WO2016067509A1 - Heat exchange device and heat generation body-receiving device using same - Google Patents

Heat exchange device and heat generation body-receiving device using same Download PDF

Info

Publication number
WO2016067509A1
WO2016067509A1 PCT/JP2015/004720 JP2015004720W WO2016067509A1 WO 2016067509 A1 WO2016067509 A1 WO 2016067509A1 JP 2015004720 W JP2015004720 W JP 2015004720W WO 2016067509 A1 WO2016067509 A1 WO 2016067509A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
refrigerant
evaporator
condenser
air compartment
Prior art date
Application number
PCT/JP2015/004720
Other languages
French (fr)
Japanese (ja)
Inventor
柴田 洋
忍 織戸
裕二 中野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016067509A1 publication Critical patent/WO2016067509A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems

Definitions

  • the present invention relates to a heat exchange device and a heating element storage device using the heat exchange device.
  • this type of heat exchanging device is used for cooling inside a sealed container box that includes electronic components that generate heat, such as a base station of a mobile phone.
  • a cooling method using a heat pipe is known as a cooling method with few components and a large amount of heat transfer (see, for example, Patent Document 1).
  • the refrigerant vapor that rises by boiling and the refrigerant liquid that condenses and descends move in the same pipe. For this reason, there is a problem that the refrigerant circulation efficiency deteriorates against each other and the heat exchange efficiency is poor. Therefore, the evaporator in which the refrigerant evaporates and the condenser in which the refrigerant is condensed and liquefied are separated.
  • a refrigerant vapor pipe for connecting the evaporator and the condenser, and for the refrigerant condensed and liquefied in the condenser to move to the evaporator, A refrigerant circuit is formed by a refrigerant liquid pipe that communicates the evaporator.
  • a boiling cooling device that can efficiently dissipate heat by circulating a refrigerant is known (see, for example, Patent Document 2).
  • FIG. 5 is a side view of a conventional boiling cooling device.
  • the boiling cooling device 101 is attached to a housing 103 that houses a heating element 102 therein.
  • the boiling cooling device 101 includes a high temperature side heat exchanger 104 that performs heat exchange between the high temperature side fluid and the low temperature refrigerant, and a low temperature side heat exchanger 105 that performs heat exchange between the low temperature side air and the high temperature refrigerant. Composed.
  • the boiling cooling device 101 includes a connecting pipe 106 that connects the high temperature side heat exchanger 104 and the low temperature side heat exchanger 105, a high temperature side blower 107 that blows the high temperature side fluid to the high temperature side heat exchanger 104, and low temperature side heat.
  • the exchanger 105 includes a low-temperature side fan 108 that blows low-temperature side air.
  • a refrigerant is sealed in a closed circuit formed by the high temperature side heat exchanger 104, the low temperature side heat exchanger 105, and the connecting pipe 106.
  • the high temperature air inside the housing 103 passes through a duct-shaped inside air introduction path 110 provided on the back surface of the boiling cooling device 101 from the inside air inlet 109. Then, the high temperature air flows into the high temperature side heat exchanger 104, performs heat exchange with the high temperature side heat exchanger 104, and is returned into the housing 103 by the high temperature side blower 107.
  • the refrigerant in the high temperature side heat exchanger 104 evaporates by heat exchange with high temperature air, passes through the connecting pipe 106, and flows into the low temperature side heat exchanger 105.
  • the outside air taken in from the outside air inlet 111 by the operation of the low temperature side blower 108 passes through the air passage 112 provided between the high temperature side heat exchanger 104 and the low temperature side heat exchanger 105. Then, the outside air flows into the low temperature side heat exchanger 105, performs heat exchange with the low temperature side heat exchanger 105, and is then exhausted by the low temperature side blower 108.
  • the refrigerant in the low temperature side heat exchanger 105 is condensed by heat exchange with the outside air, passes through the connecting pipe 106, and flows into the high temperature side heat exchanger 104 again.
  • the inside of the housing 103 is cooled by the natural circulation of the refrigerant.
  • the high temperature side blower 107 and the low temperature side blower 108 suck in the air. For this reason, there exists a tendency for the air which flows into the ventilation path of the heat exchangers 104 and 105 by the side where an air path length becomes short to increase. Therefore, the wind speed passing through the heat exchangers 104 and 105 is not uniform.
  • Such a conventional boiling cooling device has a problem that the cooling speed cannot be sufficiently exhibited because the wind speed passing through the heat exchanger becomes uneven.
  • An object of this invention is to provide the heat exchange apparatus which can equalize the wind speed which passes a heat exchanger more, and can improve cooling performance.
  • a heat exchange device includes a main body case, a partition plate that divides the inside of the main body case into independent internal air compartments and external air compartments, and an internal air circulation blower that blows air into the internal air compartments. And an outside air blower for blowing air to the outside air section. Moreover, it is provided with the evaporator which evaporates a refrigerant
  • the condenser and the evaporator are connected by a refrigerant air pipe and a refrigerant liquid pipe to form a refrigerant cycle.
  • the bent portion has an inclination in the same direction as a line connecting the condenser and the evaporator, and at least one of the bent portions is downstream of the upstream end portion of the air flowing in parallel with the evaporator and the condenser. Located in. This achieves the intended purpose.
  • the bent portion is provided at a position downstream of the upstream end of the air flowing in parallel with the evaporator and the condenser, the air is blown from the inside air circulation blower and the outside air blower. Air that tends to flow a lot on the downstream side of the air passage with straightness is diverted to the heat exchanger side. For this reason, air is blown also to the air path upstream side of the heat exchange device, and the wind speed of the air passing through the heat exchange device can be made more uniform. Therefore, an effect that the cooling performance is improved can be obtained.
  • the evaporator and the condenser are arranged to be inclined in the respective sections, so that the air that is blown from the inside-air circulation blower and the outside-air blower has a straight direction and has a wind direction. It can flow into the heat exchange device without change. For this reason, the wind speed of the air which passes a heat exchange apparatus can be equalized more. Therefore, an effect that the cooling performance is improved can be obtained.
  • FIG. 1 is a diagram showing a heating element storage device according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view of the heat exchange device according to Embodiment 1 of the present invention and a heating element storage device using the heat exchange device.
  • FIG. 3 is a side view of the heat exchange device according to the second embodiment of the present invention.
  • FIG. 4 is a side view of the heat exchange device according to Embodiment 3 of the present invention.
  • FIG. 5 is a side view of a conventional boiling cooling device.
  • FIG. 1 is a diagram showing a heating element storage device according to Embodiment 1 of the present invention.
  • FIG. 2 is a side view of the heat exchange device according to Embodiment 1 of the present invention and a heating element storage device using the heat exchange device.
  • a mobile phone base station 1 corresponding to a heating element storage device includes a box-shaped cabinet 2, a rack 3, a fan unit 6, a heat exchange device 8, and an inside air duct 9. And the door cover 10.
  • the rack 3 accommodates communication equipment provided in the cabinet 2.
  • the fan unit 6 includes a blower 5 for circulating inside air in a blower case 4 installed on the top of the rack 3.
  • the heat exchange device 8 is provided on the door 7 of the cabinet 2.
  • the inside air duct 9 guides the air blown from the inside air circulation blower 5 to the heat exchange device 8.
  • the door cover 10 covers the heat exchange device 8.
  • the heat exchanging device 8 fixes a flange 11 provided around the heat exchanging device 8 to the door 7 with a bolt or the like.
  • the inside of the main body case 12 that forms the outline of the heat exchange device 8 is partitioned by a partition plate 13 into an outside air compartment 14 on the door cover 10 side and an inside air compartment 15 on the cabinet 2 side.
  • the condenser 16 is arranged above the outside air section 14 so that the ventilation direction is substantially horizontal, and the outside air blower 17 is arranged below.
  • the evaporator 18 is disposed at a position lower than the condenser 16 so that the ventilation direction is substantially horizontal.
  • the main body case 12 is provided with an inside air inlet 22 above the evaporator 18 outside the inside air compartment 15 and an inside air inlet 23 at a position facing the evaporator 18.
  • an outside air suction port 24 is provided at a position facing the suction port of the outside air blower 17 outside the outside air section 14, and an exhaust port 25 is provided at a position facing the condenser 16.
  • the condenser 16 and the evaporator 18 are provided with cylindrical tanks sealed at both ends at the upper and lower parts, and the upper and lower tank pipes are communicated with each other by a plurality of thin plate tubes having a plurality of holes therein.
  • the heat exchanger has a structure in which a plurality of corrugated fins are provided between the thin plate tubes. That is, the heat exchanger is composed of tanks 16a (18a) and 16b (18b), tubes and fins.
  • the upper tank 16 a of the condenser 16 and the upper tank 18 a of the evaporator 18 are connected by a refrigerant trachea 19.
  • the lower tank 16 b of the condenser 16 and the lower tank 18 b of the evaporator 18 are connected by a refrigerant liquid pipe 20. These connections form a closed circuit refrigerant cycle.
  • a refrigerant is sealed inside the refrigerant cycle. This refrigerant flow is indicated by broken-line arrows in the pipe.
