えられる。そこで、風上側散水の改良が有効と考
えられるが、NOx、SOxの冷却水への溶解による腐
食、スケール障害を除くには、濡れ広がりを阻害しない
程度に空間を制限して散水する必要があり、そのため、
従来の噴霧散水を改めて滴下散水とするのが有効である
との知見が得られた。
The cause of the above problem is that in the case of water spraying on the windward side, NOx and SOx are easily trapped because the sprayed space is large over the entire area of the air-cooled fin layer. On the other hand, in the leeward side watering, in order to improve the wetting and spreading characteristics, the space to be watered has to be increased, and the same result as the upwind side watering is obtained. Inconveniences such as the complexity and the number of parts required can be considered. Therefore, it is considered effective to improve windward water sprinkling. However, in order to eliminate corrosion and scale damage caused by the dissolution of NOx and SOx in cooling water, it is necessary to sprinkle water by limiting the space to the extent that wetting spread is not hindered. ,for that reason,
It was found that it is effective to use conventional spray watering as dripping water again.

【0009】さらに、空冷フィンの表面にスリット面を
形成すると、空冷フィンの風上側に滴下散水された際、
空冷フィン上層の滴下部分で、冷却水は風下側および横
方向の全面にわたり広がりやすくなり、冷却水は薄膜状
になる。そのため冷却水が横方向に吹き付ける冷却空気
によって飛散しやすくなるので、空冷フィンの下層へ冷
却水が行き渡らず、上層の風下側への濡れ広がりも不十
分になる。このような理由で、前記課題を解決し、さら
に良好な伝熱効率を得るには、単なる滴下散水によるの
みでなく、空冷フィンの各層に冷却水が行き渡る散水流
路を新たに形成する必要があるとの結論に到達した。
Further, when a slit surface is formed on the surface of the air cooling fin, when water is dripped and sprayed on the windward side of the air cooling fin,
At the dropping portion of the upper layer of the air-cooled fin, the cooling water easily spreads over the entire surface on the leeward side and the lateral direction, and the cooling water becomes a thin film. Therefore, the cooling water is easily scattered by the cooling air that is blown in the lateral direction, so that the cooling water does not spread to the lower layer of the air-cooling fins and the upper layer is not sufficiently wet and spread to the leeward side. For these reasons, in order to solve the above problems and obtain better heat transfer efficiency, it is necessary to newly form a water sprinkling passage in which each layer of the air-cooling fins is filled with cooling water, in addition to mere drop water sprinkling. I reached the conclusion.

【0010】本発明は前記知見に基づきなされたもの
で、具体的には、冷凍機の熱交換手段に設けられ液体を
流通する複数の伝熱管に、その流通方向を横断し所定の
間隔で複数の空冷フィンを取付け、それぞれの空冷フィ
ンに外気を供給するとともにそれぞれの伝熱管に沿って
冷却水を散水し、液体の熱をそれぞれの伝熱管および空
冷フィンを介して放熱する冷凍機の空冷式放熱装置にお
いて、それぞれの空冷フィンのそれぞれの伝熱管近くの
端縁に切欠きを設け、冷却水の流路を形成した構成とす
る。
The present invention has been made on the basis of the above-mentioned findings. Specifically, a plurality of heat transfer tubes, which are provided in the heat exchange means of a refrigerator and which circulate a liquid, are provided at predetermined intervals across the circulation direction. Air-cooling type of the refrigerator that supplies the outside air to each air-cooling fin, sprinkles cooling water along each heat-transfer tube, and dissipates the heat of liquid through each heat-transfer tube and air-cooling fin. In the heat dissipation device, a notch is provided at an edge of each air cooling fin near each heat transfer tube to form a cooling water flow path.

【0011】そしてそれぞれの空冷フィンの熱交換面
に、スリット面を形成するとともに熱交換面に設けた切
欠きの回りにフラット面を形成した構成でもよい。
A slit surface may be formed on the heat exchange surface of each air-cooling fin, and a flat surface may be formed around the notch provided on the heat exchange surface.

【0012】またそれぞれの空冷フィンの切欠きは、外
気の風上側端縁に設けられてそれぞれの伝熱管の流通方
向に冷却水の流路を形成し、それぞれの冷却水の流路に
向けて冷却水を滴下させる散水器を備えた構成でもよ
い。
Further, the notches of the respective air-cooling fins are provided at the windward end edge of the outside air to form cooling water flow passages in the flow direction of the respective heat transfer tubes, and are directed toward the respective cooling water flow passages. A configuration including a sprinkler for dropping cooling water may be used.

【0013】さらにそれぞれの空冷フィンを、外気の流
通方向の伝熱管の配列ごとに分割するとともに、それぞ
れの空冷フィンのそれぞれの伝熱管の近くに切欠きを設
けた構成でもよい。
Further, each air cooling fin may be divided according to the arrangement of the heat transfer tubes in the circulation direction of the outside air, and a notch may be provided near each heat transfer tube of each air cooling fin.

【0014】[0014]

【作用】本発明によれば、冷却水は、流路を経由して適
下され、各空冷フィン階層の空間にて、冷却空気の占め
る体積が少なくなる。従って冷却空気中に存在するNO
x、SOxが捕捉されにくくなり、冷却水のPH低下が
抑制されるとともに各空冷フィンの下層にまで冷却水が
供給される。
According to the present invention, the cooling water is appropriately supplied through the flow path, and the volume occupied by the cooling air is reduced in the space of each air cooling fin layer. Therefore, the NO present in the cooling air
x and SOx are less likely to be captured, the decrease in PH of the cooling water is suppressed, and the cooling water is supplied to the lower layer of each air cooling fin.

【0015】さらに、好適な例によると、各空冷フィン
の切欠きの回りでは、冷却空気が広がらないので、空気
流による飛散が抑制され、各空冷フィンの下層とともに
空冷フィンの熱交換面全面への冷却水の拡散が促進され
る。
Further, according to a preferred example, since the cooling air does not spread around the notch of each air-cooling fin, scattering by the air flow is suppressed, and the lower layer of each air-cooling fin is spread over the entire heat exchange surface of the air-cooling fin. The diffusion of cooling water is accelerated.

【0016】各伝熱管ごとに、冷却水の流路を設ける
と、各伝熱管に対して冷却水が供給されて熱交換が個別
に行われる。
When a cooling water flow path is provided for each heat transfer tube, cooling water is supplied to each heat transfer tube and heat exchange is performed individually.

【0017】[0017]

【実施例】以下、本発明の一実施例を図1を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG.

【0018】本実施例は、本発明を冷凍機に用いられる
空冷式放熱装置なので、冷却水で冷却する熱交換過程に
即して説明することとし、従来の技術と同一の部材には
同一の符号を付すこととする。
Since the present embodiment is an air-cooled radiator for use in a refrigerator, the present invention will be described in the context of a heat exchange process of cooling with cooling water. The reference numeral will be attached.

【0019】伝熱管1、空冷フィン2、散水器3、ファ
ン4の配置、空冷フィン2の階層構造、それ等の主な機
能、作用などは、従来の技術で説明した放熱装置と同様
なので説明を省略する。
The arrangement of the heat transfer tube 1, the air-cooling fins 2, the sprinkler 3, the fan 4, the hierarchical structure of the air-cooling fins 2, their main functions and functions are the same as those of the heat dissipation device described in the prior art. Is omitted.

