JPWO2017110677A1 - Heat exchanger and cooling tower - Google Patents

Heat exchanger and cooling tower Download PDF

Info

Publication number
JPWO2017110677A1
JPWO2017110677A1 JP2017558087A JP2017558087A JPWO2017110677A1 JP WO2017110677 A1 JPWO2017110677 A1 JP WO2017110677A1 JP 2017558087 A JP2017558087 A JP 2017558087A JP 2017558087 A JP2017558087 A JP 2017558087A JP WO2017110677 A1 JPWO2017110677 A1 JP WO2017110677A1
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling tower
flow paths
spray nozzle
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017558087A
Other languages
Japanese (ja)
Other versions
JP7010702B2 (en
Inventor
水季 和田
水季 和田
佐藤 正典
正典 佐藤
有仁 松永
有仁 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2017110677A1 publication Critical patent/JPWO2017110677A1/en
Application granted granted Critical
Publication of JP7010702B2 publication Critical patent/JP7010702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D5/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
    • F28D5/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits

Abstract

使用する水量を減らしながら熱交換性能を向上させることができる、凝縮を伴う冷却塔及びこれに用いられる熱交換器を提供する。冷却塔は、複数の並列する流路であって、冷却対象の流体が重力方向、又は凝縮後の流体が重力利用で循環できる傾斜で設置された複数の並列する流路を含む熱交換器と、空気が上記熱交換器を通るように送風するファンと、上記熱交換器へ微粒子の水滴を噴霧する噴霧ノズルと、上記熱交換器に接続された配管と、を含む。Provided are a cooling tower with condensation and a heat exchanger used therefor, which can improve heat exchange performance while reducing the amount of water used. The cooling tower is a plurality of parallel flow paths, and includes a heat exchanger including a plurality of parallel flow paths installed in a direction in which the fluid to be cooled can be circulated in the direction of gravity or the condensed fluid can be circulated using gravity. A fan that blows air so as to pass through the heat exchanger, a spray nozzle that sprays water droplets of fine particles onto the heat exchanger, and a pipe connected to the heat exchanger.

Description

本発明は、熱交換器、及び冷却塔に関し、特に凝縮を伴う冷却塔及びこれに用いられる熱交換器に関する。   The present invention relates to a heat exchanger and a cooling tower, and more particularly to a cooling tower with condensation and a heat exchanger used therefor.

冷却塔は冷却水に空気を送風し、水空気間で潜熱利用の熱交換を行わせることで、より効率的な冷却を実現していた。密閉式冷却塔の発明により、冷却水の汚染問題が解決されるだけでなく、水以外の冷媒に対する冷却も可能となった。密閉式冷却塔は、特許文献1に見られるように、冷却塔内の熱交換用配管を水平に設置し配管を蛇行させることにより、外気・散水と接触する表面積を増やし、熱交換性能の向上を行っていた。   The cooling tower has realized more efficient cooling by blowing air to the cooling water and causing heat exchange using latent heat between the water and air. The invention of the hermetic cooling tower not only solves the problem of contamination of cooling water, but also enables cooling of refrigerants other than water. As seen in Patent Document 1, the closed cooling tower has a heat exchange pipe in the cooling tower that is installed horizontally and meandering the pipe to increase the surface area in contact with the outside air and water spray and improve the heat exchange performance. Had gone.

このような方法は、凝縮を伴わない冷媒の冷却には適した方法であるが、凝縮を伴う冷媒の冷却には、熱伝達率低下を招くこと、そしてシステムの圧力損失を増加させるという理由で不向きであった。特許文献2の密閉式冷却塔では、熱交換器を構成する配管を蛇行させずに、プレートフィンが通風方向に沿って下降するように熱交換器に傾斜をつけて設置した上で、熱交換器上部より熱交換器へ散水する方式が、提案されている。このような方式を採用することで、冷却塔内の凝縮済み冷媒を重力利用で循環することができるので、熱伝達率の改善・圧力損失の低減が期待される。   Such a method is suitable for cooling the refrigerant without condensation, but cooling the refrigerant with condensation causes a decrease in heat transfer coefficient and increases the pressure loss of the system. It was unsuitable. In the hermetic cooling tower of Patent Document 2, the heat exchanger is installed with an inclination so that the plate fins descend along the ventilation direction without meandering the pipes constituting the heat exchanger. A method of sprinkling water from the top of the vessel to the heat exchanger has been proposed. By adopting such a method, it is possible to circulate the condensed refrigerant in the cooling tower by using gravity, so that improvement of heat transfer coefficient and reduction of pressure loss are expected.

実願昭62−78944号(実開昭63−190764号)のマイクロフィルムMicrofilm of Japanese Utility Model No. 62-78944 (Japanese Utility Model Application No. 63-190764) 実願昭60−86562号(実開昭61−204173号)のマイクロフィルムMicrofilm of Japanese Utility Model No. 60-86562 (Japanese Utility Model Application No. 61-204173)

しかしながら、上述した冷却塔には以下のような課題がある。特許文献2のような傾斜をつけた熱交換器に対して上部より散水を行う場合、熱交換器全体に散水を行うために散水量を余分に必要とする。その上に、熱交換器上部は散水量が過多になり、潜熱利用を効率的に行えない。また、散水用の水循環システムが必要不可欠となる。この散水に水道水を用いた場合、水道水に含まれるカルシウム、マグネシウム、シリカなどの成分が凝縮されて結晶化し、スケールが形成されるという問題が生じる。スケール生成により熱伝達率が大幅に低下するだけでなく、頻繁なメンテナンスやフィルター設置が必要とされる。また、シリカ除去には人体に有害になる化学物質を使用する事例も発生している。   However, the above-described cooling tower has the following problems. When water is sprayed from above on a heat exchanger having an inclination as in Patent Document 2, an extra amount of water is required to spray the entire heat exchanger. In addition, the upper part of the heat exchanger has an excessive amount of sprinkling, making it impossible to efficiently use latent heat. In addition, a water circulation system for watering is indispensable. When tap water is used for the watering, components such as calcium, magnesium, and silica contained in the tap water are condensed and crystallized to form a scale. Not only does the heat transfer rate significantly decrease due to scale generation, but frequent maintenance and filter installation are required. In addition, there are cases in which chemical substances that are harmful to the human body are used to remove silica.

本発明の目的は、使用する水量を減らしながら熱交換性能を向上させることができる、凝縮を伴う冷却塔及びこれに用いられる熱交換器を提供することにある。   An object of the present invention is to provide a cooling tower with condensation and a heat exchanger used therefor that can improve heat exchange performance while reducing the amount of water used.

前記目的を達成するため、本発明に係る熱交換器は、微粒子状の液滴が噴霧される複数の並列する流路であって、冷却対象の流体が重力方向、又は凝縮後の流体が重力利用で循環できる傾斜で設置された複数の並列する流路を含む。   In order to achieve the above object, the heat exchanger according to the present invention is a plurality of parallel flow paths in which fine droplets are sprayed, and the fluid to be cooled is in the direction of gravity or the fluid after condensation is gravity. It includes a plurality of parallel flow paths installed at an inclination that can be circulated by use.

本発明に係る冷却塔は、複数の並列する流路であって、冷却対象の流体が重力方向、又は凝縮後の流体が重力利用で循環できる傾斜で設置された複数の並列する流路を含む熱交換器と、空気が上記熱交換器を通るように送風するファンと、上記熱交換器へ微粒子状の液滴を噴霧する噴霧ノズルと、上記熱交換器に接続された配管と、を含む。   The cooling tower according to the present invention includes a plurality of parallel flow paths that are installed in an inclined direction in which a fluid to be cooled is circulated in the direction of gravity or the condensed fluid can be circulated using gravity. A heat exchanger, a fan that blows air so that air passes through the heat exchanger, a spray nozzle that sprays particulate droplets onto the heat exchanger, and a pipe connected to the heat exchanger. .

本発明によれば、噴霧した液滴を、熱交換器の複数の並列する流路の表面、又はその付近で効率的に気化させることができ、使用する水量を減らしながら冷却対象の流体を凝縮させることができ、熱交換性能を向上させることができる。   According to the present invention, sprayed droplets can be efficiently vaporized on or near the surfaces of a plurality of parallel flow paths of a heat exchanger, and the fluid to be cooled is condensed while reducing the amount of water used. The heat exchange performance can be improved.

(a)は最上位概念の実施形態による冷却塔を説明するための概観図であり、(b)はこの冷却塔に用いられる熱交換器の概観図である。(A) is a general-view figure for demonstrating the cooling tower by embodiment of the highest concept, (b) is a general-view figure of the heat exchanger used for this cooling tower. 本発明の第1実施形態の冷却塔を説明するための概観図である。It is a general-view figure for demonstrating the cooling tower of 1st Embodiment of this invention. 図2の冷却塔に用いられる熱交換器の概観図である。It is a general-view figure of the heat exchanger used for the cooling tower of FIG. 本発明の実施形態の冷却塔のファンによる熱交換器付近の風量分布を示す概念図である。It is a conceptual diagram which shows the air volume distribution near the heat exchanger by the fan of the cooling tower of embodiment of this invention. 本発明の実施形態の冷却塔を構成するファン、熱交換器、噴霧ノズルの位置関係を示す概念図である。It is a conceptual diagram which shows the positional relationship of the fan which comprises the cooling tower of embodiment of this invention, a heat exchanger, and a spray nozzle. (a)は熱交換器の入口流路が一つの場合の概観と入口流路位置に合う噴霧ノズルの流量分布を示す図であり、(b)は熱交換器の入口流路が複数の場合の概観と入口流路位置に合う噴霧ノズルの流量分布を示す図である。(A) is a figure which shows the flow rate distribution of the spray nozzle which fits the appearance in the case of one inlet flow path of a heat exchanger, and an inlet flow path position, (b) is the case where there are multiple inlet flow paths of a heat exchanger. It is a figure which shows the flow volume distribution of the spray nozzle which fits the general view and inlet flow path position. 本発明の実施形態の冷却塔を用いたサーバー室の冷却システムを説明するための概観図である。It is a general-view figure for demonstrating the cooling system of the server room using the cooling tower of embodiment of this invention. 本発明の第2実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。It is a general-view figure for demonstrating the heat exchanger used for the cooling tower of 2nd Embodiment of this invention. 本発明の第3実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。It is a general-view figure for demonstrating the heat exchanger used for the cooling tower of 3rd Embodiment of this invention. 本発明の第4実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。It is a general-view figure for demonstrating the heat exchanger used for the cooling tower of 4th Embodiment of this invention. 本発明の第5実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。It is a general-view figure for demonstrating the heat exchanger used for the cooling tower of 5th Embodiment of this invention. 本発明の実施形態の熱交換器を用いて冷却した場合の、湿球温度の変化による熱抵抗値の計測結果を示すグラフである。It is a graph which shows the measurement result of the thermal resistance value by the change of wet-bulb temperature at the time of cooling using the heat exchanger of embodiment of this invention.