  • the partition plate 13 is inclined toward the evaporator 18 at a position below the upper tank 18a of the evaporator 18 and inclined toward the condenser 16 at a position above the lower tank 16b of the condenser 16. As shown, a bent portion 21 is provided.
  • the inside air section 15 is provided with a control box 26 for controlling the inside air circulating blower 5 and the outside air blower 17.
  • the air that has become hot due to the heat generated by the communication device housed in the rack 3 of the cabinet 2 is taken into the fan unit 6.
  • the high temperature air blown out by the blower 5 for circulating inside air passes through the inside air duct 9 and flows into the heat exchange device 8 from the inside air suction port 22 of the heat exchange device 8. Thereafter, the air flows through the inside air passage 27 formed by the partition plate 13 and the main body case 12 downward.
  • the flow of this high temperature air is indicated by an arrow (A).
  • the flow direction of the high-temperature air and the evaporator 18 are in a parallel relationship, and the high-temperature air has a straightness in the downward direction.
  • the high temperature air flowing downward by the bent portion 21 provided on the partition plate 13 is turned to the evaporator 18 side on the upper side of the evaporator 18.
  • high temperature air also flows into the upper part of the evaporator 18. Accordingly, the high-temperature air passes through the evaporator 18 in a state where the wind speed distribution is not biased between the upper and lower parts. Therefore, the heat exchange efficiency in the evaporator 18 can be improved.
  • the refrigerant evaporates due to heat absorption from the high-temperature air, and flows into the condenser 16 through the refrigerant trachea 19.
  • the high-temperature air cooled by the endothermic action accompanying the evaporation of the refrigerant in the evaporator 18 returns to the cabinet 2 from the inside air supply port 23 to cool the communication device.
  • the flow direction of the outside air and the condenser 16 are parallel to each other, and the outside air blown by the outside air blower 17 has an upward straightness, so that the outside air flows more easily to the upper part than the lower part of the condenser 16.
  • the outside air flowing upward by the bent portion 21 provided in the partition plate 13 is turned to the condenser 16 side on the lower side of the condenser 16. For this reason, outside air easily flows into the lower part of the condenser 16. Therefore, the outside air passes through the condenser 16 in a state where the wind speed distribution is not biased between the upper part and the lower part. Therefore, the heat exchange efficiency in the condenser 16 can be improved.
  • the refrigerant is condensed by heat radiation to the outside air, and flows again into the evaporator 18 through the refrigerant liquid pipe 20.
  • the outside air whose temperature has been raised by heat exchange with the refrigerant in the condenser 16 is discharged from the exhaust port 25 to the outdoors.
  • the wind speed distribution passing through the evaporator 18 and the condenser 16 can be improved by the bent portion 21 provided in the partition plate 13. Therefore, the heat exchange efficiency of the evaporator 18 and the condenser 16 is improved. Therefore, the cooling capacity as the heat exchange device 8 can be improved.
  • the partition plate 13 is provided with one bent portion 21.
  • a plurality of bent portions may be provided, and the air flowing into the condenser 16 and the evaporator 18 is changed stepwise by providing a plurality of bent portions. You may let them.
  • the heat exchanging device 8 of the present embodiment has the main body case 12, the partition plate 13 that divides the inside of the main body case 12 into the independent internal air compartment 15 and the external air compartment 14, and the internal air compartment 15.
  • a blower 5 for circulating inside air that blows air and an outside air blower 17 that blows air to the outside air section 14 are provided.
  • the condenser 16 and the evaporator 18 are connected by a refrigerant air pipe 19 and a refrigerant liquid pipe 20 to form a refrigerant cycle.
  • the bent portion 21 is inclined in the same direction as a line connecting the condenser 16 and the evaporator 18. Further, at least one of the bent portions 21 is located on the downstream side of the upstream end portion of the air flowing in parallel with the evaporator 18 and the condenser 16.
  • the bent portion 21 is provided at a position downstream of the upstream end portion of the air flowing in parallel with the evaporator 18 and the condenser 16, so that the air is blown from each blower and has a straight traveling property. Air that tends to flow a lot downstream is diverted to the heat exchanger. For this reason, air is blown also to the air path upstream side of the heat exchanger, and the wind speed of the air passing through the heat exchanger can be made more uniform. Therefore, an effect that the cooling performance is improved can be obtained.
  • the heating element storage device corresponding to the base station 1 of the present embodiment is one in which the heat exchange device 8 is mounted. Thereby, the effect that cooling performance improves can be acquired.
  • FIG. 3 is a side view of the heat exchange device according to the second embodiment of the present invention. 3, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the evaporator 18 is disposed so as to be inclined so that the lower part is on the side of the partition plate 13 and the upper part is on the side opposite to the partition plate 13.
  • the condenser 16 is disposed so as to be inclined so that its upper part is close to the partition plate 13 side and its lower part is close to the cabinet 2 side.
  • the high-temperature air flowing downward in the inside air air passage 27 has a straightness in the downward direction.
  • the ventilation path of the evaporator 18 is formed so as to cross the inside air path 27, the high-temperature air having straightness inevitably passes through the entire ventilation path of the evaporator 18 almost uniformly. Therefore, the heat exchange efficiency of the evaporator 18 can be improved.
  • bent portion 21 is provided in the vicinity of the lower tank 18b of the evaporator 18, high-temperature air having a downward straightness is turned to the evaporator 18 side and easily flows into the evaporator 18. .
  • the cooling capacity of the heat exchange device 8 can be improved.
  • the heat exchanging device 8 of the present embodiment partitions the main body case 12 having the inside air supply port 23 and the exhaust port 25 and the inside of the main body case 12 into the independent inside air compartment 15 and the outside air compartment 14.
  • a partition plate 13 an inside air circulation fan 5 that blows air to the inside air section 15, and an outside air blower 17 that blows air to the outside air section 14 are provided.
  • the evaporator 18 provided in the inside air division 15 and evaporating a refrigerant
  • the condenser 16 and the evaporator 18 are connected by a refrigerant trachea 19 and a refrigerant liquid pipe 20 to form a refrigerant cycle.
  • the evaporator 18 is disposed in the inside air section 15 so that the air that has passed through the evaporator 18 is directed to the inside air supply port 23 of the main body case 12.
  • the condenser 16 is disposed in an inclined manner in the outside air section 14 so that the air that has passed through the condenser 16 is directed to the exhaust port 25 of the main body case 12.
  • FIG. 4 is a side view of the heat exchange device according to Embodiment 3 of the present invention. 4, the same components as those in FIGS. 1, 2, and 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the evaporator 18 is disposed so as to be inclined so that the upper part thereof is close to the partition plate 13 side and the lower part thereof is close to the cabinet 2 side.
  • the inside air supply port 23 is provided below the evaporator 18 outside the inside air section 15 of the main body case 12.
  • the high-temperature air flowing downward in the inside air air passage 27 has a straightness in the downward direction.
  • the ventilation path of the evaporator 18 is formed so as to cross the inside air path 27, the high-temperature air having straightness inevitably passes through the entire ventilation path of the evaporator 18 almost uniformly. Therefore, the heat exchange efficiency of the evaporator 18 can be improved.
  • the refrigerant evaporated by the heat absorption from the high temperature air has a high flow velocity, and the pressure loss in the refrigerant trachea is larger than that of the liquid refrigerant.
  • the upper part of the condenser 16 into which the gaseous refrigerant flows and the upper part of the evaporator 18 from which the gaseous refrigerant flows out are on the partition plate 13 side.
  • the condenser 16 is disposed so as to be inclined so that the air passing through the condenser 16 is directed toward the exhaust port 25 of the main body case 12. Therefore, the length of the refrigerant trachea connecting the two can be shortened. Therefore, the pressure loss in the refrigerant trachea can be reduced, and the refrigerant circulation amount increases. Therefore, the cooling capacity can be improved.
  • the position of the inside air supply port 23 can be set lower than in the first and second embodiments. Therefore, the communication equipment accommodated in the lower part of the rack can be efficiently cooled by the cooled inside air blown out from the inside air supply port 23 into the cabinet 2.
  • the heat exchange device 8 of the present embodiment includes the main body case 12 having the exhaust port 25, the partition plate 13 that divides the interior of the main body case 12 into the independent internal air compartment 15 and the external air compartment 14, and the internal air.
  • the inside air circulation blower 5 for blowing air to the section 15 and the outside air blower 17 for blowing air to the outside air section 14 are provided.
  • coolant are provided.
  • the condenser 16 and the evaporator 18 are connected by a refrigerant air pipe 19 and a refrigerant liquid pipe 20 to form a refrigerant cycle.
  • the evaporator 18 is inclined and arranged so that the outlet of the gaseous refrigerant that has passed through the evaporator 18 approaches the partition plate 13 side.
  • the condenser 16 is disposed so as to be inclined so that the air that has passed through the condenser 16 is directed toward the exhaust port 25 of the main body case 12.
  • the heat exchange device can improve the cooling capacity by improving the wind speed distribution passing through the heat exchanger such as an evaporator and a condenser by providing a bent portion that changes the wind direction in the partition plate. it can. Therefore, it is useful as a heat exchange device and a heating element storage device using the heat exchange device.

