JP7010702B2 - Heat exchanger and cooling tower - Google Patents

Heat exchanger and cooling tower Download PDF

Info

Publication number
JP7010702B2
JP7010702B2 JP2017558087A JP2017558087A JP7010702B2 JP 7010702 B2 JP7010702 B2 JP 7010702B2 JP 2017558087 A JP2017558087 A JP 2017558087A JP 2017558087 A JP2017558087 A JP 2017558087A JP 7010702 B2 JP7010702 B2 JP 7010702B2
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling tower
flow paths
flow path
inlet flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017558087A
Other languages
Japanese (ja)
Other versions
JPWO2017110677A1 (en
Inventor
水季 和田
正典 佐藤
有仁 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2017110677A1 publication Critical patent/JPWO2017110677A1/en
Application granted granted Critical
Publication of JP7010702B2 publication Critical patent/JP7010702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits

Description

本発明は、熱交換器、及び冷却塔に関し、特に凝縮を伴う冷却塔及びこれに用いられる熱交換器に関する。 The present invention relates to a heat exchanger and a cooling tower, and particularly to a cooling tower with condensation and a heat exchanger used therein.

冷却塔は冷却水に空気を送風し、水空気間で潜熱利用の熱交換を行わせることで、より効率的な冷却を実現していた。密閉式冷却塔の発明により、冷却水の汚染問題が解決されるだけでなく、水以外の冷媒に対する冷却も可能となった。密閉式冷却塔は、特許文献1に見られるように、冷却塔内の熱交換用配管を水平に設置し配管を蛇行させることにより、外気・散水と接触する表面積を増やし、熱交換性能の向上を行っていた。 The cooling tower has realized more efficient cooling by blowing air into the cooling water and exchanging heat between the water and air using latent heat. The invention of the closed cooling tower not only solved the problem of contamination of the cooling water, but also made it possible to cool the refrigerant other than water. As seen in Patent Document 1, in the closed cooling tower, the heat exchange piping inside the cooling tower is installed horizontally and the piping is meandered to increase the surface area in contact with the outside air and water sprinkling, and improve the heat exchange performance. Was going.

このような方法は、凝縮を伴わない冷媒の冷却には適した方法であるが、凝縮を伴う冷媒の冷却には、熱伝達率低下を招くこと、そしてシステムの圧力損失を増加させるという理由で不向きであった。特許文献2の密閉式冷却塔では、熱交換器を構成する配管を蛇行させずに、プレートフィンが通風方向に沿って下降するように熱交換器に傾斜をつけて設置した上で、熱交換器上部より熱交換器へ散水する方式が、提案されている。このような方式を採用することで、冷却塔内の凝縮済み冷媒を重力利用で循環することができるので、熱伝達率の改善・圧力損失の低減が期待される。 While such a method is suitable for cooling the refrigerant without condensation, cooling the refrigerant with condensation causes a decrease in heat transfer coefficient and increases the pressure loss of the system. It was unsuitable. In the closed cooling tower of Patent Document 2, the heat exchanger is installed with an inclination so that the plate fins descend along the ventilation direction without meandering the pipes constituting the heat exchanger, and then heat exchange is performed. A method of sprinkling water from the upper part of the vessel to the heat exchanger has been proposed. By adopting such a method, the condensed refrigerant in the cooling tower can be circulated by gravity, which is expected to improve the heat transfer coefficient and reduce the pressure loss.

実願昭62-78944号(実開昭63-190764号)のマイクロフィルムMicrofilm of Jitsugyo No. 62-78944 (Jitsukai Sho No. 63-190764) 実願昭60-86562号(実開昭61-204173号)のマイクロフィルムMicrofilm of Jitsusho 60-86562 (Jitsukaisho 61-204173)

しかしながら、上述した冷却塔には以下のような課題がある。特許文献2のような傾斜をつけた熱交換器に対して上部より散水を行う場合、熱交換器全体に散水を行うために散水量を余分に必要とする。その上に、熱交換器上部は散水量が過多になり、潜熱利用を効率的に行えない。また、散水用の水循環システムが必要不可欠となる。この散水に水道水を用いた場合、水道水に含まれるカルシウム、マグネシウム、シリカなどの成分が凝縮されて結晶化し、スケールが形成されるという問題が生じる。スケール生成により熱伝達率が大幅に低下するだけでなく、頻繁なメンテナンスやフィルター設置が必要とされる。また、シリカ除去には人体に有害になる化学物質を使用する事例も発生している。 However, the above-mentioned cooling tower has the following problems. When water is sprinkled from above on an inclined heat exchanger as in Patent Document 2, an extra amount of water is required to sprinkle water on the entire heat exchanger. In addition, the amount of water sprinkled on the upper part of the heat exchanger becomes excessive, and latent heat cannot be used efficiently. In addition, a water circulation system for watering is indispensable. When tap water is used for this sprinkling, there arises a problem that components such as calcium, magnesium, and silica contained in the tap water are condensed and crystallized to form a scale. Not only does scale generation significantly reduce heat transfer coefficient, but it also requires frequent maintenance and filter installation. In addition, there are cases where chemical substances that are harmful to the human body are used to remove silica.

本発明の目的は、使用する水量を減らしながら熱交換性能を向上させることができる、凝縮を伴う冷却塔及びこれに用いられる熱交換器を提供することにある。 An object of the present invention is to provide a cooling tower with condensation and a heat exchanger used therein, which can improve heat exchange performance while reducing the amount of water used.

前記目的を達成するため、本発明に係る熱交換器は、微粒子状の液滴が噴霧される複数の並列する流路であって、冷却対象の流体が重力方向、又は凝縮後の流体が重力利用で循環できる傾斜で設置された複数の並列する流路を含む。 In order to achieve the above object, the heat exchanger according to the present invention is a plurality of parallel flow paths in which fine particle droplets are sprayed, and the fluid to be cooled is in the direction of gravity, or the fluid after condensation is gravity. Includes multiple parallel channels installed at an angle that can be circulated for use.

本発明に係る冷却塔は、複数の並列する流路であって、冷却対象の流体が重力方向、又は凝縮後の流体が重力利用で循環できる傾斜で設置された複数の並列する流路を含む熱交換器と、空気が上記熱交換器を通るように送風するファンと、上記熱交換器へ微粒子状の液滴を噴霧する噴霧ノズルと、上記熱交換器に接続された配管と、を含む。 The cooling tower according to the present invention is a plurality of parallel flow paths, and includes a plurality of parallel flow paths installed at an inclination in which the fluid to be cooled is in the direction of gravity or the fluid after condensation can be circulated by utilizing gravity. Includes a heat exchanger, a fan that blows air through the heat exchanger, a spray nozzle that sprays fine droplets onto the heat exchanger, and piping connected to the heat exchanger. ..

本発明によれば、噴霧した液滴を、熱交換器の複数の並列する流路の表面、又はその付近で効率的に気化させることができ、使用する水量を減らしながら冷却対象の流体を凝縮させることができ、熱交換性能を向上させることができる。 According to the present invention, the sprayed droplets can be efficiently vaporized on or near the surface of a plurality of parallel flow paths of the heat exchanger, and the fluid to be cooled is condensed while reducing the amount of water used. It is possible to improve the heat exchange performance.

(a)は最上位概念の実施形態による冷却塔を説明するための概観図であり、(b)はこの冷却塔に用いられる熱交換器の概観図である。(A) is an overview diagram for explaining a cooling tower according to an embodiment of the uppermost concept, and (b) is an overview diagram of a heat exchanger used for this cooling tower. 本発明の第1実施形態の冷却塔を説明するための概観図である。It is a schematic diagram for demonstrating the cooling tower of 1st Embodiment of this invention. 図2の冷却塔に用いられる熱交換器の概観図である。It is an overview view of the heat exchanger used for the cooling tower of FIG. 本発明の実施形態の冷却塔のファンによる熱交換器付近の風量分布を示す概念図である。It is a conceptual diagram which shows the air volume distribution near the heat exchanger by the fan of the cooling tower of the embodiment of this invention. 本発明の実施形態の冷却塔を構成するファン、熱交換器、噴霧ノズルの位置関係を示す概念図である。It is a conceptual diagram which shows the positional relationship of the fan, the heat exchanger, and the spray nozzle which constitute the cooling tower of embodiment of this invention. (a)は熱交換器の入口流路が一つの場合の概観と入口流路位置に合う噴霧ノズルの流量分布を示す図であり、(b)は熱交換器の入口流路が複数の場合の概観と入口流路位置に合う噴霧ノズルの流量分布を示す図である。(A) is a diagram showing an overview when there is one inlet flow path of the heat exchanger and a flow rate distribution of a spray nozzle that matches the position of the inlet flow path, and (b) is a diagram showing the case where there are a plurality of inlet channels of the heat exchanger. It is a figure which shows the overview and the flow rate distribution of a spray nozzle which matches the position of an inlet flow path. 本発明の実施形態の冷却塔を用いたサーバー室の冷却システムを説明するための概観図である。It is a schematic diagram for demonstrating the cooling system of the server room using the cooling tower of embodiment of this invention. 本発明の第2実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。It is a schematic diagram for demonstrating the heat exchanger used in the cooling tower of the 2nd Embodiment of this invention. 本発明の第3実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。It is a schematic diagram for demonstrating the heat exchanger used in the cooling tower of the 3rd Embodiment of this invention. 本発明の第4実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。It is a schematic diagram for demonstrating the heat exchanger used in the cooling tower of the 4th Embodiment of this invention. 本発明の第5実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。It is a schematic diagram for demonstrating the heat exchanger used in the cooling tower of the 5th Embodiment of this invention. 本発明の実施形態の熱交換器を用いて冷却した場合の、湿球温度の変化による熱抵抗値の計測結果を示すグラフである。It is a graph which shows the measurement result of the thermal resistance value by the change of the wet bulb temperature at the time of cooling by using the heat exchanger of the embodiment of this invention.

本発明の好ましい実施形態について、図面を参照しながら詳細に説明する。 Preferred embodiments of the present invention will be described in detail with reference to the drawings.

具体的な実施形態について説明する前に、本発明の最上位概念の実施形態による冷却塔と、これに用いられる熱交換器について、説明する。図1(a)は最上位概念の実施形態による冷却塔を説明するための概観図であり、図1(b)はこの冷却塔に用いられる熱交換器の概観図である。 Before explaining a specific embodiment, a cooling tower according to an embodiment of the highest concept of the present invention and a heat exchanger used therein will be described. FIG. 1 (a) is an overview view for explaining a cooling tower according to an embodiment of the highest-level concept, and FIG. 1 (b) is an overview diagram of a heat exchanger used in this cooling tower.

図1(a)の冷却塔100は、送風するファン109と、熱交換器105と、熱交換器105へ微粒子状の液滴を噴霧する噴霧ノズル106と、を含む。図1(a)の熱交換器105は図1(b)のように、微粒子状の液滴が噴霧される複数の並列する流路103であって、冷却対象の流体が重力方向、又は凝縮後の流体が重力利用で循環できる傾斜で設置された複数の並列する流路103を含む。 The cooling tower 100 of FIG. 1A includes a fan 109 for blowing air, a heat exchanger 105, and a spray nozzle 106 for spraying fine particle droplets onto the heat exchanger 105. As shown in FIG. 1 (b), the heat exchanger 105 of FIG. 1 (a) is a plurality of parallel flow paths 103 in which fine particle droplets are sprayed, and the fluid to be cooled is in the direction of gravity or condensed. It includes a plurality of parallel flow paths 103 installed at an inclination so that the later fluid can be circulated by utilizing gravity.

噴霧した微粒子状の液滴を、熱交換器105の複数の並列する流路の表面、又はその付近で効率的に気化させることができ、使用する水量を減らしながら冷却対象の流体を凝縮させることができ、熱交換性能を向上させることができる。熱交換器105の熱交換性能を向上させることができ、熱交換性能を向上させた冷却塔100を実現できる。以下、本発明のより具体的な実施形態について説明する。 The sprayed fine particle droplets can be efficiently vaporized on or near the surface of a plurality of parallel flow paths of the heat exchanger 105 to condense the fluid to be cooled while reducing the amount of water used. And the heat exchange performance can be improved. The heat exchange performance of the heat exchanger 105 can be improved, and the cooling tower 100 with improved heat exchange performance can be realized. Hereinafter, more specific embodiments of the present invention will be described.

〔第1実施形態〕
初めに、本発明の第1実施形態による冷却塔、及びこれに用いられる熱交換器について、説明する。図2は、本発明の第1実施形態の冷却塔を説明するための概観図である。
[First Embodiment]
First, the cooling tower according to the first embodiment of the present invention and the heat exchanger used therein will be described. FIG. 2 is an overview view for explaining the cooling tower of the first embodiment of the present invention.

[構造の説明]
本発明の第1実施形態の冷却塔は、密閉式冷却塔である。図2の密閉式冷却塔20は、送風するファン9と、熱交換器5と、この熱交換器5へ微粒子状の液滴の一例としての微粒子の水滴を噴霧する噴霧ノズル6と、を含む。さらに密閉式冷却塔20は、熱交換器5に接続された配管12a、12bを含む。さらに図2の密閉式冷却塔20は、圧力計7と、流量調整バルブ8と、ポンプ10と、貯水タンク11と、を含む。
[Explanation of structure]
The cooling tower of the first embodiment of the present invention is a closed cooling tower. The closed cooling tower 20 of FIG. 2 includes a fan 9 for blowing air, a heat exchanger 5, and a spray nozzle 6 for spraying fine water droplets as an example of fine particle droplets onto the heat exchanger 5. .. Further, the closed cooling tower 20 includes pipes 12a and 12b connected to the heat exchanger 5. Further, the closed cooling tower 20 of FIG. 2 includes a pressure gauge 7, a flow rate adjusting valve 8, a pump 10, and a water storage tank 11.

ファン9は、密閉式冷却塔20の筐体13上部に設置され、空気が熱交換器5を通り密閉式冷却塔20の上部より外に流れるように送風する。密閉式冷却塔20内の熱交換器5に対する空気の送風方向は、噴霧ノズル6から微粒子の水滴が噴霧される側から、冷却対象の複数の並列する流路に向かうものとする。より具体的には密閉式冷却塔20の外側から内側に向かう図2の矢印の方向に沿って、熱交換器5に対して空気は送風される。 The fan 9 is installed in the upper part of the housing 13 of the closed cooling tower 20, and blows air so that air passes through the heat exchanger 5 and flows out from the upper part of the closed cooling tower 20. The air blowing direction to the heat exchanger 5 in the closed cooling tower 20 is from the side where the water droplets of the fine particles are sprayed from the spray nozzle 6 toward a plurality of parallel flow paths to be cooled. More specifically, air is blown to the heat exchanger 5 along the direction of the arrow in FIG. 2 from the outside to the inside of the closed cooling tower 20.

噴霧ノズル6は、熱交換器5に微粒子の水滴を噴霧する。噴霧ノズル6は、噴霧ノズル6の噴霧分布量がファン風量勾配と比例するように、熱交換器5に対して傾斜をつけて設置されている。特に噴霧ノズル6は、熱交換器5の外側上部より斜め下向きに熱交換器5へ微粒子の水滴を噴霧するように、設置されている。 The spray nozzle 6 sprays fine particles of water onto the heat exchanger 5. The spray nozzle 6 is installed with an inclination with respect to the heat exchanger 5 so that the spray distribution amount of the spray nozzle 6 is proportional to the fan air volume gradient. In particular, the spray nozzle 6 is installed so as to spray fine particles of water droplets onto the heat exchanger 5 diagonally downward from the outer upper portion of the heat exchanger 5.

熱交換器5は、複数の並列する流路であって、冷却対象の冷媒が重力方向、又は凝縮後の冷媒が重力利用で循環できる傾斜で設置された複数の並列する流路を、含む。以下、このような熱交換器5の複数の並列する流路を、複数流路と呼ぶ。図2は設置形態の一例として、熱交換器5の複数流路が重力方向と平行となるように、熱交換器5を設置した場合を示す。図2では、熱交換器5を密閉式冷却塔20の両面に設置した場合を示す。熱交換器5の両面設置に対応して、噴霧ノズル6、圧力計7、流量調整バルブ8やポンプ10がそれぞれ設置されている。 The heat exchanger 5 includes a plurality of parallel flow paths, which are installed in the direction of gravity for the refrigerant to be cooled or at an inclination so that the condensed refrigerant can be circulated by using gravity. Hereinafter, a plurality of parallel flow paths of such a heat exchanger 5 will be referred to as a plurality of flow paths. FIG. 2 shows a case where the heat exchanger 5 is installed so that the plurality of flow paths of the heat exchanger 5 are parallel to the direction of gravity as an example of the installation form. FIG. 2 shows a case where the heat exchanger 5 is installed on both sides of the closed cooling tower 20. A spray nozzle 6, a pressure gauge 7, a flow rate adjusting valve 8, and a pump 10 are installed corresponding to the double-sided installation of the heat exchanger 5.

図3は、図2の冷却塔に用いられる熱交換器5の概観図である。図3に示すように熱交換器5は、冷却対象の冷媒が流れる入口流路1と、入口流路1から流入した冷媒を複数流路3に分岐するヘッダー2と、複数流路3に設けられたフィン4と、を含む。 FIG. 3 is an overview view of the heat exchanger 5 used in the cooling tower of FIG. As shown in FIG. 3, the heat exchanger 5 is provided in the inlet flow path 1 through which the refrigerant to be cooled flows, the header 2 in which the refrigerant flowing in from the inlet flow path 1 branches into the plurality of flow paths 3, and the plurality of flow paths 3. The fins 4 and the obtained fins 4 are included.

複数流路3を含んでなる熱交換器5は、図2のような重力方向と平行に、又は冷媒粘性に基づき凝縮した液が効率的に密閉式冷却塔20外へ重力利用で流出できる傾斜で、設置される。 The heat exchanger 5 including the plurality of flow paths 3 has an inclination that allows the condensed liquid to efficiently flow out of the closed cooling tower 20 by gravity in parallel with the gravity direction as shown in FIG. 2 or based on the viscosity of the refrigerant. And it will be installed.

本実施形態では、密閉式冷却塔20の両面に設置された熱交換器5外側上部から斜め下向きに熱交換器5に対して傾斜のある噴霧ノズル6で微粒子の水滴を噴霧することにより、熱交換器5の複数流路3内を流れる、冷却対象の冷媒の凝縮冷却を行う。 In the present embodiment, heat is generated by spraying fine water droplets on the heat exchanger 5 diagonally downward from the outer upper portion of the heat exchanger 5 installed on both sides of the closed cooling tower 20 with a spray nozzle 6 having an inclination. Condensation cooling of the refrigerant to be cooled flowing in the plurality of flow paths 3 of the exchanger 5 is performed.

本発明の実施形態の密閉式冷却塔20は、図4に見られるように、ファン9と熱交換器5の位置により、熱交換器5の熱交換面上部から下部にむけて特別な制御を必要とすることなく、風量分布に勾配をつけることが可能な配置である。そこへ熱交換器5外側上部より熱交換器5に対して噴霧分布量がファン風量勾配と比例するように傾斜をつけて、噴霧ノズル6を設置する。 As seen in FIG. 4, the closed cooling tower 20 according to the embodiment of the present invention has special control from the upper part to the lower part of the heat exchange surface of the heat exchanger 5 by the positions of the fan 9 and the heat exchanger 5. It is an arrangement that allows the air volume distribution to be graded without the need. A spray nozzle 6 is installed there by inclining the heat exchanger 5 from the upper outside of the heat exchanger 5 so that the spray distribution amount is proportional to the fan air volume gradient.

噴霧ノズル6より噴霧される水滴の大きさは、噴霧ノズル6より熱交換器5の複数流路3へ届くまでに蒸発し尽くすことのない程度の微粒子の状態であることが、好ましい。噴霧ノズル6より噴霧される水滴の直径は、例えば150μm以下にする。また、噴霧ノズル6より噴霧される水滴の最小直径は、噴霧ノズル6と複数流路3の距離、風量などのコンディションにより変わる。複数流路3を構成する配管は、噴霧ノズルから噴霧される水滴がまんべんなく接触するよう、可能な限り重なり合いを避けるように配置する方が好ましい。 The size of the water droplets sprayed from the spray nozzle 6 is preferably in the state of fine particles that do not completely evaporate before reaching the plurality of flow paths 3 of the heat exchanger 5 from the spray nozzle 6. The diameter of the water droplet sprayed from the spray nozzle 6 is, for example, 150 μm or less. Further, the minimum diameter of the water droplet sprayed from the spray nozzle 6 changes depending on the conditions such as the distance between the spray nozzle 6 and the plurality of flow paths 3 and the air volume. It is preferable that the pipes constituting the plurality of flow paths 3 are arranged so as to avoid overlapping as much as possible so that the water droplets sprayed from the spray nozzles come into contact with each other evenly.

複数流路部分(熱交換部分)全体へ噴霧を行うとき、図6に見られるように、熱交換器5の入口流路1から距離が近い複数流路部分へは、距離が遠い部分と比較して多くの噴霧流量が送れるような噴霧分布の噴霧ノズルを使用すると、噴霧水を有効活用できる。それは熱交換器5の入口流路1に近い複数流路3により多くの冷媒が流れるので、入口流路1に近い複数流路3の必要熱交換量もそれに応じて増加するからである。 When spraying the entire multi-channel portion (heat exchange portion), as seen in FIG. 6, the multi-channel portion having a short distance from the inlet flow path 1 of the heat exchanger 5 is compared with the portion having a long distance. If a spray nozzle with a spray distribution that can send a large amount of spray flow is used, the spray water can be effectively used. This is because a large amount of refrigerant flows through the plurality of flow paths 3 near the inlet flow path 1 of the heat exchanger 5, so that the required heat exchange amount of the plurality of flow paths 3 near the inlet flow path 1 also increases accordingly.

噴霧ノズル6より噴霧される水滴の流量については、熱交換器5に水粒子が到着するまでに蒸発し尽くすことがないが、熱交換器5を通過する間にその多くが有効的に潜熱利用され蒸発できるような流量となるように、設定する。熱交換器5を通過する間に蒸発可能な量に設定し、かつ噴霧は熱交換器5から可能な限り近い距離で行うことが好ましい。このような構成により、噴霧ノズル6から噴霧された水の飛散を防ぐことができる。このとき、噴霧された水が熱交換器5全体にかかるよう位置を調整する。噴霧ノズル6は水のみを噴霧する1流体ノズルを使用することも、水と圧縮空気を合わせて同時に噴霧する2流体ノズルを使用することもある。 The flow rate of water droplets sprayed from the spray nozzle 6 does not evaporate completely by the time the water particles arrive at the heat exchanger 5, but most of them effectively utilize latent heat while passing through the heat exchanger 5. Set the flow rate so that it can be evaporated. It is preferable that the amount is set so that it can evaporate while passing through the heat exchanger 5, and the spraying is performed at a distance as close as possible to the heat exchanger 5. With such a configuration, it is possible to prevent the water sprayed from the spray nozzle 6 from scattering. At this time, the position is adjusted so that the sprayed water is applied to the entire heat exchanger 5. The spray nozzle 6 may use a one-fluid nozzle that sprays only water, or may use a two-fluid nozzle that simultaneously sprays water and compressed air together.

熱交換器5と噴霧ノズル6との距離は熱交換器5前面に噴霧幅が行き届き、かつ可能な限り距離を短くするように設置する。噴霧ノズル6は、密閉式冷却塔20上部に設置されたファン9によって引き起こされる熱交換器5上下の風量分布勾配に比例するような傾斜角度と共に、設置する。 The distance between the heat exchanger 5 and the spray nozzle 6 is set so that the spray width is wide on the front surface of the heat exchanger 5 and the distance is as short as possible. The spray nozzle 6 is installed with an inclination angle proportional to the air volume distribution gradient above and below the heat exchanger 5 caused by the fan 9 installed on the upper part of the closed cooling tower 20.

傾斜をつけた噴霧ノズル6は熱交換器5の外側上部より斜め下向きに微粒子状の水滴を噴霧するので、ノズルからの噴霧距離が近い熱交換器5上部は単位面積当たりの噴霧量が多い。噴霧ノズル6からの距離が遠くなるにつれて噴霧量も減少するので、同じ熱交換器5に対して勾配をつけた噴霧量を実現することができる。一つの熱交換器5に対して、ファン風量が大きい箇所では噴霧ノズル6による噴霧量を大きく、ファン風量が小さい箇所では噴霧ノズル6による噴霧量を小さくするといった組合せにより、熱交換器5の複数流路3の必要熱交換量に応じた最適化が可能になる。 Since the inclined spray nozzle 6 sprays fine water droplets diagonally downward from the outer upper part of the heat exchanger 5, the upper part of the heat exchanger 5 having a short spray distance from the nozzle has a large amount of spray per unit area. Since the spray amount decreases as the distance from the spray nozzle 6 increases, it is possible to realize a spray amount having a gradient with respect to the same heat exchanger 5. A plurality of heat exchangers 5 are combined with one heat exchanger 5 by increasing the amount of spray by the spray nozzle 6 in a place where the fan air volume is large and decreasing the amount of spray by the spray nozzle 6 in a place where the fan air volume is small. It is possible to optimize the flow path 3 according to the required heat exchange amount.

微粒子状で噴霧される水は、ポンプ10、圧力計7、図示しない遮断機、流量調整バルブ8、図示しない温度計などに加え、タンク11から噴霧ノズル6までの配管もしくはチューブで構成された装置により、供給される。本実施形態の噴霧ノズル6による噴霧は、夏場などの湿球温度が高く凝縮性能が落ちる場合にのみ適応することが想定されるため、外気湿球温度計とシステム内を流れる冷媒温度を参照し、行われる。 The water sprayed in the form of fine particles is a device composed of a pump 10, a pressure gauge 7, a breaker (not shown), a flow rate adjusting valve 8, a thermometer (not shown), and a pipe or tube from the tank 11 to the spray nozzle 6. Is supplied by. Since it is assumed that the spraying by the spray nozzle 6 of the present embodiment is applied only when the wet-bulb temperature is high and the condensation performance is lowered, such as in summer, refer to the outside air wet-bulb thermometer and the refrigerant temperature flowing in the system. , Will be done.

なお密閉式冷却塔20内の熱交換器5を構成する複数流路3の配管の本数を増やすことで、外気と噴霧される水滴との接触面積を増加させた構造とすることができる。加えて、熱交換器5を構成する複数流路3の配管は、配管径を細くすることによる圧力損失の増加等の影響を考慮し設計を行う。 By increasing the number of pipes of the plurality of flow paths 3 constituting the heat exchanger 5 in the closed cooling tower 20, the contact area between the outside air and the sprayed water droplets can be increased. In addition, the piping of the plurality of flow paths 3 constituting the heat exchanger 5 is designed in consideration of the influence of an increase in pressure loss due to the reduction in the diameter of the piping.

密閉式冷却塔20の筐体13上面に設置されたファン9は、重力方向と平行に設置された熱交換器5の複数流路3に対し風量勾配を引き起こす。ファン9により引き起こされた風量勾配を、以下、ファン風量勾配と呼ぶ。図4は、本発明の実施形態の冷却塔のファンによる熱交換器付近の風量分布を示す概念図である。ファン9は、図4に示すような風量分布勾配を引き起こす。そこに微粒子の水滴を噴霧する噴霧ノズル6を、図5のように熱交換器5外側上部より熱交換器5に対して、噴霧ノズル6の噴霧分布量がファン風量勾配と比例するように、傾斜をつけて設置する。 The fan 9 installed on the upper surface of the housing 13 of the closed cooling tower 20 causes an air volume gradient with respect to the plurality of flow paths 3 of the heat exchanger 5 installed in parallel with the direction of gravity. The air volume gradient caused by the fan 9 is hereinafter referred to as a fan air volume gradient. FIG. 4 is a conceptual diagram showing the air volume distribution in the vicinity of the heat exchanger by the fan of the cooling tower according to the embodiment of the present invention. The fan 9 causes an air volume distribution gradient as shown in FIG. As shown in FIG. 5, a spray nozzle 6 for spraying fine water droplets is provided on the heat exchanger 5 from the outer upper part of the heat exchanger 5 so that the spray distribution amount of the spray nozzle 6 is proportional to the fan air volume gradient. Install with an inclination.

なお熱交換器5の入口流路1を、図3に示されるような単数とするのではなく、複数設けることも考えられる。熱交換器5の入口流路1と噴霧ノズルによるノズル流量分布との関係について、説明する。図6(a)は熱交換器の入口流路が一つの場合の概観と入口流路位置に合う噴霧ノズルの流量分布を示す図であり、図6(b)は熱交換器の入口流路が複数の場合の概観と入口流路位置に合う噴霧ノズルの流量分布を示す図である。 It is conceivable that a plurality of inlet flow paths 1 of the heat exchanger 5 are provided instead of being a single number as shown in FIG. The relationship between the inlet flow path 1 of the heat exchanger 5 and the nozzle flow rate distribution by the spray nozzle will be described. FIG. 6A is a diagram showing an overview when there is only one inlet flow path of the heat exchanger and a flow rate distribution of the spray nozzle matching the position of the inlet flow path, and FIG. 6B is a diagram showing the flow rate distribution of the inlet flow path of the heat exchanger. It is a figure which shows the overview in the case of a plurality of cases, and the flow rate distribution of a spray nozzle which matches the position of an inlet flow path.

図6(a)に見られるように、ノズル流量分布の最大点が入口流路下方に来、かつ噴霧幅が熱交換器表面に収まることを考慮して、噴霧ノズルの選定、噴霧ノズルの位置選定や設置方向の選定を行う。熱交換器5の入口流路1を複数とした場合には、図6(b)に見られるように、ノズル流量分布の最大点が複数の入口流路下方に来、かつ噴霧幅が熱交換器表面に収まることを考慮して、噴霧ノズルの選定、噴霧ノズルの位置選定や設置方向の選定を行う。このような選定や設置により、熱交換器の内側・外側の熱流速値分布を近づけ、流量の最適化を可能とする。 As can be seen in FIG. 6A, the selection of the spray nozzle and the position of the spray nozzle are selected in consideration of the fact that the maximum point of the nozzle flow rate distribution is below the inlet flow path and the spray width is within the heat exchanger surface. Select and select the installation direction. When there are a plurality of inlet channels 1 of the heat exchanger 5, as shown in FIG. 6B, the maximum point of the nozzle flow distribution is below the plurality of inlet channels, and the spray width is heat exchange. Select the spray nozzle, select the position of the spray nozzle, and select the installation direction in consideration of fitting on the surface of the vessel. By such selection and installation, the heat flow velocity value distribution inside and outside the heat exchanger can be brought closer, and the flow rate can be optimized.

[冷却動作の説明]
発熱源からの熱により蒸気となった冷却対象の冷媒は、配管12aを経由して、入口流路1から熱交換器5へ流入する。噴霧ノズル6から噴霧された微粒子状の水滴は、ファン9による送風も寄与して、熱交換器5の複数流路3の表面、又はその付近で効率的に気化する。この熱交換器5による熱交換により、冷却対象の冷媒の凝縮が起きる。液体となった冷却対象の冷媒は、重力利用で配管12bを経由して、再び発熱源の近傍へ送られる。冷却対象の冷媒を、熱交換器5を経由して循環させることにより、本実施形態の密閉式冷却塔20は冷却を行う。
[Explanation of cooling operation]
The refrigerant to be cooled, which has become steam due to the heat from the heat generation source, flows into the heat exchanger 5 from the inlet flow path 1 via the pipe 12a. The fine particle-like water droplets sprayed from the spray nozzle 6 are efficiently vaporized at or near the surface of the plurality of flow paths 3 of the heat exchanger 5 with the contribution of the air blown by the fan 9. The heat exchange by the heat exchanger 5 causes condensation of the refrigerant to be cooled. The liquid refrigerant to be cooled is sent to the vicinity of the heat generation source again via the pipe 12b by using gravity. The closed cooling tower 20 of the present embodiment cools by circulating the refrigerant to be cooled via the heat exchanger 5.

[効果の説明]
本実施形態の密閉式冷却塔20によれば、複数流路3を含んで構成される熱交換器5に噴霧ノズル6で水を噴霧しつつ、ファン9で風を送ることにより、噴霧した微粒子の水滴を複数流路3の表面、又はその付近で効率的に気化させる。熱交換器5は熱交換作用により、冷却対象の冷媒を凝縮させる。噴霧した微粒子の水滴の気化により、熱交換性能を向上させることができる。
[Explanation of effect]
According to the closed cooling tower 20 of the present embodiment, the fine particles sprayed by blowing water with the fan 9 while spraying water with the spray nozzle 6 to the heat exchanger 5 including the plurality of flow paths 3. Water droplets are efficiently vaporized on or near the surface of the plurality of flow paths 3. The heat exchanger 5 condenses the refrigerant to be cooled by the heat exchange action. The heat exchange performance can be improved by vaporizing the water droplets of the sprayed fine particles.

噴霧した微粒子の水滴を用いることにより、使用する水量を減らしつつ冷却対象の冷媒を凝縮させることができ、熱交換性能を向上させることができる。熱交換器5の熱交換性能を向上させることができ、熱交換性能を向上させた密閉式冷却塔20を実現できる。 By using the sprayed fine particle water droplets, the refrigerant to be cooled can be condensed while reducing the amount of water used, and the heat exchange performance can be improved. The heat exchange performance of the heat exchanger 5 can be improved, and the closed cooling tower 20 with improved heat exchange performance can be realized.

熱交換器に対して上部から散水を行う特許文献2の冷却塔と比較して、使用する水量を減らすことができるので、散水量を余分に必要とするといった問題や、熱交換器上部は散水量が過多になり潜熱利用を効率的に行えないといった問題を解消できる。また使用する水量を減らせることにより、水道水に含まれるカルシウム、マグネシウム、シリカなどの成分が凝縮されて結晶化し、スケールが形成されるという問題の顕在化を遅らせることができる。スケール生成に起因する熱伝達率の低下問題を解消し、頻繁なメンテナンスやフィルター設置を不要とすることができる。 Compared with the cooling tower of Patent Document 2 in which water is sprinkled from the upper part of the heat exchanger, the amount of water used can be reduced, so that there is a problem that an extra amount of water is required and the upper part of the heat exchanger is scattered. It is possible to solve the problem that the amount of water is excessive and the latent heat cannot be used efficiently. Further, by reducing the amount of water used, it is possible to delay the manifestation of the problem that components such as calcium, magnesium and silica contained in tap water are condensed and crystallized to form a scale. The problem of reduced heat transfer coefficient caused by scale generation can be solved, and frequent maintenance and filter installation can be eliminated.

その結果、凝縮を伴う密閉式冷却塔において、熱交換性能の向上、圧力損失によるシステムへの負荷低減、散水量の低減による循環システムの排除、並びに水循環に関わるスケール等の課題解決による信頼性向上を実現できる。 As a result, in a closed cooling tower with condensation, heat exchange performance is improved, the load on the system is reduced due to pressure loss, the circulation system is eliminated by reducing the amount of water sprinkled, and reliability is improved by solving problems such as scale related to water circulation. Can be realized.

本発明の実施形態の密閉式冷却塔20は、外気温度の上昇によりファン9のみでは冷却が困難な場合に、噴霧した水が効率的に蒸発する際の潜熱を利用した冷却方法に好適である。外気温度と冷却対象冷媒の温度を測定し、必要な条件の場合に噴霧が行われる仕組みにすることが考えられる。 The closed cooling tower 20 of the embodiment of the present invention is suitable for a cooling method utilizing latent heat when the sprayed water efficiently evaporates when it is difficult to cool with only the fan 9 due to an increase in the outside air temperature. .. It is conceivable to measure the outside air temperature and the temperature of the refrigerant to be cooled, and to make a mechanism for spraying when necessary conditions are met.

[密閉式冷却塔の利用例]
本発明の実施形態の密閉式冷却塔の利用方法として、データセンターでのサーバーなどのIT(Information Technology)機器の冷却があげられる。図7のデータセンター30のサーバー室21内にサーバーラック22が設置され、ラックリアドア側に受熱部23を設置する。サーバーラック22内にサーバーが設置され、サーバー内IT機器から発生する熱をサーバーに搭載されているファンにより空冷し、その時に温められた空気をラックリアドア側に設置された受熱部23により冷却することで、サーバーラック22外に排出される空気は冷やされる。この時受熱部23が吸熱した熱は冷媒の循環により密閉式冷却塔20の熱交換器内に運ばれ、そこで外気に放熱される。受熱部23と密閉式冷却塔20の熱交換器は、液管24及び蒸気管25により接続されている。密閉式冷却塔20は、サーバー室21の上方に設置されており、受熱部23内の冷媒は、相変化によって蒸気になり、冷媒蒸気は直接、本発明の実施形態の密閉式冷却塔20により冷却される。密閉式冷却塔20の熱交換器が凝縮部となり、熱交換器で凝縮された後の冷媒液は、液管24を経由して受熱部23に戻すことで冷媒を循環させ、外気放熱式の冷却を行う。熱交換器で凝縮された後の冷媒液は重力作用により、液管24を経由して受熱部23に至る。
[Usage example of closed cooling tower]
As a method of using the closed cooling tower according to the embodiment of the present invention, cooling of IT (Information Technology) equipment such as a server in a data center can be mentioned. The server rack 22 is installed in the server room 21 of the data center 30 of FIG. 7, and the heat receiving unit 23 is installed on the rack rear door side. A server is installed in the server rack 22, and the heat generated from the IT equipment in the server is air-cooled by the fan mounted on the server, and the air warmed at that time is cooled by the heat receiving unit 23 installed on the rack rear door side. As a result, the air discharged to the outside of the server rack 22 is cooled. At this time, the heat absorbed by the heat receiving unit 23 is carried into the heat exchanger of the closed cooling tower 20 by the circulation of the refrigerant, and is dissipated to the outside air there. The heat receiving unit 23 and the heat exchanger of the closed cooling tower 20 are connected by a liquid pipe 24 and a steam pipe 25. The closed cooling tower 20 is installed above the server room 21, and the refrigerant in the heat receiving unit 23 becomes steam due to the phase change, and the refrigerant steam is directly supplied by the closed cooling tower 20 according to the embodiment of the present invention. It will be cooled. The heat exchanger of the closed cooling tower 20 becomes a condensing part, and the refrigerant liquid after being condensed by the heat exchanger is returned to the heat receiving part 23 via the liquid pipe 24 to circulate the refrigerant, and the outside air is radiated. Perform cooling. The refrigerant liquid condensed by the heat exchanger reaches the heat receiving unit 23 via the liquid pipe 24 due to the gravitational action.

本実施形態のような凝縮を伴う密閉式冷却塔20においては、熱交換性能の向上、圧力損失によるシステムへの負荷低減、散水量の低減による循環システムの排除、並びに水循環に関わるスケール等の課題解決による信頼性向上が期待される。なお、図7では密閉式冷却塔20をサーバー室21の上方に設置した場合を示しているが、密閉式冷却塔20は、サーバー室21の上方に設置される場合と、ポンプを使用し冷媒を強制循環させることにより、上方でない場所に設置される場合がある。 In the closed cooling tower 20 with condensation as in the present embodiment, there are problems such as improvement of heat exchange performance, reduction of load on the system due to pressure loss, elimination of circulation system by reduction of water sprinkling amount, and scale related to water circulation. It is expected that the solution will improve reliability. Note that FIG. 7 shows a case where the closed cooling tower 20 is installed above the server room 21, but the closed cooling tower 20 is installed above the server room 21 and a refrigerant using a pump. May be installed in a place other than above by forced circulation.

データセンターでのサーバーなどIT機器の排熱に多大な冷却電力が消費されており、冷房空調機を使用して冷却を行う代わりに、直接外気放熱を行うことで冷却電力の大幅な削減が可能となる。ファンによる外気への熱輸送は外気温の低い場合十分な冷却能力があるのに対し、夏などの外気温が高い環境下では冷却能力が失われてしまう。冷却能力の高い冷却塔を使用することで、外気温の高い環境下においても外気放熱を可能とし、結果冷却電力の削減に大きく貢献できる。 A large amount of cooling power is consumed for exhaust heat of IT equipment such as servers in data centers, and it is possible to significantly reduce cooling power by directly dissipating outside air instead of using a cooling air conditioner for cooling. It becomes. The heat transport to the outside air by the fan has sufficient cooling capacity when the outside temperature is low, but the cooling capacity is lost in an environment where the outside temperature is high such as summer. By using a cooling tower with a high cooling capacity, it is possible to dissipate heat from the outside air even in an environment with a high outside temperature, and as a result, it can greatly contribute to the reduction of cooling power.

〔第2実施形態〕
次に、本発明の第2実施形態による冷却塔について、説明する。本実施形態の冷却塔は、第1実施形態による冷却塔と比較して、用いる熱交換器が異なる。熱交換器以外の構成は、第1実施形態による冷却塔と同様なため、その詳細な説明は省略する。図8は、本発明の第2実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。
[Second Embodiment]
Next, the cooling tower according to the second embodiment of the present invention will be described. The cooling tower of the present embodiment uses a different heat exchanger as compared with the cooling tower of the first embodiment. Since the configuration other than the heat exchanger is the same as that of the cooling tower according to the first embodiment, detailed description thereof will be omitted. FIG. 8 is an overview view for explaining a heat exchanger used in the cooling tower of the second embodiment of the present invention.

[構造の説明]
本実施形態の熱交換器5aでは、熱交換器5aを構成する複数流路3の配管径を入口流路1からの距離が遠くなるにつれて太くするように勾配をつける。図8では、複数流路3の配管のうち、配管3bの配管径は入口流路1に近い配管3aの配管径より太い。さらに複数流路3の配管のうち、入口流路1からの距離がより遠い配管3cの配管径は、配管3bの配管径より太い。
[Explanation of structure]
In the heat exchanger 5a of the present embodiment, the pipe diameter of the plurality of flow paths 3 constituting the heat exchanger 5a is sloped so as to become thicker as the distance from the inlet flow path 1 increases. In FIG. 8, of the pipes of the plurality of flow paths 3, the pipe diameter of the pipe 3b is larger than the pipe diameter of the pipe 3a close to the inlet flow path 1. Further, among the pipes of the plurality of flow paths 3, the pipe diameter of the pipe 3c, which is farther from the inlet flow path 1, is larger than the pipe diameter of the pipe 3b.

本実施形態の、入口流路1に近い距離にある複数流路3の配管径を入口流路1からの距離が遠くなるに従い、太くするような勾配をつけた熱交換器5aでは、入口流路1から流入する冷媒蒸気を複数流路3全体に均等に配分することができる。入口流路1から流入する冷媒を均等に複数流路3に配分することにより、冷却能力の向上、熱交換器5a並びに密閉式冷却塔20のサイズ縮小を可能にする。 In the heat exchanger 5a of the present embodiment, in which the pipe diameter of the plurality of flow paths 3 located at a distance close to the inlet flow path 1 is increased as the distance from the inlet flow path 1 increases, the heat exchanger 5a has an inlet flow. The refrigerant steam flowing from the path 1 can be evenly distributed over the entire plurality of flow paths 3. By evenly distributing the refrigerant flowing from the inlet flow path 1 to the plurality of flow paths 3, it is possible to improve the cooling capacity and reduce the size of the heat exchanger 5a and the closed cooling tower 20.

〔第3実施形態〕
次に、本発明の第3実施形態による冷却塔について、説明する。本実施形態の冷却塔は、第1実施形態による冷却塔と比較して、用いる熱交換器が異なる。熱交換器以外の構成は、第1実施形態による冷却塔と同様なため、その詳細な説明は省略する。図9は、本発明の第3実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。
[Third Embodiment]
Next, the cooling tower according to the third embodiment of the present invention will be described. The cooling tower of the present embodiment uses a different heat exchanger as compared with the cooling tower of the first embodiment. Since the configuration other than the heat exchanger is the same as that of the cooling tower according to the first embodiment, detailed description thereof will be omitted. FIG. 9 is an overview view for explaining a heat exchanger used in the cooling tower according to the third embodiment of the present invention.

[構造の説明]
本実施形態の熱交換器5bでは、熱交換器5bを構成する複数流路3上部のヘッダー体積を入口流路1からの距離が遠くなるにつれて大きくするように勾配をつける。図9に見られるように、複数流路3の配管径を一定にし、入口流路1から近い距離にある複数流路3から入口流路1からの距離が遠くなるに従い、複数流路3上部のヘッダー2aの体積を、勾配を付けて大きくする。
[Explanation of structure]
In the heat exchanger 5b of the present embodiment, the header volume of the upper part of the plurality of flow paths 3 constituting the heat exchanger 5b is graded so as to increase as the distance from the inlet flow path 1 increases. As can be seen in FIG. 9, the pipe diameter of the plurality of flow paths 3 is made constant, and as the distance from the plurality of flow paths 3 near the inlet flow path 1 increases from the plurality of flow paths 1, the upper portion of the plurality of flow paths 3 3 increases. The volume of the header 2a of the above is increased by adding a gradient.

本実施形態の、複数流路3上部のヘッダー体積を入口流路1からの距離が遠くなるにつれて大きくするように勾配をつけた熱交換器5bでは、入口流路1から流入する冷媒蒸気を複数流路3全体に均等に配分することができる。入口流路1から流入する冷媒を均等に複数流路3に配分することにより、冷却能力の向上、熱交換器5b並びに密閉式冷却塔20のサイズ縮小を可能にする。 In the heat exchanger 5b having a gradient so that the header volume of the upper part of the plurality of flow paths 3 increases as the distance from the inlet flow path 1 increases in the present embodiment, a plurality of refrigerant vapors flowing in from the inlet flow path 1 are used. It can be evenly distributed over the entire flow path 3. By evenly distributing the refrigerant flowing from the inlet flow path 1 to the plurality of flow paths 3, it is possible to improve the cooling capacity and reduce the size of the heat exchanger 5b and the closed cooling tower 20.

〔第4実施形態〕
次に、本発明の第4実施形態による冷却塔について、説明する。本実施形態の冷却塔は、第1実施形態による冷却塔と比較して、用いる熱交換器が異なる。熱交換器以外の構成は、第1実施形態による冷却塔と同様なため、その詳細な説明は省略する。図10は、本発明の第4実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。
[Fourth Embodiment]
Next, the cooling tower according to the fourth embodiment of the present invention will be described. The cooling tower of the present embodiment uses a different heat exchanger as compared with the cooling tower of the first embodiment. Since the configuration other than the heat exchanger is the same as that of the cooling tower according to the first embodiment, detailed description thereof will be omitted. FIG. 10 is an overview view for explaining a heat exchanger used in the cooling tower of the fourth embodiment of the present invention.

[構造の説明]
本実施形態の熱交換器5cでは図10に示すように、入口流路1の下方に位置する、ヘッダー2bの底面にくぼみ部2cが形成されている。くぼみ部2cでは、ヘッダー2bの底面の高さがヘッダー2bの底面の他部分の高さと比較して、低い。入口流路1の下方に位置する、ヘッダー2bの底面にくぼみ部2cをつけることにより、入口流路1から流入する冷媒蒸気に含まれる冷媒液はくぼみ部2cに集約される。冷媒蒸気に含まれている冷媒液が一部に集約される構造により、熱交換器5cの複数流路3内の冷媒凝縮により生成される液膜を薄くすることができる。液膜を薄くすることで熱伝達率を向上させ、その結果、冷却能力の向上、熱交換器5c並びに密閉式冷却塔20のサイズ縮小を可能にする。
[Explanation of structure]
In the heat exchanger 5c of the present embodiment, as shown in FIG. 10, a recessed portion 2c is formed on the bottom surface of the header 2b located below the inlet flow path 1. In the recessed portion 2c, the height of the bottom surface of the header 2b is lower than the height of other portions of the bottom surface of the header 2b. By attaching the recessed portion 2c to the bottom surface of the header 2b located below the inlet flow path 1, the refrigerant liquid contained in the refrigerant vapor flowing from the inlet flow path 1 is collected in the recessed portion 2c. Due to the structure in which the refrigerant liquid contained in the refrigerant vapor is partially aggregated, the liquid film formed by the condensation of the refrigerant in the plurality of flow paths 3 of the heat exchanger 5c can be thinned. By thinning the liquid film, the heat transfer coefficient is improved, and as a result, the cooling capacity can be improved and the size of the heat exchanger 5c and the closed cooling tower 20 can be reduced.

なお、図10の熱交換器5cでは、第2実施形態の熱交換器5aと同様に、熱交換器5cを構成する複数流路の配管径を入口流路1からの距離が遠くなるにつれて太くするように勾配をつけている。図10では、配管3bの配管径は入口流路1に近い配管3aの配管径より太い。さらに、入口流路1からの距離がより遠い配管3cの配管径は、配管3bの配管径より太い。 In the heat exchanger 5c of FIG. 10, similarly to the heat exchanger 5a of the second embodiment, the pipe diameters of the plurality of flow paths constituting the heat exchanger 5c are increased as the distance from the inlet flow path 1 increases. The slope is set so that it does. In FIG. 10, the pipe diameter of the pipe 3b is larger than the pipe diameter of the pipe 3a near the inlet flow path 1. Further, the pipe diameter of the pipe 3c, which is farther from the inlet flow path 1, is larger than the pipe diameter of the pipe 3b.

本実施形態のような、入口流路1に近い距離にある複数流路3の配管径を入口流路1からの距離が遠くなるに従い、太くするような勾配をつけた熱交換器5cでは、入口流路1から流入する冷媒蒸気を複数流路3全体に均等に配分することができる。このような複数流路3の配管径の勾配を併用することにより、冷却能力のさらなる向上、熱交換器5c並びに密閉式冷却塔20のさらなるサイズ縮小を可能にできる。 In the heat exchanger 5c having a gradient such that the pipe diameter of the plurality of flow paths 3 located at a distance close to the inlet flow path 1 becomes thicker as the distance from the inlet flow path 1 increases, as in the present embodiment. The refrigerant steam flowing from the inlet flow path 1 can be evenly distributed to the entire plurality of flow paths 3. By using the gradient of the pipe diameter of the plurality of flow paths 3 together, it is possible to further improve the cooling capacity and further reduce the size of the heat exchanger 5c and the closed cooling tower 20.

〔第5実施形態〕
次に、本発明の第5実施形態による冷却塔について、説明する。本実施形態の冷却塔は、第1実施形態による冷却塔と比較して、用いる熱交換器が異なる。熱交換器以外の構成は、第1実施形態による冷却塔と同様なため、その詳細な説明は省略する。図11は、本発明の第5実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。
[Fifth Embodiment]
Next, the cooling tower according to the fifth embodiment of the present invention will be described. The cooling tower of the present embodiment uses a different heat exchanger as compared with the cooling tower of the first embodiment. Since the configuration other than the heat exchanger is the same as that of the cooling tower according to the first embodiment, detailed description thereof will be omitted. FIG. 11 is an overview view for explaining a heat exchanger used in the cooling tower according to the fifth embodiment of the present invention.

[構造の説明]
本実施形態の熱交換器5dは、上述した第3実施形態の熱交換器に対し、入口流路1の下方に位置する、ヘッダー2dの底面にくぼみ部2cが形成された構成である。くぼみ部2cでは、ヘッダー2dの底面の高さがヘッダー2dの底面の他部分の高さと比較して、低い。入口流路1の下方に位置する、ヘッダー2dの底面にくぼみ部2cをつけることにより、入口流路1から流入する冷媒蒸気に含まれる冷媒液は一部、例えばくぼみ部2c、に集約される。
[Explanation of structure]
The heat exchanger 5d of the present embodiment has a configuration in which a recessed portion 2c is formed on the bottom surface of the header 2d located below the inlet flow path 1 with respect to the heat exchanger of the third embodiment described above. In the recessed portion 2c, the height of the bottom surface of the header 2d is lower than the height of other parts of the bottom surface of the header 2d. By attaching the recessed portion 2c to the bottom surface of the header 2d located below the inlet flow path 1, the refrigerant liquid contained in the refrigerant vapor flowing from the inlet flow path 1 is partially collected in, for example, the recessed portion 2c. ..

冷媒蒸気に含まれている冷媒液が一部に集約される構造により、熱交換器5dの複数流路3内の冷媒凝縮により生成される液膜を薄くすることができる。液膜を薄くすることで熱伝達率を向上させ、その結果、冷却能力の向上、熱交換器5d並びに密閉式冷却塔20のサイズ縮小を可能にする。 Due to the structure in which the refrigerant liquid contained in the refrigerant vapor is partially aggregated, the liquid film formed by the condensation of the refrigerant in the plurality of flow paths 3 of the heat exchanger 5d can be thinned. By thinning the liquid film, the heat transfer coefficient is improved, and as a result, the cooling capacity can be improved and the size of the heat exchanger 5d and the closed cooling tower 20 can be reduced.

また本実施形態のような、複数流路3上部のヘッダー体積が入口流路1からの距離が遠くなるにつれて大きくなるように勾配をつけた熱交換器5dでは、入口流路1から流入する冷媒蒸気を複数流路3全体に均等に配分することができる。入口流路1から流入する冷媒を均等に複数流路3に配分することにより、冷却能力のさらなる向上、熱交換器5d並びに密閉式冷却塔20のさらなるサイズ縮小を可能にする。 Further, in the heat exchanger 5d having a gradient so that the header volume of the upper part of the plurality of flow paths 3 increases as the distance from the inlet flow path 1 increases as in the present embodiment, the refrigerant flowing in from the inlet flow path 1 The steam can be evenly distributed over the entire plurality of flow paths 3. By evenly distributing the refrigerant flowing from the inlet flow path 1 to the plurality of flow paths 3, it is possible to further improve the cooling capacity and further reduce the size of the heat exchanger 5d and the closed cooling tower 20.

図12は本発明の実施形態のような、重力方向と平行な複数流路3により構成される熱交換器5を用いて冷却した場合の、湿球温度の変化による熱抵抗値の計測結果を示すグラフである。図12では、上述した実施形態のようなファン9による送風とともに、微粒子の水滴を噴霧して冷却した場合と、微粒子でない大きな水滴を同熱交換器に散水して冷却した場合とを示す。図12では、冷却に使用する噴霧される微粒子の水滴直径は150μm以下になるように設定されている。 FIG. 12 shows the measurement results of the thermal resistance value due to the change in the wet-bulb temperature when cooling is performed by using the heat exchanger 5 configured by the plurality of flow paths 3 parallel to the direction of gravity as in the embodiment of the present invention. It is a graph which shows. FIG. 12 shows a case where water droplets of fine particles are sprayed and cooled together with air blown by a fan 9 as in the above-described embodiment, and a case where large water droplets which are not fine particles are sprinkled on the same heat exchanger and cooled. In FIG. 12, the diameter of the water droplets of the sprayed fine particles used for cooling is set to be 150 μm or less.

冷却対象の冷媒は受熱部で温められ、密閉式冷却塔で冷却される。図12に示されるRcvは受熱部熱抵抗であり、Rvwは放熱部(冷却塔)熱抵抗であり、Rcwは受熱部熱抵抗Rcvと放熱部(冷却塔)熱抵抗Rvwとの和を示す。 The refrigerant to be cooled is heated by the heat receiving unit and cooled by the closed cooling tower. Rcv shown in FIG. 12 is the thermal resistance of the heat receiving section, Rvw is the thermal resistance of the heat radiating section (cooling tower), and Rcw is the sum of the thermal resistance Rcv of the heat receiving section and the thermal resistance Rvw of the radiating section (cooling tower).

Rcv sprayは微粒子の水滴を噴霧し冷却した場合の受熱部熱抵抗であり、Rvw sprayは微粒子の水滴を噴霧し冷却した場合の放熱部(冷却塔)熱抵抗である。さらにRcw sprayは、微粒子の水滴を噴霧し冷却した場合の受熱部熱抵抗Rcv sprayと、微粒子の水滴を噴霧し冷却した場合の放熱部(冷却塔)熱抵抗Rvw sprayとの和を示す。 Rcv spray is the thermal resistance of the heat-receiving part when water droplets of fine particles are sprayed and cooled, and Rvw spray is the thermal resistance of the heat-dissipating part (cooling tower) when water droplets of fine particles are sprayed and cooled. Further, Rcw spray shows the sum of the thermal resistance Rcv spray of the heat receiving part when the water droplets of the fine particles are sprayed and cooled, and the thermal resistance Rvw spray of the heat radiating part (cooling tower) when the water droplets of the fine particles are sprayed and cooled.

熱抵抗値の計測結果から、大幅な熱抵抗の改善が見られ、冷却能力の向上が示された。本発明の実施形態や実施例によれば、熱抵抗の改善、圧力損失の減少から冷却能力向上が可能になり、その結果、湿球温度の高い時期での外気を利用した冷却が実現できる。 From the measurement results of the thermal resistance value, a significant improvement in thermal resistance was seen, indicating an improvement in cooling capacity. According to the embodiments and examples of the present invention, it is possible to improve the cooling capacity by improving the thermal resistance and reducing the pressure loss, and as a result, the cooling using the outside air at the time when the wet-bulb temperature is high can be realized.

以上、本発明の好ましい実施形態や実施例を説明したが、本発明はこれに限定されるものではない。上述した実施形態、例えば図2では、熱交換器5の複数流路が重力方向と平行となるように、熱交換器5を設置した場合で説明したが、本発明はこれに限られない。冷却対象の流体が熱交換器5で熱交換し凝縮した後の冷却対象の流体が重力利用で循環できる程度の傾斜で設置された熱交換器5にも適用することができる。そしてこのような傾斜で設置された熱交換器5を用いた密閉式冷却塔に適用することができる。 Although preferred embodiments and examples of the present invention have been described above, the present invention is not limited thereto. In the above-described embodiment, for example, FIG. 2, the case where the heat exchanger 5 is installed so that the plurality of flow paths of the heat exchanger 5 are parallel to the direction of gravity has been described, but the present invention is not limited to this. It can also be applied to the heat exchanger 5 installed at an inclination so that the fluid to be cooled can be circulated by utilizing gravity after the fluid to be cooled exchanges heat with the heat exchanger 5 and is condensed. Then, it can be applied to a closed cooling tower using a heat exchanger 5 installed at such an inclination.

また、例えば密閉式冷却塔20に使用される、冷却対象の流体は、水でもその他冷媒でもかまわない。また冷却対象の流体としては、液体、気体、混合流体の状態を想定する。また密閉式冷却塔20に噴霧ノズル6から噴霧される水の量は蒸発潜熱分程度とし、それゆえ噴霧された水の循環システム、並びにフィルターを必要としない。 Further, the fluid to be cooled, for example, used in the closed cooling tower 20, may be water or another refrigerant. The fluid to be cooled is assumed to be a liquid, a gas, or a mixed fluid. Further, the amount of water sprayed from the spray nozzle 6 to the closed cooling tower 20 is about the latent heat of vaporization, and therefore the circulation system of the sprayed water and the filter are not required.

また本発明の実施形態の冷却塔は、データセンターなどの排熱を、受熱部にて冷媒を媒体として吸熱を行うことで冷却し、吸熱した冷媒を循環させる冷媒循環サイクルを用いた冷却システムで使用することができる。 Further, the cooling tower of the embodiment of the present invention is a cooling system using a refrigerant circulation cycle in which the exhaust heat of a data center or the like is cooled by absorbing heat using a refrigerant as a medium at a heat receiving unit, and the absorbed refrigerant is circulated. Can be used.

冷媒循環サイクルでの使用方法として、放熱部を受熱部より高い位置に設置することで、循環サイクル内の冷媒の相変化による気体液体の密度差を利用した自然循環でのアプリケーションが考えられる。或いは冷媒循環サイクルでの使用方法として、放熱部位置を考慮せずポンプ等を使用した強制循環でのアプリケーションが考えられる。 As a method of use in the refrigerant circulation cycle, by installing the heat dissipation part at a position higher than the heat receiving part, an application in natural circulation using the density difference of the gas liquid due to the phase change of the refrigerant in the circulation cycle can be considered. Alternatively, as a method of use in the refrigerant circulation cycle, an application in forced circulation using a pump or the like without considering the position of the heat radiating part can be considered.

(効果のまとめ)
改めて本発明の実施形態の密閉式冷却塔による効果をまとめると、次のようになる。
(Summary of effect)
The effects of the closed cooling tower according to the embodiment of the present invention can be summarized as follows.

第1の効果は、熱交換を行う複数流路の配管を重力方向と平行に、又は冷媒粘性に基づき凝縮した液体が効率的に冷却塔外へ重力を利用し流入する傾斜で設置することにより、複数流路の配管内の凝縮液により形成される液膜の太さを可能な限り薄くする。これにより、熱伝達率の向上を促進する。その結果、単位体積当たりの冷却能力が向上し、熱交換器の大きさを削減する。また、凝縮液により形成される液膜の太さを薄くすることにより、凝縮前蒸気が通る有効配管内断面積を増加させ、結果圧力損失を削減する。相変化を伴う熱輸送プロセスにおいて、圧力損失は熱輸送量へ大きく影響するため、結果冷却能力の向上を実現する。 The first effect is to install the piping of multiple flow paths for heat exchange parallel to the direction of gravity, or by installing the condensed liquid based on the viscosity of the refrigerant at an inclination that efficiently flows out of the cooling tower using gravity. , Make the thickness of the liquid film formed by the condensate in the piping of multiple channels as thin as possible. This promotes the improvement of the heat transfer coefficient. As a result, the cooling capacity per unit volume is improved and the size of the heat exchanger is reduced. Further, by reducing the thickness of the liquid film formed by the condensed liquid, the cross-sectional area in the effective pipe through which the vapor before condensation passes is increased, and as a result, the pressure loss is reduced. In the heat transport process with phase change, the pressure loss has a great influence on the heat transport amount, and as a result, the cooling capacity is improved.

第2の効果は、図4に見られるようなファンと熱交換器の位置関係により、熱交換器を通過する風量に特別な制御を必要とすることなく、上部から下部にむけて勾配を付けることが可能である。そこへ熱交換器外側上部より熱交換器に対して噴霧分布量がファン風量勾配と比例するように噴霧ノズルに傾斜をつけて噴霧することで、効率的に蒸発を促すことが可能になり、結果冷却能力の向上を実現する。また、効率的な蒸発により節水の効果があるだけでなく、傾斜をつけることで噴霧幅を拡大し必要ノズル数の削減が可能となる。 The second effect is that due to the positional relationship between the fan and the heat exchanger as shown in FIG. 4, the air volume passing through the heat exchanger is graded from the top to the bottom without requiring special control. It is possible. By inclining the spray nozzle from the upper part of the outside of the heat exchanger so that the spray distribution amount is proportional to the fan air volume gradient, it becomes possible to promote evaporation efficiently. As a result, the cooling capacity is improved. In addition to the effect of saving water by efficient evaporation, it is possible to expand the spray width and reduce the number of required nozzles by making an inclination.

同様に、図6に見られるように、ノズル流量分布の最大点が入口流路下方に来、かつ噴霧幅が熱交換器表面に収まるノズル選定・位置選定を行うことで、熱交換器内側・外側の熱流速値分布を近づけ、流量の最適化を可能とする。 Similarly, as can be seen in FIG. 6, by selecting the nozzle and the position where the maximum point of the nozzle flow rate distribution is below the inlet flow path and the spray width is within the heat exchanger surface, the inside of the heat exchanger can be selected. The outer heat flow velocity value distribution is brought closer, and the flow rate can be optimized.

第3の効果は、冷却塔において微粒子状の水滴を噴霧することによって、環境湿球温度の高い状況下においても、水の気化を促進し熱伝達率の向上を可能とする。熱伝達率は数式(熱伝達率=熱伝導率×面積×ΔT÷太さ)で算出される。ここで、ΔTは温度差である。水滴直径を小さくすると上記数式の(太さ)が小さくなり、その結果、熱伝達率が大きくなる。よって、噴霧する微粒子状の水滴直径を小さくすることにより、熱伝達率が向上する。 The third effect is that by spraying fine water droplets in the cooling tower, it is possible to promote the vaporization of water and improve the heat transfer coefficient even under a high environmental wet-bulb temperature. The heat transfer coefficient is calculated by a mathematical formula (heat transfer coefficient = heat conductivity x area x ΔT ÷ thickness). Here, ΔT is the temperature difference. When the diameter of the water droplet is reduced, the (thickness) of the above formula becomes smaller, and as a result, the heat transfer coefficient becomes larger. Therefore, the heat transfer coefficient is improved by reducing the diameter of the water droplets in the form of fine particles to be sprayed.

また、水粒子が液滴で存在するには表面張力が内圧と釣り合う必要があり、内圧は水滴直径が小さくなるほど高くなることから、水滴直径が小さくなると水滴の安定性が保たれにくくなる。この時、水滴近辺に他水滴が存在する場合、それらが併合し大きな水液滴として存在するが、他水滴と距離がある場合、安定性が保たれない液滴の蒸発が促進されることにより、気化を促進する結果となる。 Further, in order for the water particles to exist as droplets, the surface tension must be balanced with the internal pressure, and the internal pressure increases as the water droplet diameter decreases. Therefore, when the water droplet diameter decreases, it becomes difficult to maintain the stability of the water droplet. At this time, if other water droplets are present in the vicinity of the water droplets, they are merged and exist as large water droplets, but if there is a distance from the other water droplets, the evaporation of the droplets whose stability is not maintained is promoted. As a result, it promotes vaporization.

微粒子の状態の水を蒸発できる流量分噴霧することで水消費を減らせるだけでなく、散水用の水循環システム並びにそれに伴う循環動力(ポンプ電力、フィルターリング)を不要にする。それが原因として発生する水道水に含まれる成分(カルシウム、マグネシウム、シリカなど)の結晶化によるスケール発生の課題、並びにそれらのメンテナンスを不要にする。シリカ除去には人体に有害になる化学物質を使用する事例も発生していることから、安全性の向上に寄与する。また、必要流量の削減により貯水タンクのサイズダウンを可能とする。 Not only can water consumption be reduced by spraying water in the form of fine particles for an evaporable flow rate, but also the water circulation system for watering and the associated circulation power (pump power, filtering) are not required. It eliminates the problem of scale generation due to crystallization of components (calcium, magnesium, silica, etc.) contained in tap water, and maintenance of them. Since there are cases where chemical substances that are harmful to the human body are used to remove silica, it contributes to the improvement of safety. In addition, the size of the water storage tank can be reduced by reducing the required flow rate.

その他、以下に明記する課題解決手法はすべて冷却能力の向上に寄与する。一つ目に、熱交換器5の複数流路3を構成する配管の向きが重力方向と平行になるように設置することで、特許文献1のように配管を水平に設置したのち冷却塔内で蛇行させて距離を稼ぐ配管形状と比較し、同体積内での熱交換可能表面積を増加させることができる。 In addition, all the problem-solving methods specified below contribute to the improvement of cooling capacity. First, by installing the pipes constituting the plurality of flow paths 3 of the heat exchanger 5 so as to be parallel to the direction of gravity, the pipes are installed horizontally as in Patent Document 1, and then inside the cooling tower. It is possible to increase the heat exchangeable surface area within the same volume as compared with the pipe shape that is meandered by and gains distance.

これは、配管湾曲部分の体積ロスを無くすことで、配管をより密に設置できるからである。また、各々の配管距離を短くし本数を増やす本発明の方式では、凝縮により生成された液を複数の配管の中に保持する時間が短く、結果、熱伝達率を向上させるだけでなく、液を冷却塔外に運ぶ時に生じる圧力損失も大幅に軽減することが可能である。 This is because the pipe can be installed more densely by eliminating the volume loss of the curved portion of the pipe. Further, in the method of the present invention in which the distance between each pipe is shortened and the number of pipes is increased, the time for holding the liquid produced by condensation in a plurality of pipes is short, and as a result, not only the heat transfer coefficient is improved but also the liquid is maintained. It is also possible to significantly reduce the pressure loss that occurs when transporting the water to the outside of the cooling tower.

二つ目に、図8や図10のように複数流路3の配管径を入口流路からの距離が遠くなるに従い、太くするような勾配をつける方法は、冷却対象の冷媒を熱交換器に均等に配分し、冷却能力の向上に寄与する。三つ目に、図9や図11のように複数流路の配管径を一定にし、入口流路からの距離が遠くなるに従い、複数流路上部のヘッダー体積を、勾配を付けて大きくする構造も、前例と同様の効果を有する。四つ目に、図10や図11に見られるように、入口流路下方に位置するヘッダー底面の高さをヘッダー底面他部分と比較し低くし、又はくぼみをつけることで、冷却対象冷媒蒸気に混ざっている液を一部に集中することで、熱伝達率の向上に寄与する。 Secondly, as shown in FIGS. 8 and 10, the method of making the pipe diameter of the plurality of flow paths 3 thicker as the distance from the inlet flow path increases is to heat exchanger the refrigerant to be cooled. It is evenly distributed to contribute to the improvement of cooling capacity. Third, as shown in FIGS. 9 and 11, the pipe diameter of the multiple flow paths is made constant, and the header volume at the upper part of the multiple flow paths is increased with a gradient as the distance from the inlet flow path increases. Has the same effect as the previous example. Fourth, as seen in FIGS. 10 and 11, the height of the bottom surface of the header located below the inlet flow path is made lower than the other parts of the bottom surface of the header, or by making a dent, the refrigerant steam to be cooled By concentrating the liquid mixed in, it contributes to the improvement of the heat transfer coefficient.

このように請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲に含まれることはいうまでもない。 As described above, various modifications are possible within the scope of the claimed invention, and it goes without saying that they are also included in the scope of the present invention.

上記の実施形態や実施例の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)微粒子状の液滴が噴霧される複数の並列する流路であって、冷却対象の流体が重力方向、又は凝縮後の流体が重力利用で循環できる傾斜で設置された複数の並列する流路を含む、熱交換器。
(付記2)前記冷却対象の流体が流入する入口流路と、前記入口流路から流入した冷却対象の流体を前記複数の並列する流路に分岐するヘッダーとをさらに含む、付記1に記載の熱交換器。
(付記3)前記複数の並列する流路の配管径は、前記入口流路からの距離が遠くなるにつれて太くするように勾配がつけられている、付記2に記載の熱交換器。
(付記4)前記ヘッダーの体積は、前記入口流路からの距離が遠くなるにつれて大きくするように勾配がつけられている、付記2に記載の熱交換器。
(付記5)前記入口流路の下方に位置する、前記ヘッダーの底面にくぼみ部が形成されている、付記3又は付記4に記載の熱交換器。
(付記6)前記入口流路が複数設けられている、付記2乃至付記5のいずれか一つに記載の熱交換器。
(付記7)前記複数の入口流路に対応して、それぞれ微粒子状の液滴が噴霧される、付記6に記載の熱交換器。
(付記8)付記1乃至付記7のいずれか一つに記載の熱交換器と、空気が前記熱交換器を通るように送風するファンと、前記熱交換器へ微粒子状の液滴を噴霧する噴霧ノズルと、前記熱交換器に接続された配管とを含む、冷却塔。
(付記9)前記噴霧ノズルは、重力方向に対して傾斜させた方向で、前記熱交換器へ前記微粒子状の液滴を噴霧する、付記8に記載の冷却塔。
(付記10)前記熱交換器の前記複数の並列する流路が、重力方向と実質的に平行となるように、前記熱交換器は設置されており、前記噴霧ノズルは、斜め下向きに前記熱交換器へ前記微粒子状の液滴を噴霧する、付記8に記載の冷却塔。
(付記11)前記ファンは、前記熱交換器の前記複数の並列する流路に対し風量勾配を引き起こし、前記噴霧ノズルは、その噴霧分布量が前記風量勾配と比例するように、前記熱交換器の前記複数の並列する流路に対して傾斜をつけて設置されている、付記8乃至付記10のいずれか一つに記載の冷却塔。
(付記12)前記噴霧ノズルは、ノズル流量分布の最大点が前記熱交換器の入口流路下方に位置するように、設置されている、付記8乃至付記11のいずれか一つに記載の冷却塔。
Some or all of the above embodiments and examples may be described as in the appendix below, but are not limited to the following.
(Appendix 1) A plurality of parallel flow paths in which fine particle droplets are sprayed, and a plurality of parallel channels installed at an inclination in which the fluid to be cooled is circulated in the direction of gravity or the fluid after condensation can be circulated by utilizing gravity. A heat exchanger that includes a flow path.
(Supplementary Note 2) The description in Appendix 1 further includes an inlet flow path into which the fluid to be cooled flows, and a header in which the fluid to be cooled flowing from the inlet flow path branches into the plurality of parallel flow paths. Heat exchanger.
(Appendix 3) The heat exchanger according to Appendix 2, wherein the pipe diameters of the plurality of parallel flow paths are graded so as to become thicker as the distance from the inlet flow path increases.
(Appendix 4) The heat exchanger according to Appendix 2, wherein the volume of the header is graded so as to increase as the distance from the inlet flow path increases.
(Appendix 5) The heat exchanger according to Appendix 3 or Appendix 4, which is located below the inlet flow path and has a recess formed in the bottom surface of the header.
(Supplementary note 6) The heat exchanger according to any one of Supplementary note 2 to Supplementary note 5, wherein a plurality of inlet flow paths are provided.
(Appendix 7) The heat exchanger according to Appendix 6, wherein fine particle droplets are sprayed corresponding to the plurality of inlet flow paths.
(Appendix 8) The heat exchanger according to any one of the appendices 1 to 7, the fan that blows air so as to pass through the heat exchanger, and the heat exchanger are sprayed with fine particle droplets. A cooling tower that includes a spray nozzle and a pipe connected to the heat exchanger.
(Supplementary note 9) The cooling tower according to Supplementary note 8, wherein the spray nozzle sprays the fine particle-like droplets onto the heat exchanger in a direction inclined with respect to the direction of gravity.
(Appendix 10) The heat exchanger is installed so that the plurality of parallel flow paths of the heat exchanger are substantially parallel to the direction of gravity, and the spray nozzle obliquely downwards the heat. The cooling tower according to Appendix 8, wherein the fine particle droplets are sprayed onto the exchanger.
(Appendix 11) The fan causes an air volume gradient with respect to the plurality of parallel flow paths of the heat exchanger, and the spray nozzle uses the heat exchanger so that the spray distribution amount is proportional to the air volume gradient. The cooling tower according to any one of Supplementary note 8 to Supplementary note 10, which is installed with an inclination with respect to the plurality of parallel flow paths of the above.
(Supplementary note 12) The cooling according to any one of Supplementary note 8 to Supplementary note 11, wherein the spray nozzle is installed so that the maximum point of the nozzle flow rate distribution is located below the inlet flow path of the heat exchanger. Tower.

以上、上述した実施形態や実施例を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態や実施例には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above as a model example of the above-described embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples. That is, the present invention can apply various aspects that can be understood by those skilled in the art within the scope of the present invention.

この出願は、2015年12月24日に出願された日本出願特願2015-251191号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority on the basis of Japanese application Japanese Patent Application No. 2015-251191 filed on December 24, 2015, the entire disclosure of which is incorporated herein by reference.

1 入口流路
2、2a、2b、2d ヘッダー
2c くぼみ部
3 複数流路
3a、3b、3c 配管
4 フィン
5、105 熱交換器
6、106 噴霧ノズル
7 圧力計
8 流量調整バルブ
9、109 ファン
10 ポンプ
11 貯水タンク
12a、12b 配管
13 筐体
20 密閉式冷却塔
21 サーバー室
22 サーバーラック
23 受熱部
24 液管
25 蒸気管
30 データセンター
103 並列する流路
100 冷却塔
1 Inlet flow path 2, 2a, 2b, 2d Header 2c Indentation 3 Multiple flow paths 3a, 3b, 3c Piping 4 Fins 5, 105 Heat exchanger 6, 106 Spray nozzle 7 Pressure gauge 8 Flow control valve 9, 109 Fan 10 Pump 11 Water storage tank 12a, 12b Piping 13 Housing 20 Sealed cooling tower 21 Server room 22 Server rack 23 Heat receiving part 24 Liquid pipe 25 Steam pipe 30 Data center 103 Parallel flow path 100 Cooling tower

Claims (9)

送風するファンと、
微粒子状の液滴が噴霧される複数の並列する流路であって、冷却対象の流体が重力方向、又は凝縮後の流体が重力利用で循環できる傾斜で設置された複数の並列する流路を含む熱交換器と、
前記熱交換器へ微粒子状の液滴を噴霧する噴霧ノズルであって、前記熱交換器の前記冷却対象の流体が流入する入口流路の直下にノズル流量分布の最大点が位置するように設置されている噴霧ノズルと、
前記熱交換器に接続された配管とを含む、冷却塔。
With a fan that blows air,
A plurality of parallel flow paths in which fine particle droplets are sprayed, and a plurality of parallel flow paths installed at an inclination in which the fluid to be cooled can circulate in the direction of gravity or the fluid after condensation can be circulated by utilizing gravity. Including heat exchanger and
A spray nozzle that sprays fine particles of droplets onto the heat exchanger, and is installed so that the maximum point of the nozzle flow distribution is located directly below the inlet flow path into which the fluid to be cooled of the heat exchanger flows. With the spray nozzle that is
A cooling tower that includes piping connected to the heat exchanger.
前記熱交換器は、前記入口流路から流入した冷却対象の流体を前記複数の並列する流路に分岐するヘッダーとをさらに含む、請求項1に記載の冷却塔。 The cooling tower according to claim 1, wherein the heat exchanger further includes a header for branching a fluid to be cooled flowing from the inlet flow path into the plurality of parallel flow paths. 前記熱交換器の、前記複数の並列する流路の配管径は、前記入口流路からの距離が遠くなるにつれて太くするように勾配がつけられている、請求項2に記載の冷却塔。 The cooling tower according to claim 2, wherein the pipe diameters of the plurality of parallel flow paths of the heat exchanger are sloped so as to become thicker as the distance from the inlet flow path increases. 前記熱交換器の、前記ヘッダーの体積は、前記入口流路からの距離が遠くなるにつれて大きくするように勾配がつけられている、請求項2に記載の冷却塔。 The cooling tower according to claim 2, wherein the volume of the header of the heat exchanger is graded so as to increase as the distance from the inlet flow path increases. 前記熱交換器の、前記入口流路の下方に位置する、前記ヘッダーの底面にくぼみ部が形成されている、請求項3又は請求項4に記載の冷却塔。 The cooling tower according to claim 3 or 4, wherein a recess is formed in the bottom surface of the header, which is located below the inlet flow path of the heat exchanger. 前記熱交換器は、前記冷却対象の流体が流入する入口流路が複数設けられている、請求項2乃至請求項5のいずれか一項に記載の冷却塔。 The cooling tower according to any one of claims 2 to 5, wherein the heat exchanger is provided with a plurality of inlet flow paths into which the fluid to be cooled flows. 前記噴霧ノズルは、重力方向に対して傾斜させた方向で、前記熱交換器へ前記微粒子状の液滴を噴霧する、請求項1乃至請求項6のいずれか一項に記載の冷却塔。 The cooling tower according to any one of claims 1 to 6, wherein the spray nozzle sprays the fine particle-like droplets onto the heat exchanger in a direction inclined with respect to the direction of gravity. 前記熱交換器の前記複数の並列する流路が重力方向と実質的に平行となるように、前記熱交換器は設置されており、
前記噴霧ノズルは、斜め下向きに前記熱交換器へ前記微粒子状の液滴を噴霧する、請求項1乃至請求項6のいずれか一項に記載の冷却塔。
The heat exchanger is installed so that the plurality of parallel flow paths of the heat exchanger are substantially parallel to the direction of gravity.
The cooling tower according to any one of claims 1 to 6, wherein the spray nozzle sprays the fine particle-like droplets diagonally downward onto the heat exchanger.
前記ファンは、前記熱交換器の前記複数の並列する流路に対し風量勾配を引き起こし、
前記噴霧ノズルは、その噴霧分布量が前記風量勾配と比例するように、前記熱交換器の前記複数の並列する流路に対して傾斜をつけて設置されている、請求項7又は請求項8に記載の冷却塔。
The fan causes an airflow gradient for the plurality of parallel channels of the heat exchanger.
7. The cooling tower described in.
JP2017558087A 2015-12-24 2016-12-16 Heat exchanger and cooling tower Active JP7010702B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015251191 2015-12-24
JP2015251191 2015-12-24
PCT/JP2016/087552 WO2017110677A1 (en) 2015-12-24 2016-12-16 Heat exchanger and cooling tower

Publications (2)

Publication Number Publication Date
JPWO2017110677A1 JPWO2017110677A1 (en) 2018-10-18
JP7010702B2 true JP7010702B2 (en) 2022-01-26

Family

ID=59090289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017558087A Active JP7010702B2 (en) 2015-12-24 2016-12-16 Heat exchanger and cooling tower

Country Status (2)

Country Link
JP (1) JP7010702B2 (en)
WO (1) WO2017110677A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015284B2 (en) * 2018-09-28 2022-02-02 株式会社デンソー Water spray cooling device
JP2022046305A (en) * 2020-09-10 2022-03-23 日本電気株式会社 Outdoor machine of air conditioner
WO2023188010A1 (en) * 2022-03-29 2023-10-05 三菱電機株式会社 Refrigeration cycle device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304775A (en) 2000-04-26 2001-10-31 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP3710134B2 (en) 2004-06-07 2005-10-26 Necエンジニアリング株式会社 Data processing device
US20110209860A1 (en) 2008-10-08 2011-09-01 A-Heat Allied Heat Exchange Technology Ag Heat exchanger arrangement and method for the operation of same
JP2013130326A (en) 2011-12-21 2013-07-04 Daikin Industries Ltd Outdoor unit for air conditioner

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417290U (en) * 1990-05-29 1992-02-13
JP3284904B2 (en) * 1996-10-30 2002-05-27 ダイキン工業株式会社 Heat exchanger
JPH11201685A (en) * 1998-01-08 1999-07-30 Mitsubishi Electric Corp Heat-exchanger device
JP2008075949A (en) * 2006-09-20 2008-04-03 Daikin Ind Ltd Air conditioner
JP2009097817A (en) * 2007-10-18 2009-05-07 Tokyo Electric Power Co Inc:The Cooler, cooling device, and heat pump
JP4947001B2 (en) * 2008-07-25 2012-06-06 株式会社デンソー Heat exchanger
JP5780591B2 (en) * 2011-08-01 2015-09-16 中野冷機株式会社 Watering device for condenser and operation method thereof
JP6154107B2 (en) * 2012-08-02 2017-06-28 株式会社大阪城口研究所 Air conditioner power saving device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304775A (en) 2000-04-26 2001-10-31 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP3710134B2 (en) 2004-06-07 2005-10-26 Necエンジニアリング株式会社 Data processing device
US20110209860A1 (en) 2008-10-08 2011-09-01 A-Heat Allied Heat Exchange Technology Ag Heat exchanger arrangement and method for the operation of same
JP2013130326A (en) 2011-12-21 2013-07-04 Daikin Industries Ltd Outdoor unit for air conditioner

Also Published As

Publication number Publication date
JPWO2017110677A1 (en) 2018-10-18
WO2017110677A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP5416093B2 (en) Cooling system
US9560794B2 (en) Cooling device for cooling rack-type server, and data center provided with same
JP5671659B2 (en) Cooling unit
JP5929754B2 (en) Electronic equipment exhaust cooling system
TWI422318B (en) Data center module
JP2020136335A (en) Cooling device, cooling system, and cooling method
JP6910289B2 (en) Combination type convector
JP7010702B2 (en) Heat exchanger and cooling tower
AU2009301278B2 (en) Heat exchanger assembly and method for the operation thereof
TW201641910A (en) Coolant type heat dissipation device
CN102057243A (en) Evaporative cooling tower enhancement through cooling recovery
US11441847B2 (en) Evaporative cooling system
JP4520487B2 (en) Cooling device for electronic equipment
JP5304071B2 (en) Server device
JP2008209070A (en) Heat exchanger and sealed cooling tower
JP6028819B2 (en) Cooling system
JP2016023925A (en) Evaporation air conditioning system
JP2012253191A (en) Cooling system
JP5664046B2 (en) Cooling system
WO2016051569A1 (en) Evaporator, cooling device, and electronic device
JP6835470B2 (en) Piping structure, cooling device using it, and refrigerant vapor transport method
JP2007101094A (en) Heat exchanger device
WO2016067509A1 (en) Heat exchange device and heat generation body-receiving device using same
Korde et al. Performance of an Evaporative Condenser: A Review
JPH10141807A (en) Air cooled heat dissipation apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201110

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210210

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210427

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20211022

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211116

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211221

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220113