【0020】本実施例において、各空冷フィン2aに
は、図1に示すように、伝熱管1を貫通させる管孔5が
2列に形成されている。それにより、空冷フィン2aの
組立体では、伝熱管1は2列に配列され、その横断面全
域にわたり空冷フィン2aによる熱交換面が形成される
ことになる。空冷フィン2aの表面には、ルーバ加工等
によって凹凸が形成されたスリット面6と、平らなフラ
ット面7とに表面形状が分かれ、さらにフラット面7
は、管孔5の回りのフラット面7aと、冷却空気(外気)
ハの風上側に位置する縁部の、管孔5に対向する部分の
フラット面7bとが形成されている。フラット面7b
は、本実施例の特徴の一つであるが、その詳細は他の特
徴と合わせて後述する。
In the present embodiment, each air cooling fin 2a is formed with two rows of tube holes 5 through which the heat transfer tube 1 passes, as shown in FIG. As a result, in the assembly of the air cooling fins 2a, the heat transfer tubes 1 are arranged in two rows, and the heat exchange surface by the air cooling fins 2a is formed over the entire cross section thereof. On the surface of the air-cooled fin 2a, the surface shape is divided into a slit surface 6 in which irregularities are formed by louver processing or the like, and a flat flat surface 7.
Is the flat surface 7a around the tube hole 5 and the cooling air (outside air)
A flat surface 7b of a portion of the edge portion located on the windward side of the c facing the tube hole 5 is formed. Flat surface 7b
Is one of the features of this embodiment, and its details will be described later together with other features.

【0021】本実施例の特徴の他の一つは、各空冷フィ
ン2aの、縁部のフラット面7bの部分にV字形の切欠
き8を形成した点にある。この空冷フィン2aを組み立
てると、空冷フィン2aの階層の風上側側面において、
伝熱管1に平行する溝が形成されることになる。なお、
切欠き8は、U字形、その他の形状であってもよい。こ
の溝が図3に示す冷却水流路(以下導入溝という)9と
して機能する。すなわち、散水器3aは、各導入溝9に
向けて冷却水を滴下させる手段を備えており、散水器3
aから冷却水を滴下散水すると、冷却水水滴のあるもの
は空冷フィン2aの各層に捕捉され、捕捉されないもの
は導入溝9に沿って下方へ流れることになる。
Another feature of this embodiment is that a V-shaped notch 8 is formed in the flat surface 7b of the edge of each air-cooled fin 2a. When this air cooling fin 2a is assembled, on the windward side surface of the hierarchy of the air cooling fin 2a,
A groove parallel to the heat transfer tube 1 will be formed. In addition,
The notch 8 may be U-shaped or another shape. This groove functions as a cooling water channel (hereinafter referred to as an introduction groove) 9 shown in FIG. That is, the sprinkler 3 a is provided with means for dropping the cooling water toward each introduction groove 9, and the sprinkler 3 a
When the cooling water is dropped and sprinkled from a, some of the cooling water drops are captured by each layer of the air-cooling fins 2a, and those that are not captured flow downward along the introduction groove 9.

【0022】空冷フィン2aは、スリット面6によっ
て、本来、濡れ広がり易い特性を備えているが、一方、
冷却水水滴の捕捉部分である切欠き8の付近では、フラ
ット面7bのため、水滴が広がりにくく、薄膜化が抑制
される。そのため、その部分の水滴は薄膜状のものに比
べて重くなり、ファン4によって導入された冷却空気流
ハによる吹き出しに対しある程度耐えられ、冷却水水滴
の飛散が抑制される。しかし、冷却水水滴は、冷却空気
流ハの影響を全く受けないわけではなく、すなわち冷却
空気流により、フラット面7bからスリット面6へ移動
され、空冷フィン2aへの濡れ広がりが促進することに
なる。
The air-cooled fin 2a is originally provided with a characteristic that the slit surface 6 allows the air-cooled fin 2a to easily spread.
In the vicinity of the notch 8 which is a catching portion of the cooling water droplets, the flat surface 7b prevents the water droplets from spreading easily and the thinning is suppressed. Therefore, the water droplets in that portion are heavier than those in the thin film shape, and can withstand the blowout by the cooling airflow C introduced by the fan 4 to some extent, and the scattering of the cooling water droplets is suppressed. However, the cooling water droplets are not affected by the cooling air flow C at all, that is, the cooling air flow moves from the flat surface 7b to the slit surface 6 and promotes the wetting and spreading of the air cooling fins 2a. Become.