Abstract

A heat exchange device (8) is provided with: a body case (12); a partition plate (13) for dividing the inside of the body case (12) into an internal-air compartment (15) and an external-air compartment (14), which are independent of each other; an internal-air circulation blower (5) for delivering air into the internal-air compartment (15); an external-air blower (17) for delivering air into the external-air compartment (14); an evaporator (18) provided in the internal-air compartment (15) and evaporating a refrigerant; a condenser (16) provided within the external-air compartment (14) and condensing the refrigerant; and at least one or more bends (21) provided to the partition plate (13). The condenser (16) and the evaporator (18) are connected by a refrigerant gas pipe (19) and a refrigerant liquid pipe (20) to form a refrigerant cycle. The bends (21) are tilted in the same direction as a line which connects the condenser (16) and the evaporator (18). At least one of the bends (21) is located downstream of the upstream end of air which flows parallel to the condenser (16) and the evaporator (18).

Description

熱交換装置とそれを用いた発熱体収納装置Heat exchange device and heating element storage device using the same
 本発明は、熱交換装置とそれを用いた発熱体収納装置に関する。 The present invention relates to a heat exchange device and a heating element storage device using the heat exchange device.
 従来、この種の熱交換装置は、携帯電話の基地局のような、内部に発熱を伴う電子部品等を備える、密閉された収容箱内の冷却に用いられる。 Conventionally, this type of heat exchanging device is used for cooling inside a sealed container box that includes electronic components that generate heat, such as a base station of a mobile phone.
 近年、電子部品の高性能化と制御基板に対する電子部品の高密度化が進み、制御基板からの発熱量は飛躍的に増加している。それとともに、電子部品等の収容箱の小型化も進み、冷却機器の高性能化及び小型化が求められている。 In recent years, higher performance of electronic components and higher density of electronic components with respect to the control board have progressed, and the amount of heat generated from the control board has increased dramatically. Along with this, miniaturization of storage boxes for electronic components and the like has progressed, and high performance and miniaturization of cooling devices are required.
 この求めに応じて、構成部品が少なく、熱移動量が大きい冷却方式として、ヒートパイプを用いた冷却方法が知られている(例えば、特許文献1を参照)。 In response to this requirement, a cooling method using a heat pipe is known as a cooling method with few components and a large amount of heat transfer (see, for example, Patent Document 1).
 しかしながら、ヒートパイプは、沸騰蒸発して上昇する冷媒蒸気と凝縮液化されて降下する冷媒液が同じ管内を移動する。このため、互いに対抗しあって冷媒循環の効率が悪くなり、熱交換効率が悪いという問題がある。そこで、冷媒が沸騰蒸発する蒸発器と冷媒が凝縮液化する凝縮器とを分ける。蒸発器にて沸騰蒸発した冷媒が凝縮器へと移動するために蒸発器と凝縮器を連通させる冷媒蒸気管と、凝縮器にて凝縮液化した冷媒が蒸発器へと移動するために凝縮器と蒸発器を連通させる冷媒液管により、冷媒回路を形成する。これにより、冷媒を循環させることで効率良く放熱させることができる沸騰冷却装置が知られている(例えば、特許文献2を参照)。 However, in the heat pipe, the refrigerant vapor that rises by boiling and the refrigerant liquid that condenses and descends move in the same pipe. For this reason, there is a problem that the refrigerant circulation efficiency deteriorates against each other and the heat exchange efficiency is poor. Therefore, the evaporator in which the refrigerant evaporates and the condenser in which the refrigerant is condensed and liquefied are separated. In order for the refrigerant boiling and evaporated in the evaporator to move to the condenser, a refrigerant vapor pipe for connecting the evaporator and the condenser, and for the refrigerant condensed and liquefied in the condenser to move to the evaporator, A refrigerant circuit is formed by a refrigerant liquid pipe that communicates the evaporator. Thus, a boiling cooling device that can efficiently dissipate heat by circulating a refrigerant is known (see, for example, Patent Document 2).
 以下、従来の沸騰冷却装置について、図5を参照しながら説明する。図5は、従来の沸騰冷却装置の側面図である。 Hereinafter, a conventional boiling cooling device will be described with reference to FIG. FIG. 5 is a side view of a conventional boiling cooling device.
 図5に示すように、沸騰冷却装置101は内部に発熱体102を収容する筐体103に取り付けられる。 As shown in FIG. 5, the boiling cooling device 101 is attached to a housing 103 that houses a heating element 102 therein.
 沸騰冷却装置101は、高温側流体と低温冷媒との間で熱交換を行う高温側熱交換器104と、低温側空気と高温冷媒との間で熱交換を行う低温側熱交換器105とから構成される。また沸騰冷却装置101は、高温側熱交換器104と低温側熱交換器105を連結する連結管106と、高温側熱交換器104に高温側流体を送風する高温側送風機107と、低温側熱交換器105に低温側空気を送風する低温側送風機108とから構成される。 The boiling cooling device 101 includes a high temperature side heat exchanger 104 that performs heat exchange between the high temperature side fluid and the low temperature refrigerant, and a low temperature side heat exchanger 105 that performs heat exchange between the low temperature side air and the high temperature refrigerant. Composed. The boiling cooling device 101 includes a connecting pipe 106 that connects the high temperature side heat exchanger 104 and the low temperature side heat exchanger 105, a high temperature side blower 107 that blows the high temperature side fluid to the high temperature side heat exchanger 104, and low temperature side heat. The exchanger 105 includes a low-temperature side fan 108 that blows low-temperature side air.
 高温側熱交換器104と低温側熱交換器105と連結管106により形成された閉回路内には、冷媒が封入されている。 A refrigerant is sealed in a closed circuit formed by the high temperature side heat exchanger 104, the low temperature side heat exchanger 105, and the connecting pipe 106.
 筐体103内部の高温空気は、内気取入口109から沸騰冷却装置101の背面に設けられたダクト状の内気導入路110を通る。そして、高温空気は、高温側熱交換器104に流入し、高温側熱交換器104にて熱交換を行い、高温側送風機107により筐体103内へ戻される。 The high temperature air inside the housing 103 passes through a duct-shaped inside air introduction path 110 provided on the back surface of the boiling cooling device 101 from the inside air inlet 109. Then, the high temperature air flows into the high temperature side heat exchanger 104, performs heat exchange with the high temperature side heat exchanger 104, and is returned into the housing 103 by the high temperature side blower 107.
 このとき、高温側熱交換器104の内部の冷媒は高温空気との熱交換により蒸発し、連結管106を通り、低温側熱交換器105へ流入する。 At this time, the refrigerant in the high temperature side heat exchanger 104 evaporates by heat exchange with high temperature air, passes through the connecting pipe 106, and flows into the low temperature side heat exchanger 105.
 一方、低温側送風機108の作動により外気取入口111から取り込まれた外気は、高温側熱交換器104と低温側熱交換器105との間に設けられた送風通路112を通る。そして、外気は、低温側熱交換器105に流入し、低温側熱交換器105にて熱交換を行った後、低温側送風機108により排気される。 On the other hand, the outside air taken in from the outside air inlet 111 by the operation of the low temperature side blower 108 passes through the air passage 112 provided between the high temperature side heat exchanger 104 and the low temperature side heat exchanger 105. Then, the outside air flows into the low temperature side heat exchanger 105, performs heat exchange with the low temperature side heat exchanger 105, and is then exhausted by the low temperature side blower 108.
 このとき、低温側熱交換器105内の冷媒は、外気との熱交換により凝縮し、連結管106を通り、再び、高温側熱交換器104へ流入する。このように冷媒が自然循環することで、筐体103内を冷却する。 At this time, the refrigerant in the low temperature side heat exchanger 105 is condensed by heat exchange with the outside air, passes through the connecting pipe 106, and flows into the high temperature side heat exchanger 104 again. Thus, the inside of the housing 103 is cooled by the natural circulation of the refrigerant.
 沸騰冷却装置101においては、それぞれ高温側熱交換器104及び低温側熱交換器105を空気が通過した後、高温側送風機107及び低温側送風機108が、空気を吸込む。このため、風路長が短くなる側の熱交換器104、105の通風路に流れる空気が多くなる傾向がある。したがって、熱交換器104、105を通過する風速が不均一となる。 In the boiling cooling device 101, after the air passes through the high temperature side heat exchanger 104 and the low temperature side heat exchanger 105, respectively, the high temperature side blower 107 and the low temperature side blower 108 suck in the air. For this reason, there exists a tendency for the air which flows into the ventilation path of the heat exchangers 104 and 105 by the side where an air path length becomes short to increase. Therefore, the wind speed passing through the heat exchangers 104 and 105 is not uniform.
特開昭60-113498号公報JP-A-60-113498 特開平10-261887号公報Japanese Patent Laid-Open No. 10-261887
 このような従来の沸騰冷却装置においては、熱交換器を通過する風速が不均一となるため、冷却性能を十分に発揮できないという問題を有していた。 Such a conventional boiling cooling device has a problem that the cooling speed cannot be sufficiently exhibited because the wind speed passing through the heat exchanger becomes uneven.
 そこで本発明は、上記従来の問題を解決する。本発明は、熱交換器を通過する風速をより均等化して、冷却性能を向上することができる熱交換装置を提供することを目的とする。 Therefore, the present invention solves the above conventional problems. An object of this invention is to provide the heat exchange apparatus which can equalize the wind speed which passes a heat exchanger more, and can improve cooling performance.