本発明の好ましい実施形態について、図面を参照しながら詳細に説明する。   Preferred embodiments of the present invention will be described in detail with reference to the drawings.

具体的な実施形態について説明する前に、本発明の最上位概念の実施形態による冷却塔と、これに用いられる熱交換器について、説明する。図1(a)は最上位概念の実施形態による冷却塔を説明するための概観図であり、図1(b)はこの冷却塔に用いられる熱交換器の概観図である。   Before describing specific embodiments, a cooling tower according to an embodiment of the highest concept of the present invention and a heat exchanger used therefor will be described. FIG. 1A is an overview diagram for explaining a cooling tower according to an embodiment of the highest concept, and FIG. 1B is an overview diagram of a heat exchanger used in the cooling tower.

図1(a)の冷却塔100は、送風するファン109と、熱交換器105と、熱交換器105へ微粒子状の液滴を噴霧する噴霧ノズル106と、を含む。図1(a)の熱交換器105は図1(b)のように、微粒子状の液滴が噴霧される複数の並列する流路103であって、冷却対象の流体が重力方向、又は凝縮後の流体が重力利用で循環できる傾斜で設置された複数の並列する流路103を含む。   The cooling tower 100 in FIG. 1A includes a fan 109 that blows air, a heat exchanger 105, and a spray nozzle 106 that sprays particulate droplets onto the heat exchanger 105. As shown in FIG. 1B, the heat exchanger 105 in FIG. 1A is a plurality of parallel flow paths 103 in which fine droplets are sprayed, and the fluid to be cooled is in the gravity direction or condensed. It includes a plurality of parallel flow paths 103 installed at an inclination that allows subsequent fluid to circulate by gravity.

噴霧した微粒子状の液滴を、熱交換器105の複数の並列する流路の表面、又はその付近で効率的に気化させることができ、使用する水量を減らしながら冷却対象の流体を凝縮させることができ、熱交換性能を向上させることができる。熱交換器105の熱交換性能を向上させることができ、熱交換性能を向上させた冷却塔100を実現できる。以下、本発明のより具体的な実施形態について説明する。   The sprayed particulate droplets can be efficiently vaporized on or near the surfaces of a plurality of parallel flow paths of the heat exchanger 105, and the fluid to be cooled is condensed while reducing the amount of water used. The heat exchange performance can be improved. The heat exchange performance of the heat exchanger 105 can be improved, and the cooling tower 100 with improved heat exchange performance can be realized. Hereinafter, more specific embodiments of the present invention will be described.

〔第1実施形態〕
初めに、本発明の第1実施形態による冷却塔、及びこれに用いられる熱交換器について、説明する。図2は、本発明の第1実施形態の冷却塔を説明するための概観図である。
[First Embodiment]
First, the cooling tower according to the first embodiment of the present invention and the heat exchanger used therefor will be described. FIG. 2 is an overview for explaining the cooling tower of the first embodiment of the present invention.

[構造の説明]
本発明の第1実施形態の冷却塔は、密閉式冷却塔である。図2の密閉式冷却塔20は、送風するファン9と、熱交換器5と、この熱交換器5へ微粒子状の液滴の一例としての微粒子の水滴を噴霧する噴霧ノズル6と、を含む。さらに密閉式冷却塔20は、熱交換器5に接続された配管12a、12bを含む。さらに図2の密閉式冷却塔20は、圧力計7と、流量調整バルブ8と、ポンプ10と、貯水タンク11と、を含む。
[Description of structure]
The cooling tower of the first embodiment of the present invention is a hermetic cooling tower. 2 includes a fan 9 that blows air, a heat exchanger 5, and a spray nozzle 6 that sprays water droplets of fine particles as an example of fine particle droplets onto the heat exchanger 5. . Further, the closed cooling tower 20 includes pipes 12 a and 12 b connected to the heat exchanger 5. Further, the hermetic cooling tower 20 of FIG. 2 includes a pressure gauge 7, a flow rate adjusting valve 8, a pump 10, and a water storage tank 11.

ファン9は、密閉式冷却塔20の筐体13上部に設置され、空気が熱交換器5を通り密閉式冷却塔20の上部より外に流れるように送風する。密閉式冷却塔20内の熱交換器5に対する空気の送風方向は、噴霧ノズル6から微粒子の水滴が噴霧される側から、冷却対象の複数の並列する流路に向かうものとする。より具体的には密閉式冷却塔20の外側から内側に向かう図2の矢印の方向に沿って、熱交換器5に対して空気は送風される。   The fan 9 is installed in the upper part of the housing 13 of the hermetic cooling tower 20 and blows air so that the air flows through the heat exchanger 5 and out of the upper part of the hermetic cooling tower 20. The air blowing direction with respect to the heat exchanger 5 in the hermetic cooling tower 20 is directed from the spray nozzle 6 toward the plurality of parallel flow paths to be cooled from the side where the water droplets of fine particles are sprayed. More specifically, air is blown to the heat exchanger 5 along the direction of the arrow in FIG. 2 from the outside to the inside of the closed cooling tower 20.

噴霧ノズル6は、熱交換器5に微粒子の水滴を噴霧する。噴霧ノズル6は、噴霧ノズル6の噴霧分布量がファン風量勾配と比例するように、熱交換器5に対して傾斜をつけて設置されている。特に噴霧ノズル6は、熱交換器5の外側上部より斜め下向きに熱交換器5へ微粒子の水滴を噴霧するように、設置されている。   The spray nozzle 6 sprays fine water droplets onto the heat exchanger 5. The spray nozzle 6 is installed with an inclination with respect to the heat exchanger 5 so that the spray distribution amount of the spray nozzle 6 is proportional to the fan airflow gradient. In particular, the spray nozzle 6 is installed so as to spray water droplets of fine particles onto the heat exchanger 5 obliquely downward from the outer upper portion of the heat exchanger 5.

熱交換器5は、複数の並列する流路であって、冷却対象の冷媒が重力方向、又は凝縮後の冷媒が重力利用で循環できる傾斜で設置された複数の並列する流路を、含む。以下、このような熱交換器5の複数の並列する流路を、複数流路と呼ぶ。図2は設置形態の一例として、熱交換器5の複数流路が重力方向と平行となるように、熱交換器5を設置した場合を示す。図2では、熱交換器5を密閉式冷却塔20の両面に設置した場合を示す。熱交換器5の両面設置に対応して、噴霧ノズル6、圧力計7、流量調整バルブ8やポンプ10がそれぞれ設置されている。   The heat exchanger 5 includes a plurality of parallel flow paths that are installed in an inclined direction in which the refrigerant to be cooled can be circulated in the direction of gravity or the condensed refrigerant can be circulated using gravity. Hereinafter, a plurality of parallel flow paths of the heat exchanger 5 will be referred to as a plurality of flow paths. FIG. 2 shows a case where the heat exchanger 5 is installed so that a plurality of flow paths of the heat exchanger 5 are parallel to the direction of gravity as an example of the installation form. In FIG. 2, the case where the heat exchanger 5 is installed on both surfaces of the hermetic cooling tower 20 is shown. Corresponding to the double-sided installation of the heat exchanger 5, a spray nozzle 6, a pressure gauge 7, a flow rate adjusting valve 8 and a pump 10 are installed.

図3は、図2の冷却塔に用いられる熱交換器5の概観図である。図3に示すように熱交換器5は、冷却対象の冷媒が流れる入口流路1と、入口流路1から流入した冷媒を複数流路3に分岐するヘッダー2と、複数流路3に設けられたフィン4と、を含む。   FIG. 3 is an overview of the heat exchanger 5 used in the cooling tower of FIG. As shown in FIG. 3, the heat exchanger 5 is provided in the inlet passage 1 through which the refrigerant to be cooled flows, the header 2 that branches the refrigerant flowing from the inlet passage 1 into the plurality of passages 3, and the plurality of passages 3. Fins 4 formed.

複数流路3を含んでなる熱交換器5は、図2のような重力方向と平行に、又は冷媒粘性に基づき凝縮した液が効率的に密閉式冷却塔20外へ重力利用で流出できる傾斜で、設置される。   The heat exchanger 5 including the plurality of flow paths 3 is inclined in parallel with the gravitational direction as shown in FIG. 2, or the liquid condensed based on the refrigerant viscosity can efficiently flow out of the sealed cooling tower 20 by gravity. And installed.

本実施形態では、密閉式冷却塔20の両面に設置された熱交換器5外側上部から斜め下向きに熱交換器5に対して傾斜のある噴霧ノズル6で微粒子の水滴を噴霧することにより、熱交換器5の複数流路3内を流れる、冷却対象の冷媒の凝縮冷却を行う。   In the present embodiment, by spraying water droplets of fine particles with spray nozzles 6 inclined to the heat exchanger 5 obliquely downward from the outer upper part of the heat exchanger 5 installed on both surfaces of the sealed cooling tower 20, Condensation cooling of the cooling target refrigerant flowing in the plurality of flow paths 3 of the exchanger 5 is performed.

本発明の実施形態の密閉式冷却塔20は、図4に見られるように、ファン9と熱交換器5の位置により、熱交換器5の熱交換面上部から下部にむけて特別な制御を必要とすることなく、風量分布に勾配をつけることが可能な配置である。そこへ熱交換器5外側上部より熱交換器5に対して噴霧分布量がファン風量勾配と比例するように傾斜をつけて、噴霧ノズル6を設置する。   As shown in FIG. 4, the closed cooling tower 20 according to the embodiment of the present invention performs special control from the upper part to the lower part of the heat exchange surface of the heat exchanger 5 depending on the positions of the fan 9 and the heat exchanger 5. It is an arrangement that can provide a gradient in the air volume distribution without the need. The spray nozzle 6 is installed in such a manner that the spray distribution amount is in proportion to the fan air flow gradient from the outer upper portion of the heat exchanger 5 so as to be proportional to the fan airflow gradient.

噴霧ノズル6より噴霧される水滴の大きさは、噴霧ノズル6より熱交換器5の複数流路3へ届くまでに蒸発し尽くすことのない程度の微粒子の状態であることが、好ましい。噴霧ノズル6より噴霧される水滴の直径は、例えば150μm以下にする。また、噴霧ノズル6より噴霧される水滴の最小直径は、噴霧ノズル6と複数流路3の距離、風量などのコンディションにより変わる。複数流路3を構成する配管は、噴霧ノズルから噴霧される水滴がまんべんなく接触するよう、可能な限り重なり合いを避けるように配置する方が好ましい。   The size of the water droplets sprayed from the spray nozzle 6 is preferably in a state of fine particles that does not evaporate until the spray nozzle 6 reaches the plurality of flow paths 3 of the heat exchanger 5. The diameter of the water droplet sprayed from the spray nozzle 6 is, for example, 150 μm or less. Further, the minimum diameter of water droplets sprayed from the spray nozzle 6 varies depending on conditions such as the distance between the spray nozzle 6 and the plurality of flow paths 3 and the air volume. It is preferable to arrange the pipes constituting the plurality of flow paths 3 so as to avoid overlapping as much as possible so that the water droplets sprayed from the spray nozzles are evenly contacted.