【0023】前記構成によると、空冷フィン2aの階層
の各層において、むらなく冷却水水滴が与えられ、さら
に熱交換面における冷却水の濡れ広がり特性が向上され
るので熱交換効率が向上する。のみならず、さらに次の
ような効果を得ることができる。
According to the above structure, cooling water droplets are evenly applied to each layer of the air-cooling fins 2a, and the wetting and spreading characteristics of the cooling water on the heat exchange surface are improved, so that the heat exchange efficiency is improved. Not only this, but also the following effects can be obtained.

【0024】すなわち、空冷フィン2a上の冷却水拡散
は、専ら水滴が切欠き8の部分に捕捉されてから、平面
的な浸透、移動で行われるので、従来のように空冷フィ
ン2a階層の空間にわたり、冷却水噴霧が存在すること
はない。すなわち、空冷フィン2a階層の階層構造で、
冷却水が占める部分は、滴下する水滴の部分と空冷フィ
ン2a上の熱交換面の限られた領域となる。従って、空
気中にSOx、NOxが存在しても、冷却水による捕
捉、溶解領域が狭くなるので、SOx、NOxの溶解が
それだけ低減され、冷却水のPH低下が抑制される。こ
のように本実施例によると、空気中のSOx、NOxに
起因する内部機器の腐食、スケール付着による弊害を除
去することができる。
That is, the diffusion of the cooling water on the air-cooled fins 2a is carried out by the planar infiltration and movement after the water droplets are trapped in the cutouts 8, so that the space of the air-cooled fins 2a level as in the prior art. Throughout, there is no cooling water spray present. That is, in the hierarchical structure of the air-cooled fin 2a hierarchy,
The portion occupied by the cooling water is a limited area of the dropped water droplet and the heat exchange surface on the air cooling fin 2a. Therefore, even if SOx and NOx are present in the air, the trapping / dissolving region by the cooling water is narrowed, so that the dissolution of SOx and NOx is reduced accordingly, and the decrease in the PH of the cooling water is suppressed. As described above, according to the present embodiment, it is possible to remove the harmful effects of corrosion of internal equipment and scale adhesion due to SOx and NOx in the air.

【0025】なお、本実施例においては、管孔5が2列
に形成され、伝熱管1が2列に配列されて横断面全域に
わたり、1つの空冷フィン2aによって熱交換面を形成
するものとしたが、本発明はそれに限定されるものでは
なく、伝熱管1が2列以上であってもよく、また図2に
示すように、空冷フィン2bの管孔5を1列にし、各伝
熱管1に対応して切欠き8を設け、すなわち各伝熱管1
ごとにそれぞれ導入溝9、フラット面7bを形成しても
よい。図3に、空冷フィン2bにより組み立てた構成を
示している。この例によると、図1に示す実施例による
作用、効果を損なうことなく、さらに、各伝熱管1ごと
に冷却水が供給されるので、各伝熱管1の伝熱効率を、
一層、向上することが可能になる。
In this embodiment, the tube holes 5 are formed in two rows, the heat transfer tubes 1 are arranged in two rows, and the heat exchange surface is formed by one air cooling fin 2a over the entire cross section. However, the present invention is not limited to this, and the heat transfer tubes 1 may be arranged in two or more rows, and as shown in FIG. 2, the tube holes 5 of the air-cooling fins 2b are arranged in one row, and each heat transfer tube is formed. 1 is provided with a notch 8, that is, each heat transfer tube 1
The introduction groove 9 and the flat surface 7b may be formed for each. FIG. 3 shows a structure assembled by the air cooling fins 2b. According to this example, cooling water is further supplied to each heat transfer tube 1 without impairing the operation and effect of the embodiment shown in FIG. 1, so that the heat transfer efficiency of each heat transfer tube 1 is
It is possible to further improve.

【0026】[0026]

【発明の効果】本発明によれば、空冷フィンへの冷却水
の濡れ広がり特性を向上させつつ、外気のSOx、NO
xが冷却水に溶解することを抑制し、SOx、NOxに
よる腐食、スケール付着による弊害を除くことができ、
装置の伝熱効率および耐食性を向上させることができる
効果が奏される。
According to the present invention, while improving the wetting and spreading characteristics of the cooling water to the air cooling fins, SOx and NO in the outside air
It is possible to suppress the dissolution of x in the cooling water, remove the corrosion caused by SOx and NOx, and the harmful effects of scale adhesion.
There is an effect that the heat transfer efficiency and the corrosion resistance of the device can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す部分平面図である。FIG. 1 is a partial plan view showing an embodiment of the present invention.

【図2】本発明の他の実施例を示す部分平面図である。FIG. 2 is a partial plan view showing another embodiment of the present invention.

【図3】図2に示す実施例の空冷フィンを組み立てた斜
視図である。
FIG. 3 is a perspective view showing an assembled air-cooled fin of the embodiment shown in FIG.

【図4】冷凍機サイクルを説明する図である。FIG. 4 is a diagram illustrating a refrigerator cycle.

【図5】従来の技術を示す断面図である。FIG. 5 is a cross-sectional view showing a conventional technique.

【図6】図5の斜視図である。FIG. 6 is a perspective view of FIG.

【図7】従来の技術における冷却水の拡散領域を示す説
明図である。
FIG. 7 is an explanatory diagram showing a diffusion region of cooling water according to a conventional technique.

【符号の説明】[Explanation of symbols]

1 伝熱管 2a 空冷フィン 2b 空冷フィン 3a 散水器 4 ファン 5 管孔 6 スリット面 7a フラット面 7b フラット面 8 切欠き 9 導入溝(冷却水流路) イ 冷却水流方向 ロ 冷却空気流方向 ハ 冷却空気流方向 ニ 冷却水拡散領域 1 Heat Transfer Tube 2a Air-cooling Fin 2b Air-cooling Fin 3a Sprinkler 4 Fan 5 Pipe Hole 6 Slit Surface 7a Flat Surface 7b Flat Surface 8 Notch 9 Inlet Groove (Cooling Water Flow Path) b Cooling Water Flow Direction Cooling Air Flow Direction Cooling Air Flow Direction D Cooling water diffusion area

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷凍機の熱交換手段に設けられ液体を流
通する複数の伝熱管に、その流通方向を横断し所定の間
隔で複数の空冷フィンを取付け、それぞれの空冷フィン
に外気を供給するとともにそれぞれの伝熱管に沿って冷
却水を散水し、前記液体の熱をそれぞれの伝熱管および
空冷フィンを介して放熱する冷凍機の空冷式放熱装置に
おいて、それぞれの空冷フィンのそれぞれの伝熱管近く
の端縁に切欠きを設け、前記冷却水の流路を形成したこ
とを特徴とする冷凍機の空冷式放熱装置。
1. A plurality of air-cooling fins are attached to a plurality of heat transfer tubes, which are provided in a heat exchange means of a refrigerator and through which a liquid flows, at predetermined intervals so as to traverse the flowing direction, and the outside air is supplied to each air-cooling fin. In the air-cooled radiator of the refrigerator, which sprays cooling water along with each heat transfer tube and radiates the heat of the liquid through each heat transfer tube and air cooling fin, near each heat transfer tube of each air cooling fin An air-cooling type heat dissipation device for a refrigerator, characterized in that a cutout is provided at an edge of the cooling water to form a flow path of the cooling water.
【請求項2】 請求項1記載の冷凍機の空冷式放熱装置
において、それぞれの空冷フィンの熱交換面に、スリッ
ト面を形成するとともに前記熱交換面に設けた切欠きの
回りにフラット面を形成したことを特徴とする冷凍機の
空冷式放熱装置。
2. The air-cooling type heat dissipation device for a refrigerator according to claim 1, wherein a slit surface is formed on the heat exchange surface of each air cooling fin, and a flat surface is provided around a notch provided on the heat exchange surface. An air-cooled radiator for a refrigerator, which is characterized by being formed.
【請求項3】 請求項1または請求項2に記載の冷凍機
の空冷式放熱装置において、それぞれの空冷フィンの切
欠きは、外気の風上側端縁に設けられてそれぞれの伝熱
管の流通方向に冷却水の流路を形成し、それぞれの冷却
水の流路に向けて前記冷却水を滴下させる散水器を備え
たことを特徴とする冷凍機の空冷式放熱装置。
3. The air-cooling type heat dissipation device for a refrigerator according to claim 1, wherein the notch of each air-cooling fin is provided at the windward end edge of the outside air, and the flow direction of each heat-transfer tube. An air-cooling type radiator of a refrigerator, characterized in that a cooling water flow path is formed in the cooling water flow path, and a sprinkler for dropping the cooling water toward each cooling water flow path is provided.
【請求項4】 請求項1〜3のいずれか1項に記載の冷
凍機の空冷式放熱装置において、それぞれの空冷フィン
を、外気の流通方向の伝熱管の配列ごとに分割するとと
もに、それぞれの空冷フィンのそれぞれの伝熱管の近く
に切欠きを設けたことを特徴とする冷凍機の空冷式放熱
装置。
4. The air-cooling type heat dissipation device for a refrigerator according to any one of claims 1 to 3, wherein each air-cooling fin is divided for each array of heat transfer tubes in a direction in which outside air flows, and An air-cooled radiator for a refrigerator, characterized in that a notch is provided near each heat transfer tube of an air-cooled fin.
JP5254325A 1993-10-12 1993-10-12 Air-cooled radiator for refrigerator Expired - Fee Related JP3038525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5254325A JP3038525B2 (en) 1993-10-12 1993-10-12 Air-cooled radiator for refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5254325A JP3038525B2 (en) 1993-10-12 1993-10-12 Air-cooled radiator for refrigerator