 この目的を達成するために、本発明の熱交換装置は、本体ケースと、本体ケース内部をそれぞれ独立した内気区画と外気区画に区画する仕切板と、内気区画に空気を送風する内気循環用送風機と、外気区画に空気を送風する外気送風機とを備える。また、内気区画内に設けられ、冷媒を蒸発する蒸発器と、外気区画内に設けられ、冷媒を凝縮する凝縮器と、仕切板に設けられた、少なくとも1つ以上の屈曲部とを備える。また、凝縮器と蒸発器は、冷媒気管、及び冷媒液管で接続して、冷媒サイクルを形成する。また、屈曲部は、凝縮器と蒸発器とを結ぶ線と同方向の傾斜をなし、屈曲部の少なくとも1つは、蒸発器及び凝縮器と平行に流れる空気の上流側端部よりも下流側に位置する。これにより、所期の目的を達成する。 In order to achieve this object, a heat exchange device according to the present invention includes a main body case, a partition plate that divides the inside of the main body case into independent internal air compartments and external air compartments, and an internal air circulation blower that blows air into the internal air compartments. And an outside air blower for blowing air to the outside air section. Moreover, it is provided with the evaporator which evaporates a refrigerant | coolant provided in an internal air division, the condenser provided in an external air division, and condenses a refrigerant | coolant, and the at least 1 or more bending part provided in the partition plate. The condenser and the evaporator are connected by a refrigerant air pipe and a refrigerant liquid pipe to form a refrigerant cycle. Further, the bent portion has an inclination in the same direction as a line connecting the condenser and the evaporator, and at least one of the bent portions is downstream of the upstream end portion of the air flowing in parallel with the evaporator and the condenser. Located in. This achieves the intended purpose.
 本発明によれば、蒸発器及び凝縮器と平行に流れる空気の上流側端部よりも下流側となる位置に屈曲部を設けた構成としたことにより、内気循環用送風機と外気送風機から送風され直進性をもって風路下流側に多く流れる傾向にある空気を熱交換装置側に変向させる。このため、熱交換装置の風路上流側にも空気が送風され、熱交換装置を通過する空気の風速をより均等化することができる。したがって、冷却性能が向上するという効果を得ることができる。 According to the present invention, since the bent portion is provided at a position downstream of the upstream end of the air flowing in parallel with the evaporator and the condenser, the air is blown from the inside air circulation blower and the outside air blower. Air that tends to flow a lot on the downstream side of the air passage with straightness is diverted to the heat exchanger side. For this reason, air is blown also to the air path upstream side of the heat exchange device, and the wind speed of the air passing through the heat exchange device can be made more uniform. Therefore, an effect that the cooling performance is improved can be obtained.
 また、本発明によれば、蒸発器と凝縮器をそれぞれの区画内に傾斜させて配置する構成としたことにより、内気循環用送風機と外気送風機から送風され、直進性をもった空気が風向を変えることなく、熱交換装置に流入することができる。このため、熱交換装置を通過する空気の風速をより均等化することができる。したがって、冷却性能が向上するという効果を得ることができる。 Further, according to the present invention, the evaporator and the condenser are arranged to be inclined in the respective sections, so that the air that is blown from the inside-air circulation blower and the outside-air blower has a straight direction and has a wind direction. It can flow into the heat exchange device without change. For this reason, the wind speed of the air which passes a heat exchange apparatus can be equalized more. Therefore, an effect that the cooling performance is improved can be obtained.
図1は、本発明の実施の形態1の発熱体収納装置を示す図である。FIG. 1 is a diagram showing a heating element storage device according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1の熱交換装置とそれを用いた発熱体収納装置の側面図である。FIG. 2 is a side view of the heat exchange device according to Embodiment 1 of the present invention and a heating element storage device using the heat exchange device. 図3は、本発明の実施の形態2の熱交換装置の側面図である。FIG. 3 is a side view of the heat exchange device according to the second embodiment of the present invention. 図4は、本発明の実施の形態3の熱交換装置の側面図である。FIG. 4 is a side view of the heat exchange device according to Embodiment 3 of the present invention. 図5は、従来の沸騰冷却装置の側面図である。FIG. 5 is a side view of a conventional boiling cooling device.
 以下、本発明の実施の形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態1)
 図1は、本発明の実施の形態1の発熱体収納装置を示す図である。図2は、本発明の実施の形態1の熱交換装置とそれを用いた発熱体収納装置の側面図である。
(Embodiment 1)
FIG. 1 is a diagram showing a heating element storage device according to Embodiment 1 of the present invention. FIG. 2 is a side view of the heat exchange device according to Embodiment 1 of the present invention and a heating element storage device using the heat exchange device.
 図1、図2に示すように、発熱体収納装置に相当する携帯電話の基地局1は、函状のキャビネット2と、ラック3と、ファンユニット6と、熱交換装置8と、内気ダクト9と、ドアカバー10により構成されている。ラック3は、キャビネット2内に設けた通信機器を収容している。ファンユニット6は、ラック3上部に設置した送風機ケース4内に内気循環用送風機5を備えている。熱交換装置8は、キャビネット2のドア7に設けられている。内気ダクト9は、内気循環用送風機5から送風された空気を熱交換装置8に導く。ドアカバー10は、熱交換装置8を覆っている。 As shown in FIGS. 1 and 2, a mobile phone base station 1 corresponding to a heating element storage device includes a box-shaped cabinet 2, a rack 3, a fan unit 6, a heat exchange device 8, and an inside air duct 9. And the door cover 10. The rack 3 accommodates communication equipment provided in the cabinet 2. The fan unit 6 includes a blower 5 for circulating inside air in a blower case 4 installed on the top of the rack 3. The heat exchange device 8 is provided on the door 7 of the cabinet 2. The inside air duct 9 guides the air blown from the inside air circulation blower 5 to the heat exchange device 8. The door cover 10 covers the heat exchange device 8.
 熱交換装置8は、その周囲に設けたフランジ11をボルトなどによりドア7に固定する。 The heat exchanging device 8 fixes a flange 11 provided around the heat exchanging device 8 to the door 7 with a bolt or the like.
 熱交換装置8の外郭をなす本体ケース12の内部は、仕切板13により、ドアカバー10側の外気区画14、キャビネット2側の内気区画15に区画されている。 The inside of the main body case 12 that forms the outline of the heat exchange device 8 is partitioned by a partition plate 13 into an outside air compartment 14 on the door cover 10 side and an inside air compartment 15 on the cabinet 2 side.
 外気区画14の上方には凝縮器16をその通風方向がほぼ水平となるように配置し、下方には外気送風機17を配置している。内気区画15には、蒸発器18を、その通風方向がほぼ水平となるように凝縮器16よりも低い位置に配置している。 The condenser 16 is arranged above the outside air section 14 so that the ventilation direction is substantially horizontal, and the outside air blower 17 is arranged below. In the inside air section 15, the evaporator 18 is disposed at a position lower than the condenser 16 so that the ventilation direction is substantially horizontal.
 本体ケース12には、内気区画15の外郭の蒸発器18の上方に内気吸込口22を、蒸発器18と対向する位置に内気給気口23を設けている。また、外気区画14の外郭の外気送風機17の吸込口と対向する位置に外気吸込口24を、凝縮器16と対向する位置に排気口25を設けている。 The main body case 12 is provided with an inside air inlet 22 above the evaporator 18 outside the inside air compartment 15 and an inside air inlet 23 at a position facing the evaporator 18. In addition, an outside air suction port 24 is provided at a position facing the suction port of the outside air blower 17 outside the outside air section 14, and an exhaust port 25 is provided at a position facing the condenser 16.
 凝縮器16と蒸発器18は、上部と下部に両端を封止された円筒状のタンクを備え、上部と下部のタンク管の間が内部に多穴を有する複数の薄板チューブにより連通され、隣接する薄板チューブの間には波状のフィンを複数枚設けた構造の熱交換器である。すなわち、熱交換器は、タンク16a(18a)、16b(18b)、チューブおよびフィンから構成される。 The condenser 16 and the evaporator 18 are provided with cylindrical tanks sealed at both ends at the upper and lower parts, and the upper and lower tank pipes are communicated with each other by a plurality of thin plate tubes having a plurality of holes therein. The heat exchanger has a structure in which a plurality of corrugated fins are provided between the thin plate tubes. That is, the heat exchanger is composed of tanks 16a (18a) and 16b (18b), tubes and fins.
 凝縮器16の上部タンク16aと蒸発器18の上部タンク18aは冷媒気管19により接続される。凝縮器16の下部タンク16bと蒸発器18の下部タンク18bは冷媒液管20により接続される。これらの接続によって閉回路の冷媒サイクルが形成されている。冷媒サイクルの内部には冷媒が封入されている。この冷媒の流れが配管内の破線矢印で示されている。 The upper tank 16 a of the condenser 16 and the upper tank 18 a of the evaporator 18 are connected by a refrigerant trachea 19. The lower tank 16 b of the condenser 16 and the lower tank 18 b of the evaporator 18 are connected by a refrigerant liquid pipe 20. These connections form a closed circuit refrigerant cycle. A refrigerant is sealed inside the refrigerant cycle. This refrigerant flow is indicated by broken-line arrows in the pipe.
 冷媒気管19と冷媒液管20は、仕切板13を貫通している。その貫通部をガスケット等(図示せず)で封止することで外気区画14と内気区画15の独立性が確保されている。 The refrigerant trachea 19 and the refrigerant liquid pipe 20 penetrate the partition plate 13. The independence of the outside air compartment 14 and the inside air compartment 15 is ensured by sealing the penetration portion with a gasket or the like (not shown).
 仕切板13は、蒸発器18の上部タンク18aよりも下方となる位置で蒸発器18側に傾斜するように、かつ凝縮器16の下部タンク16bよりも上方となる位置で凝縮器16側に傾斜するように、屈曲部21を設けている。 The partition plate 13 is inclined toward the evaporator 18 at a position below the upper tank 18a of the evaporator 18 and inclined toward the condenser 16 at a position above the lower tank 16b of the condenser 16. As shown, a bent portion 21 is provided.
 内気区画15には、内気循環用送風機5及び外気送風機17を制御する制御ボックス26を設けている。 The inside air section 15 is provided with a control box 26 for controlling the inside air circulating blower 5 and the outside air blower 17.
 このような構成とすることにより、キャビネット2のラック3に収容された通信機器の発熱により高温となった空気は、ファンユニット6に取り込まれる。内気循環用送風機5により吹出された高温空気は、内気ダクト9を通過して、熱交換装置8の内気吸込口22より熱交換装置8内部に流入する。その後、仕切板13と本体ケース12により形成された内気風路27を下方に向かって流れる。この高温空気の流れを矢印(A)で示す。 With such a configuration, the air that has become hot due to the heat generated by the communication device housed in the rack 3 of the cabinet 2 is taken into the fan unit 6. The high temperature air blown out by the blower 5 for circulating inside air passes through the inside air duct 9 and flows into the heat exchange device 8 from the inside air suction port 22 of the heat exchange device 8. Thereafter, the air flows through the inside air passage 27 formed by the partition plate 13 and the main body case 12 downward. The flow of this high temperature air is indicated by an arrow (A).
 高温空気の流れ方向と蒸発器18は平行関係にあり、かつ高温空気は下方向への直進性をもっているため、蒸発器18の上部よりも下部に高温空気が流れやすい。しかし、仕切板13に設けた屈曲部21により下向きに流れる高温空気が蒸発器18の上部側方で蒸発器18側に変向される。このため、蒸発器18の上部にも高温空気が流入する。したがって、高温空気は上部と下部で風速分布が偏らない状態で蒸発器18を通過する。よって、蒸発器18における熱交換効率を向上させることができる。 The flow direction of the high-temperature air and the evaporator 18 are in a parallel relationship, and the high-temperature air has a straightness in the downward direction. However, the high temperature air flowing downward by the bent portion 21 provided on the partition plate 13 is turned to the evaporator 18 side on the upper side of the evaporator 18. For this reason, high temperature air also flows into the upper part of the evaporator 18. Accordingly, the high-temperature air passes through the evaporator 18 in a state where the wind speed distribution is not biased between the upper and lower parts. Therefore, the heat exchange efficiency in the evaporator 18 can be improved.
 蒸発器18において、冷媒は高温空気からの吸熱により蒸発し、冷媒気管19を通って凝縮器16へ流入する。蒸発器18にて冷媒の蒸発に伴う吸熱作用により冷却された高温空気は、内気給気口23よりキャビネット2内へ戻り、通信機器の冷却を行う。 In the evaporator 18, the refrigerant evaporates due to heat absorption from the high-temperature air, and flows into the condenser 16 through the refrigerant trachea 19. The high-temperature air cooled by the endothermic action accompanying the evaporation of the refrigerant in the evaporator 18 returns to the cabinet 2 from the inside air supply port 23 to cool the communication device.
 外気送風機17により屋外から熱交換装置8内に取り込まれた外気は、仕切板13と本体ケース12により形成された外気風路28を上方に向かって流れる。この外気の流れを矢印(B)で示す。 External air taken into the heat exchanging device 8 from the outside by the outdoor air blower 17 flows upward in the outdoor air passage 28 formed by the partition plate 13 and the main body case 12. This flow of outside air is indicated by an arrow (B).
 外気の流れ方向と凝縮器16は平行関係にあり、かつ外気送風機17により送風された外気は上向きの直進性をもっているため、凝縮器16の下部よりも上部に外気が流れやすい。しかし、仕切板13に設けた屈曲部21により上向きに流れる外気が凝縮器16の下部側方で凝縮器16側に変向される。このため、凝縮器16の下部にも外気が流入しやすくなる。したがって、外気は上部と下部で風速分布が偏らない状態で凝縮器16を通過する。よって、凝縮器16における熱交換効率を向上させることができる。 The flow direction of the outside air and the condenser 16 are parallel to each other, and the outside air blown by the outside air blower 17 has an upward straightness, so that the outside air flows more easily to the upper part than the lower part of the condenser 16. However, the outside air flowing upward by the bent portion 21 provided in the partition plate 13 is turned to the condenser 16 side on the lower side of the condenser 16. For this reason, outside air easily flows into the lower part of the condenser 16. Therefore, the outside air passes through the condenser 16 in a state where the wind speed distribution is not biased between the upper part and the lower part. Therefore, the heat exchange efficiency in the condenser 16 can be improved.
 凝縮器16において、冷媒は外気への放熱により凝縮し、冷媒液管20を通って再び蒸発器18へ流入する。凝縮器16にて冷媒との熱交換により昇温された外気は排気口25より屋外へ排出される。 In the condenser 16, the refrigerant is condensed by heat radiation to the outside air, and flows again into the evaporator 18 through the refrigerant liquid pipe 20. The outside air whose temperature has been raised by heat exchange with the refrigerant in the condenser 16 is discharged from the exhaust port 25 to the outdoors.
 このようにキャビネット2からの出っ張りを小さくした熱交換装置8においても、仕切板13に設けた屈曲部21により蒸発器18及び凝縮器16を通過する風速分布を改善できる。したがって、蒸発器18及び凝縮器16の熱交換効率がそれぞれ向上する。よって、熱交換装置8としての冷却能力を向上させることができる。 As described above, even in the heat exchange device 8 in which the protrusion from the cabinet 2 is reduced, the wind speed distribution passing through the evaporator 18 and the condenser 16 can be improved by the bent portion 21 provided in the partition plate 13. Therefore, the heat exchange efficiency of the evaporator 18 and the condenser 16 is improved. Therefore, the cooling capacity as the heat exchange device 8 can be improved.
 なお、本実施の形態において、凝縮器16の下部と蒸発器18の上部の高さ方向で重なり合う構成としたため、仕切板13には1ヶ所の屈曲部21を設けた。しかし、凝縮器16と蒸発器18の位置関係により、複数の屈曲部を設けても良く、また、複数の屈曲部を設けて凝縮器16及び蒸発器18へ流入する空気を段階的に変向させても良い。 In this embodiment, since the lower part of the condenser 16 and the upper part of the evaporator 18 are overlapped in the height direction, the partition plate 13 is provided with one bent portion 21. However, depending on the positional relationship between the condenser 16 and the evaporator 18, a plurality of bent portions may be provided, and the air flowing into the condenser 16 and the evaporator 18 is changed stepwise by providing a plurality of bent portions. You may let them.
 以上のように、本実施の形態の熱交換装置8は、本体ケース12と、本体ケース12内部をそれぞれ独立した内気区画15と外気区画14に区画する仕切板13と、内気区画15に空気を送風する内気循環用送風機5と、外気区画14に空気を送風する外気送風機17とを備える。また、内気区画15内に設けられ、冷媒を蒸発する蒸発器18と、外気区画14内に設けられ、冷媒を凝縮する凝縮器16と、仕切板13に設けられた、少なくとも1つ以上の屈曲部21とを備える。また、凝縮器16と蒸発器18は、冷媒気管19、及び冷媒液管20で接続して、冷媒サイクルを形成する。また、屈曲部21は、凝縮器16と蒸発器18とを結ぶ線と同方向の傾斜をなす。また、屈曲部21の少なくとも1つは、蒸発器18及び凝縮器16と平行に流れる空気の上流側端部よりも下流側に位置する。 As described above, the heat exchanging device 8 of the present embodiment has the main body case 12, the partition plate 13 that divides the inside of the main body case 12 into the independent internal air compartment 15 and the external air compartment 14, and the internal air compartment 15. A blower 5 for circulating inside air that blows air and an outside air blower 17 that blows air to the outside air section 14 are provided. In addition, an evaporator 18 that evaporates the refrigerant, an evaporator 18 that evaporates the refrigerant, a condenser 16 that condenses the refrigerant, and at least one bent provided in the partition plate 13. Part 21. Further, the condenser 16 and the evaporator 18 are connected by a refrigerant air pipe 19 and a refrigerant liquid pipe 20 to form a refrigerant cycle. Further, the bent portion 21 is inclined in the same direction as a line connecting the condenser 16 and the evaporator 18. Further, at least one of the bent portions 21 is located on the downstream side of the upstream end portion of the air flowing in parallel with the evaporator 18 and the condenser 16.
 これにより、蒸発器18及び凝縮器16と平行に流れる空気の上流側端部よりも下流側となる位置に屈曲部21を設けた構成としたことにより、それぞれの送風機から送風され直進性をもって風路下流側に多く流れる傾向にある空気を熱交換器側に変向させる。このため、熱交換器の風路上流側にも空気が送風され、熱交換器を通過する空気の風速をより均等化することができる。したがって、冷却性能が向上するという効果を得ることができる。 Thus, the bent portion 21 is provided at a position downstream of the upstream end portion of the air flowing in parallel with the evaporator 18 and the condenser 16, so that the air is blown from each blower and has a straight traveling property. Air that tends to flow a lot downstream is diverted to the heat exchanger. For this reason, air is blown also to the air path upstream side of the heat exchanger, and the wind speed of the air passing through the heat exchanger can be made more uniform. Therefore, an effect that the cooling performance is improved can be obtained.
 また、本実施の形態の基地局1に相当する発熱体収納装置は、熱交換装置8を搭載したものである。これにより、冷却性能が向上するという効果を得ることができる。 Further, the heating element storage device corresponding to the base station 1 of the present embodiment is one in which the heat exchange device 8 is mounted. Thereby, the effect that cooling performance improves can be acquired.
 (実施の形態2)
 図3は、本発明の実施の形態2の熱交換装置の側面図である。図3において、図1及び図2と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
(Embodiment 2)
FIG. 3 is a side view of the heat exchange device according to the second embodiment of the present invention. 3, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図3において、蒸発器18はその下部が仕切板13側、その上部が仕切板13と反対側となるように傾斜して配置されている。 3, the evaporator 18 is disposed so as to be inclined so that the lower part is on the side of the partition plate 13 and the upper part is on the side opposite to the partition plate 13.
 凝縮器16はその上部が仕切板13側、その下部がキャビネット2側に近接するように傾斜して配置されている。 The condenser 16 is disposed so as to be inclined so that its upper part is close to the partition plate 13 side and its lower part is close to the cabinet 2 side.
 上記構成において、内気風路27を下方に向かって流れる高温空気は、下方向への直進性をもっている。しかし、蒸発器18の通風路が内気風路27を斜交して形成されているため、直進性をもった高温空気が必然的に蒸発器18の通風路全面をほぼ均一に通過する。したがって、蒸発器18の熱交換効率を向上させることができる。 In the above configuration, the high-temperature air flowing downward in the inside air air passage 27 has a straightness in the downward direction. However, since the ventilation path of the evaporator 18 is formed so as to cross the inside air path 27, the high-temperature air having straightness inevitably passes through the entire ventilation path of the evaporator 18 almost uniformly. Therefore, the heat exchange efficiency of the evaporator 18 can be improved.
 さらに、屈曲部21を蒸発器18の下部タンク18bの近傍に設けているため、下方向への直進性をもった高温空気が蒸発器18側に変向され、蒸発器18へ流入しやすくなる。 Further, since the bent portion 21 is provided in the vicinity of the lower tank 18b of the evaporator 18, high-temperature air having a downward straightness is turned to the evaporator 18 side and easily flows into the evaporator 18. .
 凝縮器16側についても同様であり、外気送風機17により送風され外気風路28を上方に向かって流れる外気は、上方向への直進性をもっている。しかし、凝縮器16の通風路が外気風路28を斜交して形成されているため、直進性をもった外気は必然的に凝縮器16の通風路全面をほぼ均一に通過する。したがって、凝縮器16の熱交換効率を向上させることができる。 The same applies to the condenser 16 side, and the outside air that is blown by the outside air blower 17 and flows upward in the outside air passage 28 has a straightness in the upward direction. However, since the ventilation path of the condenser 16 is formed so as to cross the outside air path 28, the outside air having a straight traveling property inevitably passes through the entire ventilation path of the condenser 16 almost uniformly. Therefore, the heat exchange efficiency of the condenser 16 can be improved.
 蒸発器18及び凝縮器16の熱交換効率がそれぞれ向上することで、熱交換装置8としての冷却能力を向上させることができる。 Since the heat exchange efficiency of the evaporator 18 and the condenser 16 is improved, the cooling capacity of the heat exchange device 8 can be improved.
 以上のように、本実施の形態の熱交換装置8は、内気給気口23と排気口25を有する本体ケース12と、本体ケース12内部をそれぞれ独立した内気区画15と外気区画14に区画する仕切板13と、内気区画15に空気を送風する内気循環用送風機5と、外気区画14に空気を送風する外気送風機17とを備える。また、内気区画15内に設けられ、冷媒を蒸発する蒸発器18と、外気区画14内に設けられ、冷媒を凝縮する凝縮器16とを備える。また、凝縮器16と蒸発器18は冷媒気管19、及び冷媒液管20で接続して、冷媒サイクルを形成する。また、蒸発器18は、蒸発器18を通過した空気が本体ケース12の内気給気口23に向かうように内気区画15内に傾斜させて配置される。また、凝縮器16は、凝縮器16を通過した空気が本体ケース12の排気口25に向かうように外気区画14内に傾斜させて配置される。 As described above, the heat exchanging device 8 of the present embodiment partitions the main body case 12 having the inside air supply port 23 and the exhaust port 25 and the inside of the main body case 12 into the independent inside air compartment 15 and the outside air compartment 14. A partition plate 13, an inside air circulation fan 5 that blows air to the inside air section 15, and an outside air blower 17 that blows air to the outside air section 14 are provided. Moreover, the evaporator 18 provided in the inside air division 15 and evaporating a refrigerant | coolant, and the condenser 16 provided in the outside air division 14 and condensing a refrigerant | coolant are provided. Further, the condenser 16 and the evaporator 18 are connected by a refrigerant trachea 19 and a refrigerant liquid pipe 20 to form a refrigerant cycle. Further, the evaporator 18 is disposed in the inside air section 15 so that the air that has passed through the evaporator 18 is directed to the inside air supply port 23 of the main body case 12. Further, the condenser 16 is disposed in an inclined manner in the outside air section 14 so that the air that has passed through the condenser 16 is directed to the exhaust port 25 of the main body case 12.
 これにより、それぞれの送風機から送風され直進性をもった空気が風向を変えることなく熱交換器に流入することができる。したがって、熱交換器を通過する空気の風速をより均等化することができる。よって、冷却性能が向上するという効果を奏する。 This allows air that is blown from each blower and has straightness to flow into the heat exchanger without changing the wind direction. Therefore, the wind speed of the air passing through the heat exchanger can be made more uniform. Therefore, there is an effect that the cooling performance is improved.
 (実施の形態3)
 図4は、本発明の実施の形態3の熱交換装置の側面図である。図4において、図1、図2及び図3と同様の構成要素については同一の符号を付し、その詳細な説明は省略する。
(Embodiment 3)
FIG. 4 is a side view of the heat exchange device according to Embodiment 3 of the present invention. 4, the same components as those in FIGS. 1, 2, and 3 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図4において、蒸発器18はその上部が仕切板13側、その下部がキャビネット2側に近接するように傾斜して配置されている。 4, the evaporator 18 is disposed so as to be inclined so that the upper part thereof is close to the partition plate 13 side and the lower part thereof is close to the cabinet 2 side.
 また、内気給気口23は、本体ケース12の内気区画15の外郭の蒸発器18の下方に設けてある。 Also, the inside air supply port 23 is provided below the evaporator 18 outside the inside air section 15 of the main body case 12.
 上記構成において、内気風路27を下方に向かって流れる高温空気は、下方向への直進性をもっている。しかし、蒸発器18の通風路が内気風路27を斜交して形成されているため、直進性をもった高温空気が必然的に蒸発器18の通風路全面をほぼ均一に通過する。したがって、蒸発器18の熱交換効率を向上させることができる。 In the above configuration, the high-temperature air flowing downward in the inside air air passage 27 has a straightness in the downward direction. However, since the ventilation path of the evaporator 18 is formed so as to cross the inside air path 27, the high-temperature air having straightness inevitably passes through the entire ventilation path of the evaporator 18 almost uniformly. Therefore, the heat exchange efficiency of the evaporator 18 can be improved.
 また、蒸発器18において、高温空気からの吸熱により蒸発した冷媒は、流速が速く、液冷媒に比べて、冷媒気管での圧力損失が大きい。しかし、気体冷媒が流入する凝縮器16の上部と気体冷媒が流出する蒸発器18の上部が仕切板13側にある。これにより、凝縮器16は、凝縮器16を通過した空気が本体ケース12の排気口25に向かうように傾斜させて配置されている。したがって、両者を接続する冷媒気管の長さを短くすることができる。したがって、冷媒気管での圧力損失を低減することができ、冷媒循環量が増加する。よって、冷却能力を向上させることができる。 In the evaporator 18, the refrigerant evaporated by the heat absorption from the high temperature air has a high flow velocity, and the pressure loss in the refrigerant trachea is larger than that of the liquid refrigerant. However, the upper part of the condenser 16 into which the gaseous refrigerant flows and the upper part of the evaporator 18 from which the gaseous refrigerant flows out are on the partition plate 13 side. Thereby, the condenser 16 is disposed so as to be inclined so that the air passing through the condenser 16 is directed toward the exhaust port 25 of the main body case 12. Therefore, the length of the refrigerant trachea connecting the two can be shortened. Therefore, the pressure loss in the refrigerant trachea can be reduced, and the refrigerant circulation amount increases. Therefore, the cooling capacity can be improved.
 また、内気給気口23の位置を、実施の形態1、2に比べ、下方にすることができる。したがって、内気給気口23からキャビネット2内へ吹出した冷却された内気により、ラックの下部に収容された通信機器も効率よく冷却することができる。 Further, the position of the inside air supply port 23 can be set lower than in the first and second embodiments. Therefore, the communication equipment accommodated in the lower part of the rack can be efficiently cooled by the cooled inside air blown out from the inside air supply port 23 into the cabinet 2.
 以上のように、本実施の形態の熱交換装置8は、排気口25を有する本体ケース12と、本体ケース12内部をそれぞれ独立した内気区画15と外気区画14に区画する仕切板13と、内気区画15に空気を送風する内気循環用送風機5と、外気区画14に空気を送風する外気送風機17とを備える。また、内気区画15内に設けられ、冷媒を蒸発する蒸発器18と、外気区画14内に設けられ、冷媒を凝縮する凝縮器16とを備える。また、凝縮器16と蒸発器18は、冷媒気管19、及び冷媒液管20で接続して、冷媒サイクルを形成する。蒸発器18を通過した気体冷媒の流出口が仕切板13側に近づくように蒸発器18は傾斜させて配置される。また、凝縮器16は、凝縮器16を通過した空気が本体ケース12の排気口25に向かうように傾斜させて配置される。 As described above, the heat exchange device 8 of the present embodiment includes the main body case 12 having the exhaust port 25, the partition plate 13 that divides the interior of the main body case 12 into the independent internal air compartment 15 and the external air compartment 14, and the internal air. The inside air circulation blower 5 for blowing air to the section 15 and the outside air blower 17 for blowing air to the outside air section 14 are provided. Moreover, the evaporator 18 provided in the inside air division 15 and evaporating a refrigerant | coolant, and the condenser 16 provided in the outside air division 14 and condensing a refrigerant | coolant are provided. Further, the condenser 16 and the evaporator 18 are connected by a refrigerant air pipe 19 and a refrigerant liquid pipe 20 to form a refrigerant cycle. The evaporator 18 is inclined and arranged so that the outlet of the gaseous refrigerant that has passed through the evaporator 18 approaches the partition plate 13 side. Further, the condenser 16 is disposed so as to be inclined so that the air that has passed through the condenser 16 is directed toward the exhaust port 25 of the main body case 12.
 これにより、内気循環用送風機と外気送風機から送風され直進性をもった空気が風向を変えることなく熱交換器に流入することができる。したがって、熱交換器を通過する空気の風速をより均等化することができ、かつ、流速が速く、圧力損失が大きい冷媒気管19の長さを短くすることができる。よって、冷媒循環量が増加し、冷却能力が向上するという効果を奏する。 This allows air that is blown from the inside air circulation blower and the outside air blower to flow straight into the heat exchanger without changing the wind direction. Therefore, the wind speed of the air passing through the heat exchanger can be made more uniform, and the length of the refrigerant trachea 19 having a high flow velocity and a large pressure loss can be shortened. Therefore, the refrigerant circulation amount is increased, and the cooling capacity is improved.
 本発明にかかる熱交換装置は、仕切板に風向を変向させる屈曲部を設けることで、蒸発器及び凝縮器等の熱交換器を通過する風速分布を改善させ、冷却能力を向上させることができる。したがって、熱交換装置、及びそれを用いた発熱体収納装置として有用である。 The heat exchange device according to the present invention can improve the cooling capacity by improving the wind speed distribution passing through the heat exchanger such as an evaporator and a condenser by providing a bent portion that changes the wind direction in the partition plate. it can. Therefore, it is useful as a heat exchange device and a heating element storage device using the heat exchange device.
 1  基地局
 2  キャビネット
 3  ラック
 4  送風機ケース
 5  内気循環用送風機
 6  ファンユニット
 7  ドア
 8  熱交換装置
 9  内気ダクト
 10  ドアカバー
 11  フランジ
 12  本体ケース
 13  仕切板
 14  外気区画
 15  内気区画
 16  凝縮器
 16a  上部タンク
 16b  下部タンク
 17  外気送風機
 18  蒸発器
 18a  上部タンク
 18b  下部タンク
 19  冷媒気管
 20  冷媒液管
 21  屈曲部
 22  内気吸込口
 23  内気給気口
 24  外気吸込口
 25  排気口
 26  制御ボックス
 27  内気風路
 28  外気風路
DESCRIPTION OF SYMBOLS 1 Base station 2 Cabinet 3 Rack 4 Blower case 5 Blower for inside air circulation 6 Fan unit 7 Door 8 Heat exchange device 9 Inside air duct 10 Door cover 11 Flange 12 Main body case 13 Partition plate 14 Outside air compartment 15 Inside air compartment 16 Condenser 16a Upper tank 16b Lower tank 17 Outside air blower 18 Evaporator 18a Upper tank 18b Lower tank 19 Refrigerant air pipe 20 Refrigerant liquid pipe 21 Bent part 22 Inside air inlet 23 Inside air inlet 24 Outside air inlet 25 Exhaust opening 26 Control box 27 Inside air path 28 Outside air Wind path

Claims (4)

  1. 本体ケースと、
    前記本体ケース内部をそれぞれ独立した内気区画と外気区画に区画する仕切板と、
    前記内気区画に空気を送風する内気循環用送風機と、
    前記外気区画に空気を送風する外気送風機と、
    前記内気区画内に設けられ、冷媒を蒸発する蒸発器と、
    前記外気区画内に設けられ、前記冷媒を凝縮する凝縮器と、
    前記仕切板に設けられた、少なくとも1つ以上の屈曲部とを備えた熱交換装置において、
    前記凝縮器と前記蒸発器は、冷媒気管、及び冷媒液管で接続して、冷媒サイクルを形成し、
    前記屈曲部は、前記凝縮器と前記蒸発器とを結ぶ線と同方向の傾斜をなし、前記屈曲部の少なくとも1つは、前記蒸発器及び前記凝縮器と平行に流れる空気の上流側端部よりも下流側に位置する熱交換装置。
    A body case,
    A partition plate for partitioning the inside of the main body case into independent inside air compartment and outside air compartment,
    A blower for circulating inside air for blowing air into the inside air compartment;
    An outside air blower for blowing air to the outside air compartment;
    An evaporator provided in the inside air compartment for evaporating the refrigerant;
    A condenser provided in the outside air compartment for condensing the refrigerant;
    In the heat exchange apparatus provided with at least one or more bent portions provided in the partition plate,
    The condenser and the evaporator are connected by a refrigerant trachea and a refrigerant liquid pipe to form a refrigerant cycle,
    The bent portion is inclined in the same direction as a line connecting the condenser and the evaporator, and at least one of the bent portions is an upstream end portion of air flowing in parallel with the evaporator and the condenser. Heat exchange device located on the downstream side.
  2. 内気給気口と排気口を有する本体ケースと、
    前記本体ケース内部をそれぞれ独立した内気区画と外気区画に区画する仕切板と、
    前記内気区画に空気を送風する内気循環用送風機と、
    前記外気区画に空気を送風する外気送風機と、
    前記内気区画内に設けられ、冷媒を蒸発する蒸発器と、
    前記外気区画内に設けられ、前記冷媒を凝縮する凝縮器とを備えた熱交換装置において、
    前記凝縮器と前記蒸発器は冷媒気管、及び冷媒液管で接続して、冷媒サイクルを形成し、
    前記蒸発器は、前記蒸発器を通過した空気が前記本体ケースの前記内気給気口に向かうように前記内気区画内に傾斜させて配置され、
    前記凝縮器は、前記凝縮器を通過した空気が前記本体ケースの前記排気口に向かうように前記外気区画内に傾斜させて配置された熱交換装置。
    A body case having an inside air supply port and an exhaust port;
    A partition plate for partitioning the inside of the main body case into independent inside air compartment and outside air compartment,
    A blower for circulating inside air for blowing air into the inside air compartment;
    An outside air blower for blowing air to the outside air compartment;
    An evaporator provided in the inside air compartment for evaporating the refrigerant;
    In the heat exchange device provided in the outside air compartment and provided with a condenser for condensing the refrigerant,
    The condenser and the evaporator are connected by a refrigerant trachea and a refrigerant liquid pipe to form a refrigerant cycle,
    The evaporator is arranged to be inclined in the inside air compartment so that the air that has passed through the evaporator is directed to the inside air supply port of the main body case,
    The condenser is a heat exchange device that is disposed in an inclined manner in the outside air compartment so that air that has passed through the condenser is directed to the exhaust port of the main body case.
  3. 排気口を有する本体ケースと、
    前記本体ケース内部をそれぞれ独立した内気区画と外気区画に区画する仕切板と、
    前記内気区画に空気を送風する内気循環用送風機と
    前記外気区画に空気を送風する外気送風機と、
    前記内気区画内に設けられ、冷媒を蒸発する蒸発器と、
    前記外気区画内に設けられ、前記冷媒を凝縮する凝縮器とを備えた熱交換装置において、
    前記凝縮器と前記蒸発器は、冷媒気管、及び冷媒液管で接続して、冷媒サイクルを形成し、
    前記蒸発器を通過した気体冷媒の流出口が前記仕切板側に近づくように前記蒸発器は傾斜させて配置され、
    前記凝縮器は、前記凝縮器を通過した空気が前記本体ケースの前記排気口に向かうように傾斜させて配置された熱交換装置。
    A body case having an exhaust port;
    A partition plate for partitioning the inside of the main body case into independent inside air compartment and outside air compartment,
    An inside air circulation blower for blowing air to the inside air compartment, and an outside air blower for blowing air to the outside air compartment,
    An evaporator provided in the inside air compartment for evaporating the refrigerant;
    In the heat exchange device provided in the outside air compartment and provided with a condenser for condensing the refrigerant,
    The condenser and the evaporator are connected by a refrigerant trachea and a refrigerant liquid pipe to form a refrigerant cycle,
    The evaporator is arranged to be inclined so that the outlet of the gaseous refrigerant that has passed through the evaporator approaches the partition plate side,
    The condenser is a heat exchange device that is disposed so as to be inclined so that air that has passed through the condenser is directed toward the exhaust port of the main body case.
  4. 請求項1~3のいずれか一項に記載の熱交換装置を搭載した発熱体収納装置。 A heating element storage device equipped with the heat exchange device according to any one of claims 1 to 3.
PCT/JP2015/004720 2014-10-28 2015-09-16 Heat exchange device and heat generation body-receiving device using same WO2016067509A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-218784 2014-10-28
JP2014218784 2014-10-28

Publications (1)

Publication Number Publication Date
WO2016067509A1 true WO2016067509A1 (en) 2016-05-06

Family

ID=55856879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004720 WO2016067509A1 (en) 2014-10-28 2015-09-16 Heat exchange device and heat generation body-receiving device using same

Country Status (1)

Country Link
WO (1) WO2016067509A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110281076A (en) * 2019-07-24 2019-09-27 湖州慧能机电科技有限公司 A kind of electromechanical equipment having heat radiation protection function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213583A (en) * 1993-01-20 1994-08-02 Matsushita Electric Works Ltd Space cooling device
JP2010050209A (en) * 2008-08-20 2010-03-04 Denso Corp Cooling device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06213583A (en) * 1993-01-20 1994-08-02 Matsushita Electric Works Ltd Space cooling device
JP2010050209A (en) * 2008-08-20 2010-03-04 Denso Corp Cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110281076A (en) * 2019-07-24 2019-09-27 湖州慧能机电科技有限公司 A kind of electromechanical equipment having heat radiation protection function
CN110281076B (en) * 2019-07-24 2021-08-06 河南叁陆零工程技术有限公司 Electromechanical device with heat dissipation protection function

Similar Documents

Publication Publication Date Title
JP5929754B2 (en) Electronic equipment exhaust cooling system
US10612856B2 (en) Heat exchanger and air conditioning system
JP5967089B2 (en) COOLING DEVICE AND DEVICE STORAGE DEVICE USING THE SAME
JP6283276B2 (en) Air conditioning equipment for server systems
US10955173B2 (en) Refrigeration apparatus
KR20130110178A (en) Cooling of an electric machine
WO2011064972A1 (en) Heat generating body box housing refrigeration device
JP2013011392A (en) Air conditioner
JP5621225B2 (en) Boiling cooler
WO2015075916A1 (en) Electronic apparatus enclosure device and electronic apparatus cooling system
WO2016067509A1 (en) Heat exchange device and heat generation body-receiving device using same
JP6283277B2 (en) Air conditioning equipment for server systems
CN103808180B (en) heat pipe cooling device
JP6130125B2 (en) Cooling panel and cooling system including the panel
JP3539151B2 (en) Cooling system
JPH09326582A (en) Boiling cooling device and case cooling device equipped therewith
KR101917484B1 (en) Piping structure, cooling device using same, and refrigerant vapor transport method
JP2013200762A (en) Cooling device of rack type electronic device
JP2002373033A (en) Cooling system for information processor
JP2017011229A (en) Cooling device
JP5347919B2 (en) Heating element storage box cooling device
JP5329127B2 (en) Cooling system
KR101240982B1 (en) Multi-cooling module for vehicle
JP2017083110A (en) Cooling device
WO2016098310A1 (en) Cooling apparatus for heating element storage box

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15854070

Country of ref document: EP

Kind code of ref document: A1