複数流路部分(熱交換部分)全体へ噴霧を行うとき、図6に見られるように、熱交換器5の入口流路1から距離が近い複数流路部分へは、距離が遠い部分と比較して多くの噴霧流量が送れるような噴霧分布の噴霧ノズルを使用すると、噴霧水を有効活用できる。それは熱交換器5の入口流路1に近い複数流路3により多くの冷媒が流れるので、入口流路1に近い複数流路3の必要熱交換量もそれに応じて増加するからである。   When spraying to the whole of the plurality of flow passage portions (heat exchange portions), as seen in FIG. 6, the multiple flow passage portions that are close to the inlet flow passage 1 of the heat exchanger 5 are compared with the portions that are far away. If a spray nozzle having a spray distribution that can send a large amount of spray flow is used, spray water can be used effectively. This is because a large amount of refrigerant flows through the plurality of flow paths 3 close to the inlet flow path 1 of the heat exchanger 5, so that the necessary heat exchange amount of the plurality of flow paths 3 close to the inlet flow path 1 also increases accordingly.

噴霧ノズル6より噴霧される水滴の流量については、熱交換器5に水粒子が到着するまでに蒸発し尽くすことがないが、熱交換器5を通過する間にその多くが有効的に潜熱利用され蒸発できるような流量となるように、設定する。熱交換器5を通過する間に蒸発可能な量に設定し、かつ噴霧は熱交換器5から可能な限り近い距離で行うことが好ましい。このような構成により、噴霧ノズル6から噴霧された水の飛散を防ぐことができる。このとき、噴霧された水が熱交換器5全体にかかるよう位置を調整する。噴霧ノズル6は水のみを噴霧する1流体ノズルを使用することも、水と圧縮空気を合わせて同時に噴霧する2流体ノズルを使用することもある。   The flow rate of water droplets sprayed from the spray nozzle 6 does not evaporate until the water particles arrive at the heat exchanger 5, but most of them effectively use latent heat while passing through the heat exchanger 5. The flow rate is set so that it can be evaporated. It is preferable to set the amount so that it can evaporate while passing through the heat exchanger 5, and spraying is performed as close as possible from the heat exchanger 5. With such a configuration, scattering of water sprayed from the spray nozzle 6 can be prevented. At this time, the position is adjusted so that the sprayed water is applied to the entire heat exchanger 5. The spray nozzle 6 may be a one-fluid nozzle that sprays only water or a two-fluid nozzle that sprays water and compressed air simultaneously.

熱交換器5と噴霧ノズル6との距離は熱交換器5前面に噴霧幅が行き届き、かつ可能な限り距離を短くするように設置する。噴霧ノズル6は、密閉式冷却塔20上部に設置されたファン9によって引き起こされる熱交換器5上下の風量分布勾配に比例するような傾斜角度と共に、設置する。   The distance between the heat exchanger 5 and the spray nozzle 6 is set so that the spray width reaches the front surface of the heat exchanger 5 and is as short as possible. The spray nozzle 6 is installed with an inclination angle that is proportional to the airflow distribution gradient above and below the heat exchanger 5 caused by the fan 9 installed at the top of the closed cooling tower 20.

傾斜をつけた噴霧ノズル6は熱交換器5の外側上部より斜め下向きに微粒子状の水滴を噴霧するので、ノズルからの噴霧距離が近い熱交換器5上部は単位面積当たりの噴霧量が多い。噴霧ノズル6からの距離が遠くなるにつれて噴霧量も減少するので、同じ熱交換器5に対して勾配をつけた噴霧量を実現することができる。一つの熱交換器5に対して、ファン風量が大きい箇所では噴霧ノズル6による噴霧量を大きく、ファン風量が小さい箇所では噴霧ノズル6による噴霧量を小さくするといった組合せにより、熱交換器5の複数流路3の必要熱交換量に応じた最適化が可能になる。   Since the inclined spray nozzle 6 sprays fine water droplets obliquely downward from the outer upper part of the heat exchanger 5, the upper part of the heat exchanger 5 near the spray distance from the nozzle has a larger spray amount per unit area. Since the spray amount decreases as the distance from the spray nozzle 6 increases, a spray amount having a gradient with respect to the same heat exchanger 5 can be realized. With respect to one heat exchanger 5, a plurality of heat exchangers 5 can be combined by a combination in which a spray amount by the spray nozzle 6 is large at a location where the fan air volume is large and a spray amount by the spray nozzle 6 is small at a location where the fan air volume is small. Optimization according to the required heat exchange amount of the flow path 3 becomes possible.

微粒子状で噴霧される水は、ポンプ10、圧力計7、図示しない遮断機、流量調整バルブ8、図示しない温度計などに加え、タンク11から噴霧ノズル6までの配管もしくはチューブで構成された装置により、供給される。本実施形態の噴霧ノズル6による噴霧は、夏場などの湿球温度が高く凝縮性能が落ちる場合にのみ適応することが想定されるため、外気湿球温度計とシステム内を流れる冷媒温度を参照し、行われる。   The water sprayed in the form of fine particles is a device composed of a pipe or tube from the tank 11 to the spray nozzle 6 in addition to the pump 10, the pressure gauge 7, the circuit breaker (not shown), the flow rate adjusting valve 8, the thermometer (not shown), etc. Is supplied by The spraying by the spray nozzle 6 of the present embodiment is assumed to be applied only when the wet bulb temperature is high and the condensation performance is lowered in summer, etc., so refer to the outside air wet bulb thermometer and the refrigerant temperature flowing in the system. Done.

なお密閉式冷却塔20内の熱交換器5を構成する複数流路3の配管の本数を増やすことで、外気と噴霧される水滴との接触面積を増加させた構造とすることができる。加えて、熱交換器5を構成する複数流路3の配管は、配管径を細くすることによる圧力損失の増加等の影響を考慮し設計を行う。   In addition, it can be set as the structure which increased the contact area of external air and the water droplet sprayed by increasing the number of piping of the several flow path 3 which comprises the heat exchanger 5 in the enclosed cooling tower 20. FIG. In addition, the piping of the plurality of flow paths 3 constituting the heat exchanger 5 is designed in consideration of the influence such as an increase in pressure loss caused by reducing the pipe diameter.

密閉式冷却塔20の筐体13上面に設置されたファン9は、重力方向と平行に設置された熱交換器5の複数流路3に対し風量勾配を引き起こす。ファン9により引き起こされた風量勾配を、以下、ファン風量勾配と呼ぶ。図4は、本発明の実施形態の冷却塔のファンによる熱交換器付近の風量分布を示す概念図である。ファン9は、図4に示すような風量分布勾配を引き起こす。そこに微粒子の水滴を噴霧する噴霧ノズル6を、図5のように熱交換器5外側上部より熱交換器5に対して、噴霧ノズル6の噴霧分布量がファン風量勾配と比例するように、傾斜をつけて設置する。   The fan 9 installed on the upper surface of the casing 13 of the hermetic cooling tower 20 causes an air flow gradient to the plurality of flow paths 3 of the heat exchanger 5 installed in parallel to the direction of gravity. The air volume gradient caused by the fan 9 is hereinafter referred to as a fan air volume gradient. FIG. 4 is a conceptual diagram showing the air volume distribution in the vicinity of the heat exchanger by the fan of the cooling tower according to the embodiment of the present invention. The fan 9 causes an air volume distribution gradient as shown in FIG. The spray nozzle 6 for spraying water droplets of fine particles there is arranged so that the spray distribution amount of the spray nozzle 6 is proportional to the fan airflow gradient with respect to the heat exchanger 5 from the outer upper part of the heat exchanger 5 as shown in FIG. Install with an inclination.

なお熱交換器5の入口流路1を、図3に示されるような単数とするのではなく、複数設けることも考えられる。熱交換器5の入口流路1と噴霧ノズルによるノズル流量分布との関係について、説明する。図6(a)は熱交換器の入口流路が一つの場合の概観と入口流路位置に合う噴霧ノズルの流量分布を示す図であり、図6(b)は熱交換器の入口流路が複数の場合の概観と入口流路位置に合う噴霧ノズルの流量分布を示す図である。   It should be noted that a plurality of inlet flow paths 1 of the heat exchanger 5 may be provided instead of a single one as shown in FIG. The relationship between the inlet flow path 1 of the heat exchanger 5 and the nozzle flow rate distribution by the spray nozzle will be described. FIG. 6A is a diagram showing an overview when the number of the inlet channel of the heat exchanger is one and the flow rate distribution of the spray nozzle that matches the position of the inlet channel, and FIG. 6B is the inlet channel of the heat exchanger. It is a figure which shows the flow volume distribution of the spray nozzle which fits the general appearance and inlet flow path position in case there is a plurality.

図6(a)に見られるように、ノズル流量分布の最大点が入口流路下方に来、かつ噴霧幅が熱交換器表面に収まることを考慮して、噴霧ノズルの選定、噴霧ノズルの位置選定や設置方向の選定を行う。熱交換器5の入口流路1を複数とした場合には、図6(b)に見られるように、ノズル流量分布の最大点が複数の入口流路下方に来、かつ噴霧幅が熱交換器表面に収まることを考慮して、噴霧ノズルの選定、噴霧ノズルの位置選定や設置方向の選定を行う。このような選定や設置により、熱交換器の内側・外側の熱流速値分布を近づけ、流量の最適化を可能とする。   As shown in FIG. 6 (a), the selection of the spray nozzle and the position of the spray nozzle are taken into account that the maximum point of the nozzle flow rate distribution is below the inlet flow path and the spray width is within the heat exchanger surface. Select the selection and installation direction. When there are a plurality of inlet channels 1 of the heat exchanger 5, as shown in FIG. 6B, the maximum point of the nozzle flow rate distribution comes below the plurality of inlet channels, and the spray width is heat exchange. The spray nozzle is selected, the position of the spray nozzle is selected, and the installation direction is selected considering that it fits on the vessel surface. By such selection and installation, the heat flow velocity value distribution inside and outside the heat exchanger can be made closer and the flow rate can be optimized.

[冷却動作の説明]
発熱源からの熱により蒸気となった冷却対象の冷媒は、配管12aを経由して、入口流路1から熱交換器5へ流入する。噴霧ノズル6から噴霧された微粒子状の水滴は、ファン9による送風も寄与して、熱交換器5の複数流路3の表面、又はその付近で効率的に気化する。この熱交換器5による熱交換により、冷却対象の冷媒の凝縮が起きる。液体となった冷却対象の冷媒は、重力利用で配管12bを経由して、再び発熱源の近傍へ送られる。冷却対象の冷媒を、熱交換器5を経由して循環させることにより、本実施形態の密閉式冷却塔20は冷却を行う。
[Description of cooling operation]
The refrigerant to be cooled that has become vapor due to the heat from the heat source flows into the heat exchanger 5 from the inlet channel 1 via the pipe 12a. Particulate water droplets sprayed from the spray nozzle 6 are also efficiently vaporized on the surface of the plurality of flow paths 3 of the heat exchanger 5 or in the vicinity thereof by the contribution of air blown by the fan 9. The heat exchange by the heat exchanger 5 causes the refrigerant to be cooled to condense. The refrigerant to be cooled that has become liquid is sent again to the vicinity of the heat source via the pipe 12b by gravity. By circulating the refrigerant to be cooled via the heat exchanger 5, the hermetic cooling tower 20 of the present embodiment performs cooling.

[効果の説明]
本実施形態の密閉式冷却塔20によれば、複数流路3を含んで構成される熱交換器5に噴霧ノズル6で水を噴霧しつつ、ファン9で風を送ることにより、噴霧した微粒子の水滴を複数流路3の表面、又はその付近で効率的に気化させる。熱交換器5は熱交換作用により、冷却対象の冷媒を凝縮させる。噴霧した微粒子の水滴の気化により、熱交換性能を向上させることができる。
[Description of effects]
According to the sealed cooling tower 20 of the present embodiment, fine particles sprayed by sending air to the heat exchanger 5 including the plurality of flow paths 3 with the spray nozzle 6 while sending air with the fan 9. Are efficiently vaporized on or near the surface of the plurality of flow paths 3. The heat exchanger 5 condenses the refrigerant to be cooled by the heat exchange action. The heat exchange performance can be improved by vaporizing the water droplets of the sprayed fine particles.

噴霧した微粒子の水滴を用いることにより、使用する水量を減らしつつ冷却対象の冷媒を凝縮させることができ、熱交換性能を向上させることができる。熱交換器5の熱交換性能を向上させることができ、熱交換性能を向上させた密閉式冷却塔20を実現できる。   By using the sprayed water droplets of fine particles, the cooling target refrigerant can be condensed while reducing the amount of water to be used, and the heat exchange performance can be improved. The heat exchange performance of the heat exchanger 5 can be improved, and the hermetic cooling tower 20 with improved heat exchange performance can be realized.

熱交換器に対して上部から散水を行う特許文献2の冷却塔と比較して、使用する水量を減らすことができるので、散水量を余分に必要とするといった問題や、熱交換器上部は散水量が過多になり潜熱利用を効率的に行えないといった問題を解消できる。また使用する水量を減らせることにより、水道水に含まれるカルシウム、マグネシウム、シリカなどの成分が凝縮されて結晶化し、スケールが形成されるという問題の顕在化を遅らせることができる。スケール生成に起因する熱伝達率の低下問題を解消し、頻繁なメンテナンスやフィルター設置を不要とすることができる。   Compared with the cooling tower of Patent Document 2 in which water is sprayed on the heat exchanger, the amount of water used can be reduced. The problem that the amount of water becomes excessive and the latent heat cannot be used efficiently can be solved. Further, by reducing the amount of water used, it becomes possible to delay the manifestation of the problem that the components such as calcium, magnesium, and silica contained in tap water are condensed and crystallized to form a scale. The problem of decrease in heat transfer coefficient due to scale generation can be solved, and frequent maintenance and filter installation can be eliminated.

その結果、凝縮を伴う密閉式冷却塔において、熱交換性能の向上、圧力損失によるシステムへの負荷低減、散水量の低減による循環システムの排除、並びに水循環に関わるスケール等の課題解決による信頼性向上を実現できる。   As a result, in a closed cooling tower with condensation, the heat exchange performance is improved, the load on the system is reduced by pressure loss, the circulation system is eliminated by reducing the amount of sprinkling, and the reliability is improved by solving the scale related to water circulation. Can be realized.

本発明の実施形態の密閉式冷却塔20は、外気温度の上昇によりファン9のみでは冷却が困難な場合に、噴霧した水が効率的に蒸発する際の潜熱を利用した冷却方法に好適である。外気温度と冷却対象冷媒の温度を測定し、必要な条件の場合に噴霧が行われる仕組みにすることが考えられる。   The hermetic cooling tower 20 according to the embodiment of the present invention is suitable for a cooling method using latent heat when the sprayed water is efficiently evaporated when cooling with the fan 9 alone is difficult due to an increase in the outside air temperature. . It is conceivable to measure the outside air temperature and the temperature of the cooling target refrigerant so that spraying is performed under necessary conditions.

[密閉式冷却塔の利用例]
本発明の実施形態の密閉式冷却塔の利用方法として、データセンターでのサーバーなどのIT(Information Technology)機器の冷却があげられる。図7のデータセンター30のサーバー室21内にサーバーラック22が設置され、ラックリアドア側に受熱部23を設置する。サーバーラック22内にサーバーが設置され、サーバー内IT機器から発生する熱をサーバーに搭載されているファンにより空冷し、その時に温められた空気をラックリアドア側に設置された受熱部23により冷却することで、サーバーラック22外に排出される空気は冷やされる。この時受熱部23が吸熱した熱は冷媒の循環により密閉式冷却塔20の熱交換器内に運ばれ、そこで外気に放熱される。受熱部23と密閉式冷却塔20の熱交換器は、液管24及び蒸気管25により接続されている。密閉式冷却塔20は、サーバー室21の上方に設置されており、受熱部23内の冷媒は、相変化によって蒸気になり、冷媒蒸気は直接、本発明の実施形態の密閉式冷却塔20により冷却される。密閉式冷却塔20の熱交換器が凝縮部となり、熱交換器で凝縮された後の冷媒液は、液管24を経由して受熱部23に戻すことで冷媒を循環させ、外気放熱式の冷却を行う。熱交換器で凝縮された後の冷媒液は重力作用により、液管24を経由して受熱部23に至る。
[Usage example of closed cooling tower]
As a method of using the hermetic cooling tower according to the embodiment of the present invention, cooling of IT (Information Technology) equipment such as a server in a data center can be mentioned. A server rack 22 is installed in the server room 21 of the data center 30 in FIG. 7, and a heat receiving unit 23 is installed on the rack rear door side. A server is installed in the server rack 22, and heat generated from the IT equipment in the server is air-cooled by a fan mounted on the server, and air heated at that time is cooled by a heat receiving unit 23 installed on the rack rear door side. As a result, the air discharged to the outside of the server rack 22 is cooled. At this time, the heat absorbed by the heat receiving section 23 is carried into the heat exchanger of the closed cooling tower 20 by circulation of the refrigerant, and is radiated to the outside air there. The heat exchangers of the heat receiving unit 23 and the sealed cooling tower 20 are connected by a liquid pipe 24 and a steam pipe 25. The hermetic cooling tower 20 is installed above the server room 21, and the refrigerant in the heat receiving section 23 becomes vapor due to phase change, and the refrigerant vapor is directly generated by the hermetic cooling tower 20 of the embodiment of the present invention. To be cooled. The heat exchanger of the hermetic cooling tower 20 becomes a condensing unit, and the refrigerant liquid after being condensed in the heat exchanger is returned to the heat receiving unit 23 via the liquid pipe 24 to circulate the refrigerant. Cool down. The refrigerant liquid after being condensed in the heat exchanger reaches the heat receiving part 23 via the liquid pipe 24 by the gravitational action.

本実施形態のような凝縮を伴う密閉式冷却塔20においては、熱交換性能の向上、圧力損失によるシステムへの負荷低減、散水量の低減による循環システムの排除、並びに水循環に関わるスケール等の課題解決による信頼性向上が期待される。なお、図7では密閉式冷却塔20をサーバー室21の上方に設置した場合を示しているが、密閉式冷却塔20は、サーバー室21の上方に設置される場合と、ポンプを使用し冷媒を強制循環させることにより、上方でない場所に設置される場合がある。   In the closed cooling tower 20 with condensation as in the present embodiment, problems such as improvement in heat exchange performance, reduction of load on the system due to pressure loss, elimination of the circulation system by reduction of the amount of water spray, and scale related to water circulation, etc. The improvement of reliability is expected by the solution. Although FIG. 7 shows a case where the sealed cooling tower 20 is installed above the server room 21, the sealed cooling tower 20 is installed above the server room 21 and a refrigerant using a pump. May be installed in a place not above.

データセンターでのサーバーなどIT機器の排熱に多大な冷却電力が消費されており、冷房空調機を使用して冷却を行う代わりに、直接外気放熱を行うことで冷却電力の大幅な削減が可能となる。ファンによる外気への熱輸送は外気温の低い場合十分な冷却能力があるのに対し、夏などの外気温が高い環境下では冷却能力が失われてしまう。冷却能力の高い冷却塔を使用することで、外気温の高い環境下においても外気放熱を可能とし、結果冷却電力の削減に大きく貢献できる。   A large amount of cooling power is consumed in the exhaust heat of IT equipment such as servers in the data center. Instead of cooling using a cooling air conditioner, direct cooling to the outside air enables a significant reduction in cooling power. It becomes. The heat transport to the outside air by the fan has sufficient cooling capacity when the outside temperature is low, whereas the cooling capacity is lost in an environment where the outside temperature is high such as summer. By using a cooling tower with a high cooling capacity, it is possible to dissipate the outside air even in an environment where the outside air temperature is high, which can greatly contribute to the reduction of the cooling power.

〔第2実施形態〕
次に、本発明の第2実施形態による冷却塔について、説明する。本実施形態の冷却塔は、第1実施形態による冷却塔と比較して、用いる熱交換器が異なる。熱交換器以外の構成は、第1実施形態による冷却塔と同様なため、その詳細な説明は省略する。図8は、本発明の第2実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。
[Second Embodiment]
Next, the cooling tower by 2nd Embodiment of this invention is demonstrated. The cooling tower of this embodiment differs in the heat exchanger to be used compared with the cooling tower by 1st Embodiment. Since the configuration other than the heat exchanger is the same as that of the cooling tower according to the first embodiment, a detailed description thereof will be omitted. FIG. 8 is a general view for explaining a heat exchanger used in the cooling tower of the second embodiment of the present invention.

[構造の説明]
本実施形態の熱交換器5aでは、熱交換器5aを構成する複数流路3の配管径を入口流路1からの距離が遠くなるにつれて太くするように勾配をつける。図8では、複数流路3の配管のうち、配管3bの配管径は入口流路1に近い配管3aの配管径より太い。さらに複数流路3の配管のうち、入口流路1からの距離がより遠い配管3cの配管径は、配管3bの配管径より太い。
[Description of structure]
In the heat exchanger 5a of the present embodiment, a gradient is provided so that the pipe diameters of the plurality of flow paths 3 constituting the heat exchanger 5a become thicker as the distance from the inlet flow path 1 increases. In FIG. 8, among the pipes of the plurality of flow paths 3, the pipe diameter of the pipe 3 b is larger than the pipe diameter of the pipe 3 a close to the inlet flow path 1. Further, among the pipes of the plurality of flow paths 3, the pipe diameter of the pipe 3c farther from the inlet flow path 1 is larger than the pipe diameter of the pipe 3b.

本実施形態の、入口流路1に近い距離にある複数流路3の配管径を入口流路1からの距離が遠くなるに従い、太くするような勾配をつけた熱交換器5aでは、入口流路1から流入する冷媒蒸気を複数流路3全体に均等に配分することができる。入口流路1から流入する冷媒を均等に複数流路3に配分することにより、冷却能力の向上、熱交換器5a並びに密閉式冷却塔20のサイズ縮小を可能にする。   In the heat exchanger 5a having a gradient that increases the pipe diameter of the plurality of flow paths 3 at a distance close to the inlet flow path 1 as the distance from the inlet flow path 1 increases, The refrigerant vapor flowing from the path 1 can be evenly distributed over the plurality of flow paths 3. By equally distributing the refrigerant flowing from the inlet flow path 1 to the plurality of flow paths 3, it is possible to improve the cooling capacity and reduce the size of the heat exchanger 5a and the closed cooling tower 20.

〔第3実施形態〕
次に、本発明の第3実施形態による冷却塔について、説明する。本実施形態の冷却塔は、第1実施形態による冷却塔と比較して、用いる熱交換器が異なる。熱交換器以外の構成は、第1実施形態による冷却塔と同様なため、その詳細な説明は省略する。図9は、本発明の第3実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。
[Third Embodiment]
Next, the cooling tower by 3rd Embodiment of this invention is demonstrated. The cooling tower of this embodiment differs in the heat exchanger to be used compared with the cooling tower by 1st Embodiment. Since the configuration other than the heat exchanger is the same as that of the cooling tower according to the first embodiment, a detailed description thereof will be omitted. FIG. 9 is an overview for explaining a heat exchanger used in the cooling tower of the third embodiment of the present invention.

[構造の説明]
本実施形態の熱交換器5bでは、熱交換器5bを構成する複数流路3上部のヘッダー体積を入口流路1からの距離が遠くなるにつれて大きくするように勾配をつける。図9に見られるように、複数流路3の配管径を一定にし、入口流路1から近い距離にある複数流路3から入口流路1からの距離が遠くなるに従い、複数流路3上部のヘッダー2aの体積を、勾配を付けて大きくする。
[Description of structure]
In the heat exchanger 5b of this embodiment, a gradient is given so that the header volume at the top of the plurality of flow paths 3 constituting the heat exchanger 5b increases as the distance from the inlet flow path 1 increases. As shown in FIG. 9, the pipe diameters of the plurality of flow paths 3 are made constant, and as the distance from the plurality of flow paths 3 close to the inlet flow path 1 to the inlet flow path 1 increases, The volume of the header 2a is increased with a gradient.

本実施形態の、複数流路3上部のヘッダー体積を入口流路1からの距離が遠くなるにつれて大きくするように勾配をつけた熱交換器5bでは、入口流路1から流入する冷媒蒸気を複数流路3全体に均等に配分することができる。入口流路1から流入する冷媒を均等に複数流路3に配分することにより、冷却能力の向上、熱交換器5b並びに密閉式冷却塔20のサイズ縮小を可能にする。   In the present embodiment, in the heat exchanger 5b having a gradient so that the header volume at the top of the plurality of channels 3 increases as the distance from the inlet channel 1 increases, a plurality of refrigerant vapors flowing from the inlet channel 1 are used. It can be evenly distributed over the entire flow path 3. By equally distributing the refrigerant flowing from the inlet channel 1 to the plurality of channels 3, it is possible to improve the cooling capacity and reduce the size of the heat exchanger 5 b and the sealed cooling tower 20.

〔第4実施形態〕
次に、本発明の第4実施形態による冷却塔について、説明する。本実施形態の冷却塔は、第1実施形態による冷却塔と比較して、用いる熱交換器が異なる。熱交換器以外の構成は、第1実施形態による冷却塔と同様なため、その詳細な説明は省略する。図10は、本発明の第4実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。
[Fourth Embodiment]
Next, the cooling tower by 4th Embodiment of this invention is demonstrated. The cooling tower of this embodiment differs in the heat exchanger to be used compared with the cooling tower by 1st Embodiment. Since the configuration other than the heat exchanger is the same as that of the cooling tower according to the first embodiment, a detailed description thereof will be omitted. FIG. 10 is a schematic view for explaining a heat exchanger used in the cooling tower of the fourth embodiment of the present invention.

[構造の説明]
本実施形態の熱交換器5cでは図10に示すように、入口流路1の下方に位置する、ヘッダー2bの底面にくぼみ部2cが形成されている。くぼみ部2cでは、ヘッダー2bの底面の高さがヘッダー2bの底面の他部分の高さと比較して、低い。入口流路1の下方に位置する、ヘッダー2bの底面にくぼみ部2cをつけることにより、入口流路1から流入する冷媒蒸気に含まれる冷媒液はくぼみ部2cに集約される。冷媒蒸気に含まれている冷媒液が一部に集約される構造により、熱交換器5cの複数流路3内の冷媒凝縮により生成される液膜を薄くすることができる。液膜を薄くすることで熱伝達率を向上させ、その結果、冷却能力の向上、熱交換器5c並びに密閉式冷却塔20のサイズ縮小を可能にする。
[Description of structure]
In the heat exchanger 5c of this embodiment, as shown in FIG. 10, a recess 2c is formed on the bottom surface of the header 2b, which is located below the inlet channel 1. In the recessed portion 2c, the height of the bottom surface of the header 2b is lower than the height of the other portion of the bottom surface of the header 2b. By attaching the recess 2c to the bottom surface of the header 2b located below the inlet channel 1, the refrigerant liquid contained in the refrigerant vapor flowing from the inlet channel 1 is concentrated in the recess 2c. With the structure in which the refrigerant liquid contained in the refrigerant vapor is concentrated in part, the liquid film generated by the refrigerant condensation in the plurality of flow paths 3 of the heat exchanger 5c can be thinned. By reducing the thickness of the liquid film, the heat transfer rate is improved. As a result, the cooling capacity can be improved and the size of the heat exchanger 5c and the enclosed cooling tower 20 can be reduced.

なお、図10の熱交換器5cでは、第2実施形態の熱交換器5aと同様に、熱交換器5cを構成する複数流路の配管径を入口流路1からの距離が遠くなるにつれて太くするように勾配をつけている。図10では、配管3bの配管径は入口流路1に近い配管3aの配管径より太い。さらに、入口流路1からの距離がより遠い配管3cの配管径は、配管3bの配管径より太い。   In the heat exchanger 5c of FIG. 10, the pipe diameters of the plurality of flow paths constituting the heat exchanger 5c become thicker as the distance from the inlet flow path 1 becomes longer, like the heat exchanger 5a of the second embodiment. It has a slope to do. In FIG. 10, the pipe diameter of the pipe 3 b is larger than the pipe diameter of the pipe 3 a close to the inlet channel 1. Furthermore, the pipe diameter of the pipe 3c farther from the inlet channel 1 is larger than the pipe diameter of the pipe 3b.

本実施形態のような、入口流路1に近い距離にある複数流路3の配管径を入口流路1からの距離が遠くなるに従い、太くするような勾配をつけた熱交換器5cでは、入口流路1から流入する冷媒蒸気を複数流路3全体に均等に配分することができる。このような複数流路3の配管径の勾配を併用することにより、冷却能力のさらなる向上、熱交換器5c並びに密閉式冷却塔20のさらなるサイズ縮小を可能にできる。   In the heat exchanger 5c having a gradient that increases the pipe diameter of the plurality of flow paths 3 at a distance close to the inlet flow path 1 as the distance from the inlet flow path 1 increases as in this embodiment, The refrigerant vapor flowing from the inlet channel 1 can be evenly distributed throughout the plurality of channels 3. By using such a gradient of the pipe diameters of the plurality of flow paths 3, it is possible to further improve the cooling capacity and further reduce the size of the heat exchanger 5 c and the closed cooling tower 20.

〔第5実施形態〕
次に、本発明の第5実施形態による冷却塔について、説明する。本実施形態の冷却塔は、第1実施形態による冷却塔と比較して、用いる熱交換器が異なる。熱交換器以外の構成は、第1実施形態による冷却塔と同様なため、その詳細な説明は省略する。図11は、本発明の第5実施形態の冷却塔に用いられる熱交換器を説明するための概観図である。
[Fifth Embodiment]
Next, the cooling tower by 5th Embodiment of this invention is demonstrated. The cooling tower of this embodiment differs in the heat exchanger to be used compared with the cooling tower by 1st Embodiment. Since the configuration other than the heat exchanger is the same as that of the cooling tower according to the first embodiment, a detailed description thereof will be omitted. FIG. 11 is an overview for explaining a heat exchanger used in the cooling tower of the fifth embodiment of the present invention.

[構造の説明]
本実施形態の熱交換器5dは、上述した第3実施形態の熱交換器に対し、入口流路1の下方に位置する、ヘッダー2dの底面にくぼみ部2cが形成された構成である。くぼみ部2cでは、ヘッダー2dの底面の高さがヘッダー2dの底面の他部分の高さと比較して、低い。入口流路1の下方に位置する、ヘッダー2dの底面にくぼみ部2cをつけることにより、入口流路1から流入する冷媒蒸気に含まれる冷媒液は一部、例えばくぼみ部2c、に集約される。
[Description of structure]
The heat exchanger 5d of the present embodiment has a configuration in which a recess 2c is formed on the bottom surface of the header 2d, which is located below the inlet flow channel 1, with respect to the heat exchanger of the third embodiment described above. In the recessed portion 2c, the height of the bottom surface of the header 2d is lower than the height of the other portion of the bottom surface of the header 2d. By providing the recess 2c on the bottom surface of the header 2d located below the inlet channel 1, a part of the refrigerant liquid contained in the refrigerant vapor flowing from the inlet channel 1 is concentrated in the recess 2c, for example. .

冷媒蒸気に含まれている冷媒液が一部に集約される構造により、熱交換器5dの複数流路3内の冷媒凝縮により生成される液膜を薄くすることができる。液膜を薄くすることで熱伝達率を向上させ、その結果、冷却能力の向上、熱交換器5d並びに密閉式冷却塔20のサイズ縮小を可能にする。   Due to the structure in which the refrigerant liquid contained in the refrigerant vapor is concentrated in part, the liquid film generated by the refrigerant condensation in the plurality of flow paths 3 of the heat exchanger 5d can be thinned. By thinning the liquid film, the heat transfer rate is improved, and as a result, the cooling capacity can be improved and the size of the heat exchanger 5d and the closed cooling tower 20 can be reduced.

また本実施形態のような、複数流路3上部のヘッダー体積が入口流路1からの距離が遠くなるにつれて大きくなるように勾配をつけた熱交換器5dでは、入口流路1から流入する冷媒蒸気を複数流路3全体に均等に配分することができる。入口流路1から流入する冷媒を均等に複数流路3に配分することにより、冷却能力のさらなる向上、熱交換器5d並びに密閉式冷却塔20のさらなるサイズ縮小を可能にする。   Further, in the heat exchanger 5d having a gradient such that the header volume at the top of the plurality of flow paths 3 increases as the distance from the inlet flow path 1 increases as in the present embodiment, the refrigerant flowing from the inlet flow path 1 Steam can be evenly distributed throughout the plurality of flow paths 3. By evenly distributing the refrigerant flowing in from the inlet channel 1 to the plurality of channels 3, it is possible to further improve the cooling capacity and further reduce the size of the heat exchanger 5d and the closed cooling tower 20.

図12は本発明の実施形態のような、重力方向と平行な複数流路3により構成される熱交換器5を用いて冷却した場合の、湿球温度の変化による熱抵抗値の計測結果を示すグラフである。図12では、上述した実施形態のようなファン9による送風とともに、微粒子の水滴を噴霧して冷却した場合と、微粒子でない大きな水滴を同熱交換器に散水して冷却した場合とを示す。図12では、冷却に使用する噴霧される微粒子の水滴直径は150μm以下になるように設定されている。   FIG. 12 shows the measurement result of the thermal resistance value due to the change of the wet bulb temperature when cooled using the heat exchanger 5 constituted by a plurality of flow paths 3 parallel to the direction of gravity as in the embodiment of the present invention. It is a graph to show. FIG. 12 shows a case in which the water droplets of fine particles are sprayed and cooled together with the blowing by the fan 9 as in the above-described embodiment, and a case in which large water droplets that are not fine particles are sprayed on the heat exchanger and cooled. In FIG. 12, the water droplet diameter of the sprayed fine particles used for cooling is set to be 150 μm or less.

冷却対象の冷媒は受熱部で温められ、密閉式冷却塔で冷却される。図12に示されるRcvは受熱部熱抵抗であり、Rvwは放熱部(冷却塔)熱抵抗であり、Rcwは受熱部熱抵抗Rcvと放熱部(冷却塔)熱抵抗Rvwとの和を示す。   The refrigerant to be cooled is warmed by the heat receiving part and cooled by the hermetic cooling tower. Rcv shown in FIG. 12 is the heat receiving portion thermal resistance, Rvw is the heat radiating portion (cooling tower) thermal resistance, and Rcw is the sum of the heat receiving portion thermal resistance Rcv and the heat radiating portion (cooling tower) thermal resistance Rvw.

Rcv sprayは微粒子の水滴を噴霧し冷却した場合の受熱部熱抵抗であり、Rvw sprayは微粒子の水滴を噴霧し冷却した場合の放熱部(冷却塔)熱抵抗である。さらにRcw sprayは、微粒子の水滴を噴霧し冷却した場合の受熱部熱抵抗Rcv sprayと、微粒子の水滴を噴霧し冷却した場合の放熱部(冷却塔)熱抵抗Rvw sprayとの和を示す。   Rcv spray is the thermal resistance of the heat receiving part when sprayed with water droplets of fine particles and cooled, and Rvw spray is the thermal resistance of the heat radiation part (cooling tower) when sprayed with water droplets of fine particles and cooled. Further, Rcw spray represents the sum of the heat receiving portion thermal resistance Rcv spray when spraying and cooling fine particle water droplets and the heat radiation portion (cooling tower) thermal resistance Rvw spray when spraying and cooling fine particle water droplets.

熱抵抗値の計測結果から、大幅な熱抵抗の改善が見られ、冷却能力の向上が示された。本発明の実施形態や実施例によれば、熱抵抗の改善、圧力損失の減少から冷却能力向上が可能になり、その結果、湿球温度の高い時期での外気を利用した冷却が実現できる。   From the measurement results of the thermal resistance value, a significant improvement in thermal resistance was seen, indicating an improvement in cooling capacity. According to the embodiments and examples of the present invention, it is possible to improve the cooling capacity by improving the thermal resistance and reducing the pressure loss. As a result, it is possible to realize the cooling using the outside air at the time when the wet bulb temperature is high.

以上、本発明の好ましい実施形態や実施例を説明したが、本発明はこれに限定されるものではない。上述した実施形態、例えば図2では、熱交換器5の複数流路が重力方向と平行となるように、熱交換器5を設置した場合で説明したが、本発明はこれに限られない。冷却対象の流体が熱交換器5で熱交換し凝縮した後の冷却対象の流体が重力利用で循環できる程度の傾斜で設置された熱交換器5にも適用することができる。そしてこのような傾斜で設置された熱交換器5を用いた密閉式冷却塔に適用することができる。   As mentioned above, although preferable embodiment and the Example of this invention were described, this invention is not limited to this. In the above-described embodiment, for example, FIG. 2, the case where the heat exchanger 5 is installed so that the plurality of flow paths of the heat exchanger 5 are parallel to the direction of gravity has been described, but the present invention is not limited to this. The present invention can also be applied to the heat exchanger 5 installed with an inclination to the extent that the fluid to be cooled after the fluid to be cooled is heat-exchanged and condensed by the heat exchanger 5 and can be circulated by using gravity. And it can apply to the enclosed cooling tower using the heat exchanger 5 installed in such an inclination.

また、例えば密閉式冷却塔20に使用される、冷却対象の流体は、水でもその他冷媒でもかまわない。また冷却対象の流体としては、液体、気体、混合流体の状態を想定する。また密閉式冷却塔20に噴霧ノズル6から噴霧される水の量は蒸発潜熱分程度とし、それゆえ噴霧された水の循環システム、並びにフィルターを必要としない。   Further, for example, the fluid to be cooled used in the hermetic cooling tower 20 may be water or other refrigerant. Moreover, as a fluid to be cooled, a liquid, gas, or mixed fluid state is assumed. Further, the amount of water sprayed from the spray nozzle 6 to the sealed cooling tower 20 is about the amount of latent heat of vaporization, and therefore, a circulation system of sprayed water and a filter are not required.

また本発明の実施形態の冷却塔は、データセンターなどの排熱を、受熱部にて冷媒を媒体として吸熱を行うことで冷却し、吸熱した冷媒を循環させる冷媒循環サイクルを用いた冷却システムで使用することができる。   The cooling tower of the embodiment of the present invention is a cooling system using a refrigerant circulation cycle that cools exhaust heat from a data center or the like by absorbing heat using a refrigerant as a medium in a heat receiving unit and circulates the absorbed refrigerant. Can be used.

冷媒循環サイクルでの使用方法として、放熱部を受熱部より高い位置に設置することで、循環サイクル内の冷媒の相変化による気体液体の密度差を利用した自然循環でのアプリケーションが考えられる。或いは冷媒循環サイクルでの使用方法として、放熱部位置を考慮せずポンプ等を使用した強制循環でのアプリケーションが考えられる。   As a usage method in the refrigerant circulation cycle, an application in natural circulation using the density difference of the gas liquid due to the phase change of the refrigerant in the circulation cycle can be considered by installing the heat radiating unit at a position higher than the heat receiving unit. Alternatively, as a usage method in the refrigerant circulation cycle, an application in forced circulation using a pump or the like without considering the position of the heat radiating portion can be considered.

(効果のまとめ)
改めて本発明の実施形態の密閉式冷却塔による効果をまとめると、次のようになる。
(Summary of effects)
The effects of the closed cooling tower according to the embodiment of the present invention are summarized as follows.

第1の効果は、熱交換を行う複数流路の配管を重力方向と平行に、又は冷媒粘性に基づき凝縮した液体が効率的に冷却塔外へ重力を利用し流入する傾斜で設置することにより、複数流路の配管内の凝縮液により形成される液膜の太さを可能な限り薄くする。これにより、熱伝達率の向上を促進する。その結果、単位体積当たりの冷却能力が向上し、熱交換器の大きさを削減する。また、凝縮液により形成される液膜の太さを薄くすることにより、凝縮前蒸気が通る有効配管内断面積を増加させ、結果圧力損失を削減する。相変化を伴う熱輸送プロセスにおいて、圧力損失は熱輸送量へ大きく影響するため、結果冷却能力の向上を実現する。   The first effect is that the pipes of the plurality of flow paths for performing heat exchange are installed in parallel with the direction of gravity or with an inclination that allows the condensed liquid to flow into the outside of the cooling tower efficiently using gravity. The thickness of the liquid film formed by the condensed liquid in the pipes of the plurality of flow paths is made as thin as possible. Thereby, the improvement of a heat transfer rate is accelerated | stimulated. As a result, the cooling capacity per unit volume is improved and the size of the heat exchanger is reduced. Further, by reducing the thickness of the liquid film formed by the condensate, the cross-sectional area in the effective pipe through which the pre-condensation steam passes is increased, resulting in a reduction in pressure loss. In the heat transport process with phase change, the pressure loss greatly affects the heat transport amount, so that the cooling capacity is improved as a result.

第2の効果は、図4に見られるようなファンと熱交換器の位置関係により、熱交換器を通過する風量に特別な制御を必要とすることなく、上部から下部にむけて勾配を付けることが可能である。そこへ熱交換器外側上部より熱交換器に対して噴霧分布量がファン風量勾配と比例するように噴霧ノズルに傾斜をつけて噴霧することで、効率的に蒸発を促すことが可能になり、結果冷却能力の向上を実現する。また、効率的な蒸発により節水の効果があるだけでなく、傾斜をつけることで噴霧幅を拡大し必要ノズル数の削減が可能となる。   The second effect is that the position of the fan and the heat exchanger as shown in FIG. 4 makes a gradient from the upper part to the lower part without requiring special control of the air volume passing through the heat exchanger. It is possible. Evaporation can be efficiently promoted by spraying the spray nozzle with an inclination so that the spray distribution amount is proportional to the fan airflow gradient from the upper part of the heat exchanger to the heat exchanger. As a result, the cooling capacity is improved. Moreover, not only has an effect of saving water by efficient evaporation, but also it is possible to increase the spray width and reduce the number of necessary nozzles by providing an inclination.

同様に、図6に見られるように、ノズル流量分布の最大点が入口流路下方に来、かつ噴霧幅が熱交換器表面に収まるノズル選定・位置選定を行うことで、熱交換器内側・外側の熱流速値分布を近づけ、流量の最適化を可能とする。   Similarly, as can be seen in FIG. 6, by selecting and positioning the nozzle where the maximum point of the nozzle flow distribution is below the inlet flow path and the spray width is within the heat exchanger surface, The outer heat flow velocity value distribution is made closer, and the flow rate can be optimized.

第3の効果は、冷却塔において微粒子状の水滴を噴霧することによって、環境湿球温度の高い状況下においても、水の気化を促進し熱伝達率の向上を可能とする。熱伝達率は数式(熱伝達率=熱伝導率×面積×ΔT÷太さ)で算出される。ここで、ΔTは温度差である。水滴直径を小さくすると上記数式の(太さ)が小さくなり、その結果、熱伝達率が大きくなる。よって、噴霧する微粒子状の水滴直径を小さくすることにより、熱伝達率が向上する。   The third effect is that by spraying fine water droplets in the cooling tower, the vaporization of water is promoted and the heat transfer rate can be improved even under a high environmental wet bulb temperature. The heat transfer coefficient is calculated by a mathematical formula (heat transfer coefficient = thermal conductivity × area × ΔT ÷ thickness). Here, ΔT is a temperature difference. When the water droplet diameter is reduced, the (thickness) of the above formula is reduced, and as a result, the heat transfer coefficient is increased. Therefore, the heat transfer coefficient is improved by reducing the diameter of the fine water droplets to be sprayed.

また、水粒子が液滴で存在するには表面張力が内圧と釣り合う必要があり、内圧は水滴直径が小さくなるほど高くなることから、水滴直径が小さくなると水滴の安定性が保たれにくくなる。この時、水滴近辺に他水滴が存在する場合、それらが併合し大きな水液滴として存在するが、他水滴と距離がある場合、安定性が保たれない液滴の蒸発が促進されることにより、気化を促進する結果となる。   Further, in order for water particles to be present as droplets, the surface tension needs to be balanced with the internal pressure, and the internal pressure increases as the water droplet diameter decreases. Therefore, when the water droplet diameter decreases, it becomes difficult to maintain the stability of the water droplets. At this time, when other water droplets exist in the vicinity of the water droplets, they merge and exist as large water droplets, but when there is a distance from other water droplets, the evaporation of the droplets that cannot maintain stability is promoted. As a result, it promotes vaporization.

微粒子の状態の水を蒸発できる流量分噴霧することで水消費を減らせるだけでなく、散水用の水循環システム並びにそれに伴う循環動力(ポンプ電力、フィルターリング)を不要にする。それが原因として発生する水道水に含まれる成分(カルシウム、マグネシウム、シリカなど)の結晶化によるスケール発生の課題、並びにそれらのメンテナンスを不要にする。シリカ除去には人体に有害になる化学物質を使用する事例も発生していることから、安全性の向上に寄与する。また、必要流量の削減により貯水タンクのサイズダウンを可能とする。   Spraying water in a fine particle state for a flow rate that can evaporate not only reduces water consumption, but also eliminates the need for a water circulation system for sprinkling and the associated circulation power (pump power, filtering). This eliminates the problem of scale generation due to crystallization of components (calcium, magnesium, silica, etc.) contained in tap water, and the maintenance thereof. There are cases where chemicals that are harmful to the human body are used to remove silica, which contributes to improved safety. In addition, the size of the water storage tank can be reduced by reducing the required flow rate.

その他、以下に明記する課題解決手法はすべて冷却能力の向上に寄与する。一つ目に、熱交換器5の複数流路3を構成する配管の向きが重力方向と平行になるように設置することで、特許文献1のように配管を水平に設置したのち冷却塔内で蛇行させて距離を稼ぐ配管形状と比較し、同体積内での熱交換可能表面積を増加させることができる。   In addition, all the problem-solving methods specified below contribute to the improvement of cooling capacity. First, by installing the pipes constituting the plurality of flow paths 3 of the heat exchanger 5 so that the direction of the pipes is parallel to the direction of gravity, the pipes are horizontally installed as in Patent Document 1, and then the inside of the cooling tower. Compared with the pipe shape that meanders to increase the distance, the heat exchangeable surface area within the same volume can be increased.

これは、配管湾曲部分の体積ロスを無くすことで、配管をより密に設置できるからである。また、各々の配管距離を短くし本数を増やす本発明の方式では、凝縮により生成された液を複数の配管の中に保持する時間が短く、結果、熱伝達率を向上させるだけでなく、液を冷却塔外に運ぶ時に生じる圧力損失も大幅に軽減することが可能である。   This is because the pipes can be more densely installed by eliminating the volume loss at the pipe curved portion. Further, in the method of the present invention in which each pipe distance is shortened and the number of pipes is increased, the time for holding the liquid generated by condensation in a plurality of pipes is short, and as a result, not only the heat transfer rate is improved, but also the liquid It is possible to greatly reduce the pressure loss that occurs when transporting the outside of the cooling tower.

二つ目に、図8や図10のように複数流路3の配管径を入口流路からの距離が遠くなるに従い、太くするような勾配をつける方法は、冷却対象の冷媒を熱交換器に均等に配分し、冷却能力の向上に寄与する。三つ目に、図9や図11のように複数流路の配管径を一定にし、入口流路からの距離が遠くなるに従い、複数流路上部のヘッダー体積を、勾配を付けて大きくする構造も、前例と同様の効果を有する。四つ目に、図10や図11に見られるように、入口流路下方に位置するヘッダー底面の高さをヘッダー底面他部分と比較し低くし、又はくぼみをつけることで、冷却対象冷媒蒸気に混ざっている液を一部に集中することで、熱伝達率の向上に寄与する。   Secondly, as shown in FIG. 8 and FIG. 10, the method of providing a gradient that increases the pipe diameter of the plurality of flow paths 3 as the distance from the inlet flow path increases is as follows. Evenly distributed to contribute to improving cooling capacity. Third, as shown in FIG. 9 and FIG. 11, the structure is such that the pipe diameters of the plurality of channels are made constant, and the header volume at the top of the plurality of channels is increased with a gradient as the distance from the inlet channel increases. Has the same effect as the previous example. Fourth, as shown in FIG. 10 and FIG. 11, by reducing the height of the bottom surface of the header located below the inlet channel as compared with other portions of the bottom surface of the header, By concentrating the liquid mixed in to a part, it contributes to the improvement of heat transfer coefficient.

このように請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲に含まれることはいうまでもない。   Thus, various modifications are possible within the scope of the invention described in the claims, and it goes without saying that they are also included in the scope of the present invention.

上記の実施形態や実施例の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)微粒子状の液滴が噴霧される複数の並列する流路であって、冷却対象の流体が重力方向、又は凝縮後の流体が重力利用で循環できる傾斜で設置された複数の並列する流路を含む、熱交換器。
(付記2)前記冷却対象の流体が流入する入口流路と、前記入口流路から流入した冷却対象の流体を前記複数の並列する流路に分岐するヘッダーとをさらに含む、付記1に記載の熱交換器。
(付記3)前記複数の並列する流路の配管径は、前記入口流路からの距離が遠くなるにつれて太くするように勾配がつけられている、付記2に記載の熱交換器。
(付記4)前記ヘッダーの体積は、前記入口流路からの距離が遠くなるにつれて大きくするように勾配がつけられている、付記2に記載の熱交換器。
(付記5)前記入口流路の下方に位置する、前記ヘッダーの底面にくぼみ部が形成されている、付記3又は付記4に記載の熱交換器。
(付記6)前記入口流路が複数設けられている、付記2乃至付記5のいずれか一つに記載の熱交換器。
(付記7)前記複数の入口流路に対応して、それぞれ微粒子状の液滴が噴霧される、付記6に記載の熱交換器。
(付記8)付記1乃至付記7のいずれか一つに記載の熱交換器と、空気が前記熱交換器を通るように送風するファンと、前記熱交換器へ微粒子状の液滴を噴霧する噴霧ノズルと、前記熱交換器に接続された配管とを含む、冷却塔。
(付記9)前記噴霧ノズルは、重力方向に対して傾斜させた方向で、前記熱交換器へ前記微粒子状の液滴を噴霧する、付記8に記載の冷却塔。
(付記10)前記熱交換器の前記複数の並列する流路が、重力方向と実質的に平行となるように、前記熱交換器は設置されており、前記噴霧ノズルは、斜め下向きに前記熱交換器へ前記微粒子状の液滴を噴霧する、付記8に記載の冷却塔。
(付記11)前記ファンは、前記熱交換器の前記複数の並列する流路に対し風量勾配を引き起こし、前記噴霧ノズルは、その噴霧分布量が前記風量勾配と比例するように、前記熱交換器の前記複数の並列する流路に対して傾斜をつけて設置されている、付記8乃至付記10のいずれか一つに記載の冷却塔。
(付記12)前記噴霧ノズルは、ノズル流量分布の最大点が前記熱交換器の入口流路下方に位置するように、設置されている、付記8乃至付記11のいずれか一つに記載の冷却塔。
Some or all of the above-described embodiments and examples can be described as in the following supplementary notes, but are not limited thereto.
(Appendix 1) A plurality of parallel flow paths in which fine droplets are sprayed, and a plurality of parallel flow paths installed in a direction in which the fluid to be cooled is circulated in the direction of gravity or the condensed fluid can be circulated by using gravity A heat exchanger including a flow path.
(Appendix 2) The appendix according to appendix 1, further comprising an inlet channel into which the fluid to be cooled flows, and a header that branches the fluid to be cooled flowing in from the inlet channel into the plurality of parallel channels. Heat exchanger.
(Supplementary note 3) The heat exchanger according to supplementary note 2, wherein the pipe diameters of the plurality of parallel flow paths are sloped so as to increase as the distance from the inlet flow path increases.
(Additional remark 4) The heat exchanger of Additional remark 2 with which the volume of the said header is inclined so that it may become so large that the distance from the said inlet flow path becomes long.
(Additional remark 5) The heat exchanger of Additional remark 3 or Additional remark 4 in which the hollow part is formed in the bottom face of the said header located under the said inlet flow path.
(Supplementary note 6) The heat exchanger according to any one of supplementary notes 2 to 5, wherein a plurality of the inlet channels are provided.
(Supplementary note 7) The heat exchanger according to supplementary note 6, wherein fine droplets are sprayed respectively corresponding to the plurality of inlet channels.
(Appendix 8) The heat exchanger according to any one of appendices 1 to 7, a fan that blows air so that air passes through the heat exchanger, and sprays particulate droplets onto the heat exchanger. A cooling tower including a spray nozzle and a pipe connected to the heat exchanger.
(Supplementary note 9) The cooling tower according to supplementary note 8, wherein the spray nozzle sprays the particulate droplets onto the heat exchanger in a direction inclined with respect to the direction of gravity.
(Additional remark 10) The said heat exchanger is installed so that the said several parallel flow path of the said heat exchanger may become substantially parallel to the direction of gravity, and the said spray nozzle is the said heat | fever diagonally downward. 9. The cooling tower according to appendix 8, wherein the particulate droplets are sprayed onto an exchanger.
(Appendix 11) The fan causes an air flow gradient to the plurality of parallel flow paths of the heat exchanger, and the spray nozzle has the spray distribution amount proportional to the air flow gradient so that the heat exchanger The cooling tower according to any one of appendices 8 to 10, wherein the cooling tower is installed with an inclination with respect to the plurality of parallel flow paths.
(Supplementary note 12) The cooling according to any one of Supplementary notes 8 to 11, wherein the spray nozzle is installed so that a maximum point of a nozzle flow rate distribution is located below an inlet flow path of the heat exchanger. Tower.

以上、上述した実施形態や実施例を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態や実施例には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。   The present invention has been described above by way of exemplary embodiments and examples. However, the present invention is not limited to the above-described embodiments and examples. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.

この出願は、2015年12月24日に出願された日本出願特願2015−251191号を基礎とする優先権を主張し、その開示の全てをここに取り込む。   This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2015-251191 for which it applied on December 24, 2015, and takes in those the indications of all here.

1 入口流路
2、2a、2b、2d ヘッダー
2c くぼみ部
3 複数流路
3a、3b、3c 配管
4 フィン
5、105 熱交換器
6、106 噴霧ノズル
7 圧力計
8 流量調整バルブ
9、109 ファン
10 ポンプ
11 貯水タンク
12a、12b 配管
13 筐体
20 密閉式冷却塔
21 サーバー室
22 サーバーラック
23 受熱部
24 液管
25 蒸気管
30 データセンター
103 並列する流路
100 冷却塔
DESCRIPTION OF SYMBOLS 1 Inlet flow path 2, 2a, 2b, 2d Header 2c Recessed part 3 Multiple flow paths 3a, 3b, 3c Piping 4 Fin 5, 105 Heat exchanger 6, 106 Spray nozzle 7 Pressure gauge 8 Flow control valve 9, 109 Fan 10 Pump 11 Water storage tank 12 a, 12 b Piping 13 Case 20 Sealed cooling tower 21 Server room 22 Server rack 23 Heat receiving section 24 Liquid pipe 25 Steam pipe 30 Data center 103 Parallel flow path 100 Cooling tower

Claims (12)

微粒子状の液滴が噴霧される複数の並列する流路であって、冷却対象の流体が重力方向、又は凝縮後の流体が重力利用で循環できる傾斜で設置された複数の並列する流路を含む、熱交換器。   A plurality of parallel flow paths on which fine droplets are sprayed, and a plurality of parallel flow paths installed in an inclination in which the fluid to be cooled can be circulated in the direction of gravity or the condensed fluid can be circulated by using gravity. Including heat exchanger. 前記冷却対象の流体が流入する入口流路と、前記入口流路から流入した冷却対象の流体を前記複数の並列する流路に分岐するヘッダーとをさらに含む、請求項1に記載の熱交換器。   2. The heat exchanger according to claim 1, further comprising an inlet channel into which the fluid to be cooled flows, and a header that branches the fluid to be cooled that has flowed in from the inlet channel into the plurality of parallel channels. . 前記複数の並列する流路の配管径は、前記入口流路からの距離が遠くなるにつれて太くするように勾配がつけられている、請求項2に記載の熱交換器。   The heat exchanger according to claim 2, wherein the pipe diameters of the plurality of parallel flow paths are inclined so as to become thicker as the distance from the inlet flow path becomes longer. 前記ヘッダーの体積は、前記入口流路からの距離が遠くなるにつれて大きくするように勾配がつけられている、請求項2に記載の熱交換器。   The heat exchanger according to claim 2, wherein the volume of the header is inclined so as to increase as the distance from the inlet channel increases. 前記入口流路の下方に位置する、前記ヘッダーの底面にくぼみ部が形成されている、請求項3又は請求項4に記載の熱交換器。   The heat exchanger according to claim 3 or 4, wherein a recess is formed on a bottom surface of the header located below the inlet channel. 前記入口流路が複数設けられている、請求項2乃至請求項5のいずれか一項に記載の熱交換器。   The heat exchanger according to any one of claims 2 to 5, wherein a plurality of the inlet channels are provided. 前記複数の入口流路に対応して、それぞれ微粒子状の液滴が噴霧される、請求項6に記載の熱交換器。   The heat exchanger according to claim 6, wherein fine particle droplets are sprayed respectively corresponding to the plurality of inlet channels. 請求項1乃至請求項7のいずれか一項に記載の熱交換器と、
空気が前記熱交換器を通るように送風するファンと、
前記熱交換器へ微粒子状の液滴を噴霧する噴霧ノズルと、
前記熱交換器に接続された配管とを含む、冷却塔。
The heat exchanger according to any one of claims 1 to 7,
A fan that blows air through the heat exchanger;
A spray nozzle for spraying fine droplets onto the heat exchanger;
And a cooling tower including piping connected to the heat exchanger.
前記噴霧ノズルは、重力方向に対して傾斜させた方向で、前記熱交換器へ前記微粒子状の液滴を噴霧する、請求項8に記載の冷却塔。   The cooling tower according to claim 8, wherein the spray nozzle sprays the particulate droplets onto the heat exchanger in a direction inclined with respect to a direction of gravity. 前記熱交換器の前記複数の並列する流路が重力方向と実質的に平行となるように、前記熱交換器は設置されており、
前記噴霧ノズルは、斜め下向きに前記熱交換器へ前記微粒子状の液滴を噴霧する、請求項8に記載の冷却塔。
The heat exchanger is installed such that the plurality of parallel flow paths of the heat exchanger are substantially parallel to the direction of gravity;
The cooling tower according to claim 8, wherein the spray nozzle sprays the particulate droplets to the heat exchanger obliquely downward.
前記ファンは、前記熱交換器の前記複数の並列する流路に対し風量勾配を引き起こし、
前記噴霧ノズルは、その噴霧分布量が前記風量勾配と比例するように、前記熱交換器の前記複数の並列する流路に対して傾斜をつけて設置されている、請求項8乃至請求項10のいずれか一項に記載の冷却塔。
The fan causes an air flow gradient to the plurality of parallel flow paths of the heat exchanger;
11. The spray nozzle is installed with an inclination with respect to the plurality of parallel flow paths of the heat exchanger so that a spray distribution amount is proportional to the air flow gradient. The cooling tower as described in any one of these.
前記噴霧ノズルは、ノズル流量分布の最大点が前記熱交換器の入口流路下方に位置するように、設置されている、請求項8乃至請求項11のいずれか一項に記載の冷却塔。   The cooling tower according to any one of claims 8 to 11, wherein the spray nozzle is installed such that a maximum point of a nozzle flow rate distribution is located below an inlet channel of the heat exchanger.
JP2017558087A 2015-12-24 2016-12-16 Heat exchanger and cooling tower Active JP7010702B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015251191 2015-12-24
JP2015251191 2015-12-24
PCT/JP2016/087552 WO2017110677A1 (en) 2015-12-24 2016-12-16 Heat exchanger and cooling tower

Publications (2)

Publication Number Publication Date
JPWO2017110677A1 true JPWO2017110677A1 (en) 2018-10-18
JP7010702B2 JP7010702B2 (en) 2022-01-26

Family

ID=59090289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017558087A Active JP7010702B2 (en) 2015-12-24 2016-12-16 Heat exchanger and cooling tower

Country Status (2)

Country Link
JP (1) JP7010702B2 (en)
WO (1) WO2017110677A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7015284B2 (en) * 2018-09-28 2022-02-02 株式会社デンソー Water spray cooling device
JP2022046305A (en) * 2020-09-10 2022-03-23 日本電気株式会社 Outdoor machine of air conditioner
WO2023188010A1 (en) * 2022-03-29 2023-10-05 三菱電機株式会社 Refrigeration cycle device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417290U (en) * 1990-05-29 1992-02-13
JPH10132423A (en) * 1996-10-30 1998-05-22 Daikin Ind Ltd Heat-exchanger
JPH11201685A (en) * 1998-01-08 1999-07-30 Mitsubishi Electric Corp Heat-exchanger device
JP2001304775A (en) * 2000-04-26 2001-10-31 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2008075949A (en) * 2006-09-20 2008-04-03 Daikin Ind Ltd Air conditioner
JP2009097817A (en) * 2007-10-18 2009-05-07 Tokyo Electric Power Co Inc:The Cooler, cooling device, and heat pump
JP2010032074A (en) * 2008-07-25 2010-02-12 Denso Corp Heat exchanger
US20110209860A1 (en) * 2008-10-08 2011-09-01 A-Heat Allied Heat Exchange Technology Ag Heat exchanger arrangement and method for the operation of same
JP2013032869A (en) * 2011-08-01 2013-02-14 Nakano Refrigerators Co Ltd Water sprinkler for condenser and operation method therefor
JP2013130326A (en) * 2011-12-21 2013-07-04 Daikin Industries Ltd Outdoor unit for air conditioner
JP2014031926A (en) * 2012-08-02 2014-02-20 Osaka Shiroguchi Kenkyusho:Kk Power saving device of air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3710134B2 (en) 2004-06-07 2005-10-26 Necエンジニアリング株式会社 Data processing device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0417290U (en) * 1990-05-29 1992-02-13
JPH10132423A (en) * 1996-10-30 1998-05-22 Daikin Ind Ltd Heat-exchanger
JPH11201685A (en) * 1998-01-08 1999-07-30 Mitsubishi Electric Corp Heat-exchanger device
JP2001304775A (en) * 2000-04-26 2001-10-31 Mitsubishi Heavy Ind Ltd Air conditioner for vehicle
JP2008075949A (en) * 2006-09-20 2008-04-03 Daikin Ind Ltd Air conditioner
JP2009097817A (en) * 2007-10-18 2009-05-07 Tokyo Electric Power Co Inc:The Cooler, cooling device, and heat pump
JP2010032074A (en) * 2008-07-25 2010-02-12 Denso Corp Heat exchanger
US20110209860A1 (en) * 2008-10-08 2011-09-01 A-Heat Allied Heat Exchange Technology Ag Heat exchanger arrangement and method for the operation of same
JP2013032869A (en) * 2011-08-01 2013-02-14 Nakano Refrigerators Co Ltd Water sprinkler for condenser and operation method therefor
JP2013130326A (en) * 2011-12-21 2013-07-04 Daikin Industries Ltd Outdoor unit for air conditioner
JP2014031926A (en) * 2012-08-02 2014-02-20 Osaka Shiroguchi Kenkyusho:Kk Power saving device of air conditioner

Also Published As

Publication number Publication date
JP7010702B2 (en) 2022-01-26
WO2017110677A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP5416093B2 (en) Cooling system
US9560794B2 (en) Cooling device for cooling rack-type server, and data center provided with same
JP5671659B2 (en) Cooling unit
TWI422318B (en) Data center module
JP7137555B2 (en) Active/passive cooling system
US9696096B2 (en) Loop heat pipe and electronic equipment using the same
WO2011122207A1 (en) Cooling apparatus and cooling system for electronic-device exhaustion
JP2020136335A (en) Cooling device, cooling system, and cooling method
US20160073548A1 (en) Cooling module, cooling module mounting board and electronic device
WO2015087530A1 (en) Refrigerant distribution device and cooling device
US11441847B2 (en) Evaporative cooling system
TW201641910A (en) Coolant type heat dissipation device
AU2009301278B2 (en) Heat exchanger assembly and method for the operation thereof
CN102834688A (en) Phase change cooler and electronic equipment provided with same
WO2014132592A1 (en) Electronic apparatus cooling system and electronic apparatus cooling system fabrication method
CN112118705A (en) Enhanced cooling device
JP7010702B2 (en) Heat exchanger and cooling tower
WO2016152111A1 (en) Phase change cooling device and phase change cooling method
JP2011142298A (en) Boiling cooler
JP6028819B2 (en) Cooling system
JP2016023925A (en) Evaporation air conditioning system
JP5664046B2 (en) Cooling system
JP6835470B2 (en) Piping structure, cooling device using it, and refrigerant vapor transport method
CN114518043A (en) Pipeline interval type heat dissipation method for vacuum pipeline magnetic suspension transportation system
WO2013102974A1 (en) Cooling system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201110

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210210

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210427

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211019

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20211022

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211116

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211221

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220113