Publications (2)

Publication Number Publication Date
JPH07103678A true JPH07103678A (en) 1995-04-18
JP3038525B2 JP3038525B2 (en) 2000-05-08

Family

ID=17263437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5254325A Expired - Fee Related JP3038525B2 (en) 1993-10-12 1993-10-12 Air-cooled radiator for refrigerator

Country Status (1)

Country Link
JP (1) JP3038525B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900721B2 (en) 2016-10-07 2021-01-26 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10900721B2 (en) 2016-10-07 2021-01-26 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus

Also Published As

Publication number Publication date
JP3038525B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
US5463880A (en) Absorption refrigerator
JP7010702B2 (en) Heat exchanger and cooling tower
JPH07103678A (en) Air-cooled radiator for refrigerator
KR100526758B1 (en) Hybrid cooling tower
KR100220790B1 (en) Air-cooled absorption-type air conditioning apparatus with vertical heat-transfer fins
JP4863218B2 (en) Refrigeration cycle equipment
KR102230206B1 (en) Structure for making fluid curtain on surface
KR19980042568A (en) Absorption Heat Pump
JP2877420B2 (en) Absorption refrigerator
CN110822698A (en) Heat exchange assembly, condenser and air conditioner
JP2005003296A (en) Liquid spraying device, and liquid membrane type heat exchanger and absorption refrigerating machine using the same
JPH0571827A (en) Absorption freezer
JPH0762571B2 (en) Air-cooled radiator for refrigeration cycle
JPS5862494A (en) Evaporative cooler
KR100518619B1 (en) evaporator
JPH07218182A (en) Warm water distribution tank for cooling tower
JP2006322669A (en) Cooling tower
JP2006242394A (en) Heat source unit of air conditioner and air conditioner having this unit
JP3027646B2 (en) Absorption chiller / heater
JP2756523B2 (en) Liquid distributor of absorption refrigerator
JPH10141807A (en) Air cooled heat dissipation apparatus
JPS5835343A (en) Spot cooler
JPH0480571A (en) Air-cooled radiating device in refrigerating machine
JPS58168859A (en) Water sprinkler of evaporation type cooler
JPH05223491A (en) Air-cooled radiator for refrigerating machine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees