JPH07102260A - Production of formed coke - Google Patents
Production of formed cokeInfo
- Publication number
- JPH07102260A JPH07102260A JP24924993A JP24924993A JPH07102260A JP H07102260 A JPH07102260 A JP H07102260A JP 24924993 A JP24924993 A JP 24924993A JP 24924993 A JP24924993 A JP 24924993A JP H07102260 A JPH07102260 A JP H07102260A
- Authority
- JP
- Japan
- Prior art keywords
- coal
- temperature
- caking
- coke
- heating rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Coke Industry (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高炉で使用可能な成形
コ−クスの製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a molded coke usable in a blast furnace.
【0002】[0002]
【従来の技術】高炉用コ−クスは、還元材として、熱源
として、また通気性を保つための支持材として機能して
おり、高炉製鉄法では必要不可欠のものである。特に、
高炉用コ−クスが通気性保持材としての役割を果たすた
めには、炉内装入物からの荷重に耐えるだけの強度と、
通気性悪化の要因となる微粉の発生量を極力小さくする
ための対摩耗性とが必要とされる。BACKGROUND OF THE INVENTION Blast furnace coke functions as a reducing material, a heat source, and a supporting material for maintaining air permeability, and is essential in the blast furnace ironmaking method. In particular,
In order for the blast furnace coke to function as a breathable holding material, the strength to withstand the load from the furnace interior contents and
Abrasion resistance is required to minimize the amount of fine powder that causes deterioration of air permeability.
【0003】こうした高い強度を持つコ−クスを製造す
るためには、その原料炭の配合においてある一定割合以
上の強粘結炭が必要である。しかし、強粘結炭の産出は
地域的、数量的、さらに価格的な制限があり、資源的に
も近い将来枯渇が予想されている。また、現行のコーク
ス炉では長期の使用に伴うシール性の悪化等から環境へ
の悪影響も指摘されるようになってきた。In order to produce a coke having such a high strength, it is necessary to have a strong coking coal in a certain proportion or more in the raw material coal. However, the production of strong coking coal has regional, quantitative, and price restrictions, and it is expected that resources will be exhausted in the near future. In addition, in the existing coke ovens, it has been pointed out that the environment has a bad influence due to deterioration of sealing property due to long-term use.
【0004】このような情勢を背景に、非粘結炭と粘結
炭を混合した配合炭にピッチ、アスファルト、タ−ルな
どの粘結剤を加えて加圧成形し、乾留してコークス化し
て利用する、いわゆる成形コークスの製造が試験的に行
われている。例えば、成形コークスの製造方法について
は、Trans ISIJ, Vol 23(1983)P.700 〜709 に記載され
ている。それによると、ロール型ブリケット成形機を使
用し、コールタールピッチを結合剤として用い、見掛け
密度、1180〜1210kg/m3 、嵩密度、673
kg/m3 前後の成形コークスが得られている。Against the background of such circumstances, a binder coal such as pitch, asphalt, tar, etc. is added to a blended coal which is a mixture of non-caking coal and caking coal, the mixture is pressure-molded, and the mixture is dry-distilled into coke. The so-called molded coke, which is used as a product, is being tested on a trial basis. For example, a method for producing molded coke is described in Trans ISIJ, Vol 23 (1983) P.700-709. According to it, a roll type briquette forming machine was used, coal tar pitch was used as a binder, and apparent density, 1180-1210 kg / m 3 , bulk density, 673
Molded coke of about kg / m 3 is obtained.
【0005】しかしながら、上記の例を一例とした、従
来法での成形コークス製造法は、(1)乾留炉出側での原
形歩留り(成形コークスが破壊や融着、変形を起こさず
に得られる割合)が低い、ことが問題点であった。そし
て、この原因は乾留中の熱応力による破壊や、軟化溶融
時の膨張による膨れ割れ、相互に融着して疑似クラスタ
ーを形成することにある。However, the conventional forming coke production method using the above-mentioned example as an example is as follows: (1) The original yield on the outlet side of the carbonization furnace (the forming coke can be obtained without breaking, fusing, or deforming). The problem was that the ratio was low. The cause of this is that destruction due to thermal stress during carbonization, blistering due to expansion at the time of softening and melting, and mutual fusion and formation of pseudo clusters.
【0006】これらの問題を解決するために、乾留時に
おける石炭物性の変化に注目して、以下の改善法が提案
されてきた。例えば、特開昭54-156007 号公報には、塊
成炭を乾留する際のヒートパターンとして、該塊成炭内
部の最大温度勾配(〔塊成炭表面温度−塊成炭中心温
度〕/塊成炭中心部と表面との最短距離)を15℃/mm 以
下にすることによって、熱歪による成形コークスの原形
歩留率及び強度の低下を防止する方法が開示されてい
る。In order to solve these problems, attention has been paid to changes in the physical properties of coal during carbonization, and the following improvement methods have been proposed. For example, in Japanese Patent Laid-Open No. 54-156007, as a heat pattern when carbonizing agglomerated coal, the maximum temperature gradient inside the agglomerated coal ([agglomerated coal surface temperature-agglomerated coal central temperature] / agglomerated coal) It discloses a method of preventing the original yield rate and strength of a molded coke from lowering due to thermal strain by setting the shortest distance between the center of the coal and the surface) to 15 ° C / mm or less.
【0007】しかるに、この方法では、亀裂はかなり多
く残っており、また該塊成炭を構成する配合炭の揮発分
量により、乾留ヒートパターンのある温度範囲で最大温
度勾配値である15℃/mm 以上の温度勾配を含むヒートパ
ターンで操業しても、高い原形歩留率及び強度が得られ
る場合もあった。さらにまた、乾留炉に装入される種々
の粒径、配合炭の成形構造をもつ該塊成炭の表面温度や
中心温度、塊成炭中心部と表面との最短距離を測定し、
その大部分が最大温度勾配値以下に維持するように操業
することは、現場操業管理上、ほとんど不可能であっ
た。However, in this method, a large number of cracks remain, and due to the volatile content of the blended coal constituting the agglomerated coal, the maximum temperature gradient value of 15 ° C./mm is obtained in a certain temperature range of the carbonization heat pattern. Even if the heat pattern including the above temperature gradient is used, a high original yield and strength may be obtained in some cases. Furthermore, various particle sizes charged into a carbonization furnace, the surface temperature and center temperature of the agglomerated coal having a forming structure of blended coal, and the shortest distance between the agglomerated coal center and the surface are measured,
It was almost impossible to operate so that most of the temperature was kept below the maximum temperature gradient value from the viewpoint of field operation management.
【0008】また、特公昭60-12389号公報には、塊成炭
を乾留する際のヒートパターンとして、該塊成炭の中心
部の温度が 200℃〜 600℃の範囲では中心部の昇温速度
に所定の上下限値を定め、さらに該塊成炭の中心温度が
600℃以上の範囲では前記と異なる所定の上限値をもつ
ヒートパターンを用いることによって、500 ℃以下の温
度領域での膨れ割れを防止し、かつ500 ℃以上の温度領
域での半成コークスの収縮に伴う亀裂の生成や熱割れを
防止する方法である。Further, Japanese Patent Publication No. 60-12389 discloses a heat pattern for carbonization of agglomerated coal as a heat pattern when the temperature of the agglomerated coal is 200 ° C. to 600 ° C. The upper and lower limits are set for the speed, and the core temperature of the agglomerated coal is
By using a heat pattern with a predetermined upper limit value different from the above in the range of 600 ° C or higher, it is possible to prevent blistering and cracking in the temperature range of 500 ° C or lower and to shrink the semi-coke in the temperature range of 500 ° C or higher. This is a method of preventing the generation of cracks and heat cracks associated with
【0009】しかしながら、この発明では該塊成炭を構
成する粘結炭の揮発分量は考慮されておらず、この発明
におけるヒートパターンを用いて該塊成炭を乾留した場
合においても、X線を用いて乾留中の成形炭内部を観察
する実験を行った結果、原形歩留まりの向上は図れるも
のの、内部には大きな亀裂が発生しており、これらの亀
裂は該成形コークスを高炉に装入するまでハンドリング
した場合には、成形コークスの割れの起点となり、高炉
前での成形コークスの使用可能な製品歩留を落としてい
ることがあった。However, in the present invention, the volatile content of the caking coal constituting the agglomerated coal is not taken into consideration, and even when the agglomerated coal is dry-distilled by using the heat pattern in the present invention, X-rays are emitted. As a result of observing the inside of the formed coal during carbonization using it, as a result, although the original yield can be improved, a large crack is generated inside, and these cracks are generated until the forming coke is charged into the blast furnace. In the case of handling, it was a starting point of cracking of the molding coke, which sometimes lowered the usable product yield of the molding coke before the blast furnace.
【0010】[0010]
【発明が解決しようとする課題】本発明は、上記の問題
点を解消し、該塊成炭を構成する配合炭の揮発分量に対
応し、昇温サイクルを制御することにより、該塊成炭の
乾留時に発生する膨れ割れ、亀裂、熱割れを防止し、乾
留炉出側での原形歩留りを高めるとともに、該成形コー
クスを高炉に装入するまでハンドリングしても割れにく
く、炉前歩留りを落さない成形コークスの製造方法を提
案することを目的とするものである。DISCLOSURE OF THE INVENTION The present invention solves the above problems and controls the temperature rising cycle in accordance with the volatile content of the blended coal constituting the agglomerated coal, thereby providing the agglomerated coal. Blistering cracks, cracks and heat cracks that occur during carbonization of the carbon dioxide are prevented, the yield of the original shape on the outlet side of the carbonization furnace is improved, and even if the forming coke is handled until it is charged into the blast furnace, it is difficult to crack, and the yield in front of the furnace is reduced. It is an object of the present invention to propose a method for producing a molded coke that does not contain coke.
【0011】[0011]
【課題解決のための手段】すなわち、本発明は、非粘結
炭と粘結炭を混合した配合炭と粘結剤とを混和して加圧
成形した塊成炭を乾留するに際し、該配合炭中の粘結炭
成分の下記(1)又は(1′)式で与えられる軟化溶融
開始温度までは、該塊成炭の加熱速度を 5〜15℃/minと
し、その後、該配合炭中の粘結炭成分の下記(2)又は
(2′)式で与えられる再固化終了温度までは加熱温度
を2℃/min以下にするヒートパターンに従って、該塊成
炭を乾留し、それ以後は加熱速度を25℃/min以下として
乾留することを特徴とする成形コークスの製造方法であ
る。[Means for Solving the Problems] That is, the present invention provides a method for dry-distilling agglomerated coal prepared by mixing a coal blending mixture of non-caking coal and caking coal and a binder to dry-blend the mixture. The heating rate of the agglomerated coal is 5 to 15 ° C / min until the softening and melting start temperature of the caking coal component in the coal given by the following formula (1) or (1 '), and then in the blended coal The agglomerated coal is dry-distilled according to the heat pattern of the heating temperature of 2 ° C./min or less until the re-solidification end temperature given by the following formula (2) or (2 ′) of the caking coal component of It is a method for producing a molded coke, which comprises carrying out dry distillation at a heating rate of 25 ° C./min or less.
【0012】軟化溶融開始温度: T(℃) = -8.8VM(%)+632 (16≦VM≦32) ・・・・ (1) T(℃) = 350 (32≦VM) ・・・・(1′) 再固化終了温度: T(℃) = 4.0VM(%)+428 (16≦VM≦26) ・・・・ (2) T(℃) = -7.5VM(%)+727 (26≦VM≦37) ・・・・(2′) ここで、 VM は配合炭中の粘結炭成分の揮発分量 (重量
%)である。Softening / melting start temperature: T (° C) = -8.8VM (%) + 632 (16≤VM≤32) ... (1) T (° C) = 350 (32≤VM) ... (1 ') Resolidification end temperature: T (℃) = 4.0VM (%) + 428 (16 ≦ VM ≦ 26) ・ ・ ・ ・ (2) T (℃) = -7.5VM (%) + 727 (26 ≦ VM ≦ 37) ··· (2 ′) where VM is the volatile content (weight) of the caking coal component in the blended coal.
%).
【0013】[0013]
【作用】本発明者らは、粘結炭を主成分とする種々の揮
発分量を有する配合炭を加圧成形した塊成炭、並びに非
粘結炭を主成分とする種々の揮発分量を有する配合炭と
粘結剤とを混和した加圧成形した塊成炭を種々なヒート
パターンでX線観察しながら乾留することにより、以下
の知見を得た。The present inventors have agglomerated coal which is obtained by pressure-molding blended coal containing caking coal as a main component and having various volatile contents, and various volatile contents containing non-caking coal as a main component. The following findings were obtained by dry distillation of pressure-molded agglomerated coal in which blended coal and a binder were mixed while observing X-rays with various heat patterns.
【0014】(1)一般に、コークス製造用の粘結炭を単
味で乾留(空気を遮断して加熱昇温)してゆくと100 ℃
までは水分蒸発と同時にメタンとその同族体や吸蔵ガス
を放出する。100 ℃から300 ℃までは石炭中に含まれる
鉱物質中に含まれる結晶水や石炭に吸蔵されている少量
のガスを放出するほかはほとんど変化がない。(1) Generally, when coking carbon for coke production is simply carbonized (heated by shutting off air), 100 ° C.
Up to the time when water vaporizes, methane and its homologues and stored gas are released. From 100 ℃ to 300 ℃, there is almost no change except that it releases the water of crystallization contained in the minerals contained in coal and a small amount of gas stored in coal.
【0015】(2)300 ℃を過ぎると石炭本質の熱分解が
始まって、ガスや化合水やタールが急激に発生するとと
もに、瀝青炭などの粘結炭では軟化溶融して膨張現象を
示す。それ以降は石炭含有揮発分に応じて大きくガス分
解を伴う軟化溶融現象を異ならせ、500 ℃近く、または
それ以降になるとほとんどが収縮固化(再固化という)
し、多孔質塊状の半成コークスとなる。(2) When the temperature exceeds 300 ° C., thermal decomposition of the essence of coal begins, gas, compound water, and tar are rapidly generated, and caking coal such as bituminous coal softens and melts to exhibit an expansion phenomenon. After that, the softening / melting phenomenon accompanied by gas decomposition is greatly changed depending on the coal-containing volatiles, and almost shrinks and solidifies (called resolidification) at about 500 ° C or later.
And becomes a semi-coke having a porous mass.
【0016】(3)さらに、その後の昇温によって、分解
ガスが発生し、700 ℃付近ではさらに固化収縮しながら
水素を主体とする分解ガスが発生する。 (4)石炭中の揮発分が異なると、再固化温度の開始温
度、収縮量が大きく異なる。 (5)成形コークスは非粘結炭を配合することによる粘結
性の低下、すなわち、コークス強度の低下を、塊成炭成
形時の加圧力増加による高密度化によって改善できる。
すなわち、粘結性の割合は小さくても、配合炭の高密度
化による粘結性の増大によって、室炉コークスに比べて
も遜色のない、高強度で亀裂の少ないコークスが製造で
きる。(3) Further, due to the subsequent temperature rise, decomposition gas is generated, and at around 700 ° C., decomposition gas mainly containing hydrogen is generated while further solidifying and contracting. (4) When the volatile components in coal differ, the starting temperature of re-solidification temperature and the amount of shrinkage differ greatly. (5) In forming coke, the decrease in caking property due to the incorporation of non-caking coal, that is, the decrease in coke strength can be improved by increasing the density by increasing the pressure applied during agglomerated coal forming.
In other words, coke having a high strength and few cracks can be produced, which is as good as the coke of the chamber furnace because of the increase in the caking property due to the high density of the blended coal even if the caking property is small.
【0017】(6)その際、配合炭中の粘結炭の割合は好
ましくは20重量%以上である必要がある。 (7)塊成炭の軟化溶融開始温度は、配合炭中の粘結炭成
分の揮発分量と関係があり、下記の(1)又は(1′)
式で表されることが確認された。 T(℃) = -8.8VM(%)+632 (16≦VM≦32) ・・・・ (1) T(℃) = 350 (32≦VM) ・・・・ (1′) ここで、 VM は配合炭中の粘結炭成分の揮発分量(重量
%)である。(6) At this time, the proportion of coking coal in the blended coal should preferably be 20% by weight or more. (7) The softening and melting start temperature of agglomerated coal is related to the amount of volatile components of the coking coal component in the blended coal, and the following (1) or (1 ')
It was confirmed to be expressed by the formula. T (℃) = -8.8VM (%) + 632 (16 ≦ VM ≦ 32) ・ ・ ・ ・ (1) T (℃) = 350 (32 ≦ VM) ・ ・ ・ ・ (1 ') where VM Is the volatile content (weight) of the caking coal component in the blended coal.
%).
【0018】(8)軟化溶融した塊成炭は、溶融物で包み
込まれた石炭粒子が相互に接合して団塊となり、その団
塊から揮発分が分離して半成コークスができる。その
際、団塊の収縮がおこり、団塊を覆っている溶融物の粘
度や団塊から発生する揮発分量に応じて、固化後のコー
クス中に揮発分の逸散した後の微細な気孔が取り残され
たり、亀裂が発生したりする。これを、再固化終了温度
と呼ぶ。(8) In the softened and melted agglomerated coal, coal particles encased in the melt are joined to each other to form a nodule, and volatile components are separated from the nodule to form semi-coke. At that time, shrinkage of the nodule occurs, and depending on the viscosity of the melt covering the nodule and the amount of volatile matter generated from the nodule, fine pores after the volatile matter has been dispersed are left in the coke after solidification. , Cracks may occur. This is called the resolidification end temperature.
【0019】(9)塊成炭の再固化終了温度は、配合炭中
の粘結炭成分の揮発分量と関係があり、下記の(2)又
は(2′)式で表されることが確認された。 T(℃) = 4.0VM(%)+428 (16≦VM≦26) ・・・・ (2) T(℃) = -7.5VM(%)+727 (26≦VM≦37) ・・・ (2′) ここで、 VM は配合炭中の粘結炭成分の揮発分量 (重量
%)である。 (10)また、塊成炭の昇温速度が2℃/min以下の場合、揮
発分低下やコークス化に伴う塊成炭の熱伝導率上昇とあ
いまって、表層部の再固化終了温度と中心部の再固化終
了温度は実質的にそれほど差を生じず、それゆえ、全体
としての再固化終了温度は上記(2)又は(2′)式で
記述される温度であると言える。 (11)さらに、その後の昇温によって、分解ガスが発生
し、700 ℃付近ではさらに固化収縮しながら水素を主体
とする分解ガスが発生する。 (12)非粘結炭と粘結炭を混合した配合炭と粘結剤とを混
和し、加圧成形した塊成炭を乾留すると、後述する機構
で内部亀裂が発生するが、この内部亀裂は外観で判定す
ることができないため、内部欠陥を有したまま後工程に
持ち込まれて、ハンドリング中や高炉内での破壊の原因
となる。 (13)上述したX線観察乾留実験を行った結果、最初から
一定の低昇温速度で加熱することでこれらの破壊や内部
亀裂を防止できることが判明したが、石炭粒同志の結合
強度が低いうえに乾留時間が長くなってしまうため、実
用に適さない。(9) It is confirmed that the resolidification end temperature of the agglomerated coal is related to the amount of volatile components of the coking coal component in the blended coal and is represented by the following formula (2) or (2 '). Was done. T (℃) = 4.0VM (%) + 428 (16 ≦ VM ≦ 26) ・ ・ ・ ・ (2) T (℃) = -7.5VM (%) + 727 (26 ≦ VM ≦ 37) ・ ・ ・ ( 2 ') where VM is the volatile content (weight) of the caking coal component in the blended coal.
%). (10) When the heating rate of agglomerated coal is 2 ° C / min or less, the resolidification end temperature of the surface layer and center The resolidification end temperatures of the parts do not substantially differ from each other, and therefore the resolidification end temperature as a whole can be said to be the temperature described by the above formula (2) or (2 '). (11) Further, a decomposition gas is generated by the subsequent temperature rise, and a decomposition gas mainly containing hydrogen is generated at around 700 ° C. while further solidifying and contracting. (12) Mixing blended coal and a binder with non-caking coal and caking coal, and dry-distilling the pressure-formed agglomerated coal causes internal cracks in the mechanism described later. Since it is not possible to judge by appearance, it is brought into the subsequent process with internal defects and causes damage during handling or in the blast furnace. (13) As a result of carrying out the X-ray observation carbonization experiment described above, it was found that these fractures and internal cracks can be prevented by heating at a constant low heating rate from the beginning, but the bond strength between coal grains is low. Moreover, the dry distillation time becomes long, which is not suitable for practical use.
【0020】さらに、本発明者らは、乾留中の成形炭内
部をX線を用いて観察するとともに、乾留をシミュレー
トした熱応力計算を行うことによって、内部亀裂の発生
機構を明らかにするとともに、過剰な乾留時間をかけず
とも内部亀裂を防止するヒートパターンを見いだすに到
った。すなわち、以下にその詳細を述べると、 (1)本発明におけるヒートパターンは、図1に模式的に
示したように、加熱温度を2℃/min以下に保持する区間
の前後で所定の昇温速度を有するものである。Further, the inventors of the present invention have clarified the mechanism of internal crack generation by observing the inside of the formed coal during carbonization using X-rays and performing thermal stress calculation simulating carbonization. We have found a heat pattern that prevents internal cracking without taking excessive carbonization time. That is, the details will be described below. (1) As shown schematically in FIG. 1, the heat pattern in the present invention has a predetermined temperature rise before and after a section in which the heating temperature is kept at 2 ° C./min or less. It has speed.
【0021】(2)まず、成形炭乾留時のX線観察実験か
ら得られた、軟化溶融開始温度から再固化終了温度まで
の昇温速度と成形炭内部に亀裂が発生した割合との関係
を図2に示す。用いた配合炭中の粘結炭成分の軟化開始
温度は約 414℃であり、再固化終了温度は約 527℃であ
る。 (3)これから、加熱温度を2℃/min以下に保持する区間
を配合炭中の粘結炭成分の軟化溶融開始温度と再固化終
了温度に設定すると、内部亀裂の発生率が大きく減少す
る。(2) First, the relationship between the rate of temperature rise from the softening and melting start temperature to the re-solidification end temperature and the rate of cracks occurring inside the briquette charcoal obtained from the X-ray observation experiment during carbonized carbon dry distillation As shown in FIG. The softening start temperature of the caking coal component in the blended coal used is about 414 ° C, and the resolidification end temperature is about 527 ° C. (3) From this, if the section where the heating temperature is kept at 2 ° C / min or less is set to the softening melting start temperature and the resolidification ending temperature of the caking coal component in the blended coal, the occurrence rate of internal cracks is greatly reduced.
【0022】(4)さらに、この現象の機構を、乾留をシ
ミュレートした熱応力計算をすることによって、内部亀
裂の発生を乾留の進行に伴う塊成炭内部の熱応力、ひず
みの発生から説明できる。 (5)すなわち、亀裂発生する例として図3に示すよう
に、乾留の進行に伴って、再固化とともに塊成炭の各点
は中心に向かって収縮し、中心に近いほど圧縮応力が、
表面に近いほど引張り応力が増大する。またひずみは、
いずれの位置においても収縮ひずみ量が増大するが、各
点で再固化する時に伸びひずみが発生する。(4) Further, the mechanism of this phenomenon will be explained by calculating thermal stress simulating carbonization by generating thermal cracks and strains inside the agglomerated coal with the progress of carbonization. it can. (5) That is, as shown in FIG. 3 as an example of crack generation, as the carbonization progresses, each point of the agglomerated coal shrinks toward the center with re-solidification, and the compressive stress becomes closer to the center,
The closer to the surface, the higher the tensile stress. The strain is
The amount of shrinkage strain increases at any position, but elongation strain occurs when resolidifying at each point.
【0023】(6)この伸びひずみの生成は再固化に伴う
剛性の増加のために変形が不均一になり、最も剛性の小
さい方向に伸びるためである。この過程で母相が降伏す
ると、加熱速度が減少あるいは加熱温度が一定となった
場合に、伸びの塑性変形を起こした部分の周辺では塑性
ひずみのために、温度勾配の減少に伴う熱ひずみの不均
一を解消する変形が妨げられ、内部に引張り応力が発生
すると解釈される。(6) This elongation strain is generated because the deformation becomes non-uniform due to the increase in rigidity due to re-solidification, and the elongation extends in the direction of the smallest rigidity. When the matrix phase yields during this process, when the heating rate decreases or the heating temperature becomes constant, the plastic strain around the plastic deformation portion causes the thermal strain due to the decrease in the temperature gradient. It is interpreted that deformation that eliminates non-uniformity is hindered and tensile stress occurs inside.
【0024】(7)塊成炭あるいはコークスのような脆性
材料においては、引張り強度が圧縮強度に比べて約1桁
低く、またX線による乾留中の成形炭内部観察実験で得
られた内部亀裂発生時点と内部引張り応力が発生する時
点とが一致したことから、上記の引張り応力が内部亀裂
あるいは破壊の原因となる。 (8)この引張り応力が発生した根本的な原因を考える
と、それは軟化溶融相が再固化するときの塑性変形と、
その後の温度勾配の減少にあり、さらに遡れば再固化温
度域で大きな温度勾配があったことによることがわか
る。すなわち、成形炭が再固化する以前に全体をほぼ均
一な温度にして、再固化が温度勾配のない状態で行われ
るようにすれば、この引張り応力の発生が防げる。(7) In brittle materials such as agglomerated coal or coke, the tensile strength is about an order of magnitude lower than the compressive strength, and the internal cracks obtained by an internal observation experiment of formed coal during carbonization by X-ray. Since the time of occurrence coincides with the time of occurrence of the internal tensile stress, the above tensile stress causes internal cracking or fracture. (8) Considering the underlying cause of this tensile stress, it is due to plastic deformation when the softening / melting phase re-solidifies,
It can be seen that this is due to the decrease in the temperature gradient after that, and further back in time there was a large temperature gradient in the resolidification temperature range. That is, the tensile stress can be prevented from occurring by setting the temperature of the entire briquette to a substantially uniform temperature before it is resolidified so that the resolidification is performed without a temperature gradient.
【0025】以上の知見より、本発明をなすに到ったの
である。すなわち、上記(1)又は(1′)式で規定さ
れる軟化溶融開始温度よりも低温域における加熱速度
は、成形炭粒同志の適当な結合力を得るために一定値以
上にしなければならないが、再固化開始前に均一な温度
分布とするする必要があり、具体的な加熱速度は成形炭
形状にも依存するが約 5〜15℃/minが適切である。Based on the above findings, the present invention has been completed. That is, the heating rate in a temperature range lower than the softening and melting start temperature defined by the above formula (1) or (1 ') must be set to a certain value or more in order to obtain an appropriate binding force between the formed coal grains. However, it is necessary to make a uniform temperature distribution before the start of re-solidification, and a specific heating rate is approximately 5 to 15 ° C / min, although it depends on the shape of the forming coal.
【0026】そして、その後、上記(2)又は(2′)
式で規定される再固化終了温度までは、昇温を控え、2
℃/min以下にすることが亀裂発生防止に有効である。さ
らに、再固化が終了した後は、内部に塑性ひずみがない
うえに、コークス化にともなう熱伝導率の急激な増加の
ために過大な温度勾配が発生しないので、内部亀裂の発
生や破壊に対する影響は少なく、高昇温速度とすること
が可能となり乾留時間を短縮できる。しかし、その際
も、25℃/min超とすると、700 ℃付近でおこる固化収縮
が余りにも急激になり過ぎることから亀裂が発生する。
従って、再固化終了温度後の昇温速度を25℃/min以下に
限定する。Then, thereafter, the above (2) or (2 ')
Refrain from raising the temperature until the re-solidification end temperature specified by the formula, 2
It is effective to prevent the occurrence of cracks at a temperature of ℃ / min or less. Furthermore, after re-solidification is completed, there is no plastic strain inside, and since an excessive temperature gradient does not occur due to the rapid increase in thermal conductivity associated with coking, there is no effect on the occurrence or fracture of internal cracks. The heating rate can be increased and the dry distillation time can be shortened. However, even at that time, if the temperature exceeds 25 ° C./min, the solidification shrinkage that occurs at around 700 ° C. becomes too rapid and cracks occur.
Therefore, the rate of temperature increase after the resolidification end temperature is limited to 25 ° C./min or less.
【0027】[0027]
(実施例1)図4に示した70×60×35mmの枕形の成形炭
について乾留実験を行った。原料炭の組成は非粘結炭:
23重量%、粘結炭:77重量%で、粘結炭の揮発分:24.8
重量%、灰分:9.2 重量%である。この組成における軟
化開始温度は 414℃、再固化終了温度は527 ℃である。
成形炭の成形は双ロール法で行い、乾留は成形炭1個づ
つについて窒素ガス雰囲気中で行った。乾留中成形炭に
X線を照射し、透過像から内部の亀裂の発生状態を観察
した。ヒートパターンは、雰囲気温度 350℃で成形炭を
装入して、350 ℃までは実質的に最高15℃/minの昇温速
度で急速加熱した後、414 ℃までは 5℃/minで昇温する
ものとし、その後 527℃までは 1.0、1.5 、2℃/minで
昇温し、さらに 527℃超1120℃までは20℃/minで昇温し
た。また比較のため 414℃から527 ℃までの間の昇温速
度を3.0 、4.0 、5.0 と変化させて行った。乾留中の内
部亀裂発生状況と乾留後の破壊率を表1に示す。(Example 1) A dry distillation experiment was carried out on the 70 × 60 × 35 mm pillow-shaped forming coal shown in FIG. The composition of coking coal is non-caking coal:
23% by weight, caking coal: 77% by weight, volatile content of caking coal: 24.8
% By weight, ash: 9.2% by weight. In this composition, the softening start temperature is 414 ° C and the resolidification end temperature is 527 ° C.
The forming coal was formed by the twin roll method, and the dry distillation was performed for each forming coal in a nitrogen gas atmosphere. The carbonized coal was irradiated with X-rays during carbonization, and the state of internal cracks was observed from the transmission image. The heat pattern is as follows: charging the forming coal at an ambient temperature of 350 ° C, and rapidly heating it up to 350 ° C at a heating rate of practically a maximum of 15 ° C / min, then increasing the temperature to 5 ° C / min up to 414 ° C. After that, the temperature was raised to 527 ° C at 1.0, 1.5, and 2 ° C / min, and further increased to more than 527 ° C and 1120 ° C at 20 ° C / min. For comparison, the heating rate from 414 ° C to 527 ° C was changed to 3.0, 4.0 and 5.0. Table 1 shows the internal crack generation state during carbonization and the fracture rate after carbonization.
【0028】[0028]
【表1】 [Table 1]
【0029】(実施例2)非粘結炭:50重量%、粘結
炭:50重量%で、粘結炭部の揮発分:30.2重量%、灰
分:11.0重量%である。この組成における軟化溶融開始
温度は 366℃、再固化終了温度は 549℃である。成形炭
の成形は双ロール法で行い、乾留は成形炭1個づつにつ
いて窒素ガス雰囲気中で行った。乾留中成形炭にX線を
照射し、透過像から内部の亀裂の発生状態を観察した。
ヒートパターンは、雰囲気温度 350℃で成形炭を装入し
て、 350℃までは実質的に最高15℃/minの昇温速度で急
速加熱した後、366 ℃まで 5℃/minで昇温するものと
し、その後 549℃までは1.5 、2 ℃/minでの昇温速度で
昇温し、さらに 549℃超1120℃までは20℃/minで昇温し
た。また比較のために366℃から549 ℃までの昇温速度
を3.0 ℃/minと変化させて行った。乾留中の内部亀裂発
生状況と乾留後の破壊率を表2に示す。(Example 2) Non-caking coal: 50% by weight, caking coal: 50% by weight, volatile content of caking coal part: 30.2% by weight, ash content: 11.0% by weight. In this composition, the softening and melting start temperature is 366 ° C, and the resolidification end temperature is 549 ° C. The forming coal was formed by the twin roll method, and the dry distillation was performed for each forming coal in a nitrogen gas atmosphere. The carbonized coal was irradiated with X-rays during carbonization, and the state of internal cracks was observed from the transmission image.
The heat pattern is as follows: charging coal with an ambient temperature of 350 ° C, rapid heating up to 350 ° C at a maximum heating rate of 15 ° C / min, and then heating up to 366 ° C at 5 ° C / min. After that, the temperature was raised to 549 ° C at a rate of 1.5 and 2 ° C / min, and further increased to more than 549 ° C to 1120 ° C at 20 ° C / min. For comparison, the heating rate from 366 ℃ to 549 ℃ was changed to 3.0 ℃ / min. Table 2 shows the internal crack generation state during carbonization and the fracture rate after carbonization.
【0030】[0030]
【表2】 [Table 2]
【0031】これから、本発明のヒートパターンを用い
て乾留を行った成形コ−クスは原形歩留まりが高く、ま
た内部亀裂を内包する確率が極めて低いため、高炉に装
入時および高炉内の粒径低下や粉の発生を防止すること
ができ、通気、通液性の阻害、炉芯不活性などの問題を
回避し得ることが判明した。From the above, the molded coke obtained by dry distillation using the heat pattern of the present invention has a high yield in the original shape and has a very low probability of including internal cracks. It has been found that the deterioration and the generation of powder can be prevented, and problems such as ventilation, obstruction of liquid permeability, and furnace core inactivity can be avoided.
【0032】[0032]
【発明の効果】本発明により、成形炭乾留時の内部にお
ける引張り応力の発生を防止して乾留炉出側での原形歩
留まりの低下を防ぐとともに、内部亀裂の発生も抑制す
ることにより高炉装入前および高炉内での粒径低下を防
ぐことができるようになった。EFFECTS OF THE INVENTION According to the present invention, it is possible to prevent the generation of tensile stress in the inside during the carbonization of the formed coal to prevent the reduction of the original yield on the discharge side of the carbonization furnace, and also to suppress the generation of the internal cracks, thereby charging the blast furnace. It became possible to prevent the particle size reduction before and in the blast furnace.
【図1】本発明のヒートパターンを模式的に示した図で
ある。FIG. 1 is a diagram schematically showing a heat pattern of the present invention.
【図2】保持温度と成形炭内部に亀裂が発生した割合と
の関係を示す図である。FIG. 2 is a diagram showing a relationship between a holding temperature and a ratio of cracks generated inside the briquette.
【図3】乾留中の成形炭内部熱応力解析結果を表す模式
図である。FIG. 3 is a schematic diagram showing a thermal stress analysis result inside a formed coal during carbonization.
【図4】70×60×35mmの枕形の成形炭を表す模式図であ
る。FIG. 4 is a schematic diagram showing a 70 × 60 × 35 mm pillow-shaped forming coal.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 武田 幹治 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 板谷 宏 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Mikiharu Takeda 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Corporation Technical Research Division (72) Inventor Hiroshi Itaya, Kawasaki-cho, Chuo-ku, Chiba Kawasaki Steel Corporation Technical Research Division
Claims (1)
結剤とを混和して加圧成形した塊成炭を乾留するに際
し、該配合炭中の粘結炭成分の下記(1)又は(1′)
式で与えられる軟化溶融開始温度までは、該塊成炭の加
熱速度を 5〜15℃/minとし、その後、該配合炭中の粘結
炭成分の下記(2)又は(2′) 式で与えられる再固化
終了温度までは加熱温度を 2℃/min以下にするヒートパ
ターンに従って、該塊成炭を乾留し、それ以後は加熱速
度を25℃/min以下として乾留することを特徴とする成形
コークスの製造方法。 軟化溶融開始温度: T(℃) = -8.8VM(%)+632 (16≦VM≦32) ・・・・ (1) T(℃) = 350 (32≦VM) ・・・・(1′) 再固化終了温度: T(℃) = 4.0VM(%)+428 (16≦VM≦26) ・・・・ (2) T(℃) = -7.5VM(%)+727 (26≦VM≦37) ・・・・(2′) ここで、VMは配合炭中の粘結炭成分の揮発分量 (重量%)
である。1. When carbonizing agglomerated coal, which is obtained by mixing a coal blending mixture of non-caking coal and caking coal and a binder, and subjecting the coal to pressure-molding by carbonization. (1) or (1 ')
Up to the softening melting start temperature given by the formula, the heating rate of the agglomerated coal is set to 5 to 15 ° C / min, and then, by the following formula (2) or (2 ') of the caking coal component in the blended coal. Molding characterized by dry-distilling the agglomerated coal according to a heat pattern that keeps the heating temperature at 2 ° C / min or less up to a given re-solidification end temperature, and thereafter at a heating rate of 25 ° C / min or less Coke manufacturing method. Softening start temperature: T (℃) = -8.8VM (%) + 632 (16 ≦ VM ≦ 32) ・ ・ ・ ・ (1) T (℃) = 350 (32 ≦ VM) ・ ・ ・ ・ (1 ' ) Resolidification end temperature: T (℃) = 4.0VM (%) + 428 (16 ≦ VM ≦ 26) ・ ・ ・ ・ (2) T (℃) = -7.5VM (%) + 727 (26 ≦ VM ≦) 37) ··· (2 ′) where VM is the volatile content (% by weight) of the caking coal component in the blended coal.
Is.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24924993A JP3491092B2 (en) | 1993-10-05 | 1993-10-05 | Manufacturing method of molded coke |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24924993A JP3491092B2 (en) | 1993-10-05 | 1993-10-05 | Manufacturing method of molded coke |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07102260A true JPH07102260A (en) | 1995-04-18 |
JP3491092B2 JP3491092B2 (en) | 2004-01-26 |
Family
ID=17190153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24924993A Expired - Fee Related JP3491092B2 (en) | 1993-10-05 | 1993-10-05 | Manufacturing method of molded coke |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3491092B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6033528A (en) * | 1995-02-02 | 2000-03-07 | The Japan Iron And Steel Federation | Process for making blast furnace coke |
WO2009081506A1 (en) | 2007-12-26 | 2009-07-02 | Jfe Steel Corporation | Method of producing ferro-coke |
-
1993
- 1993-10-05 JP JP24924993A patent/JP3491092B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6033528A (en) * | 1995-02-02 | 2000-03-07 | The Japan Iron And Steel Federation | Process for making blast furnace coke |
WO2009081506A1 (en) | 2007-12-26 | 2009-07-02 | Jfe Steel Corporation | Method of producing ferro-coke |
Also Published As
Publication number | Publication date |
---|---|
JP3491092B2 (en) | 2004-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5752993A (en) | Blast furnace fuel from reclaimed carbonaceous materials and related methods | |
WO2002050219A1 (en) | Coal briquette having superior strength and briquetting method thereof | |
JPH0665579A (en) | Method for compounding raw material of coal briquet for producing metallurgical formed coke | |
CN103370396B (en) | The preparation method of partially carbonized coal briquette, the preparation facilities of partially carbonized coal briquette and molten iron preparation facilities | |
JPH026815B2 (en) | ||
EP2940107B1 (en) | Method for manufacturing coal briquettes, and apparatus for manufacturing said coal briquettes | |
JPH07102260A (en) | Production of formed coke | |
JP3863052B2 (en) | Blast furnace raw material charging method | |
JP2001303143A (en) | Method for producing agglomerate including carbonaceous material | |
US3309326A (en) | Production of electrically conducting carbon | |
JP5052866B2 (en) | Method for producing blast furnace coke | |
JP3863104B2 (en) | Blast furnace operation method | |
JP4695244B2 (en) | Coke manufacturing method | |
JPH05339654A (en) | Pretreatment of sintered ore raw material and sintered ore raw material for iron making | |
US2232242A (en) | Method of producing fluorsparbearing metallurgical flux | |
US393553A (en) | Process of manufacturing steel direct from the ore | |
JP7347462B2 (en) | Method for producing molded products and method for producing molded coke | |
JP3397432B2 (en) | Manufacturing method of molded coke | |
CN1330163A (en) | Process for preparing deoxidant used in smelting steel and its composite rare-earth deoxidant | |
JPH0778251B2 (en) | Direct iron making method using vertical furnace | |
JP5470855B2 (en) | Manufacturing method of ferro-coke for metallurgy | |
JPH06184653A (en) | Iron source raw material to be fed into blast furnace | |
KR101538845B1 (en) | Method for prodution for part reduced iron with caronaceous material incorporated | |
JP3350158B2 (en) | Manufacturing method of molded coke | |
KR101053365B1 (en) | Method for manufacturing ferro-chromium alloy using steel by-products |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |