JPH07101661B2 - Electric double layer capacitor - Google Patents

Electric double layer capacitor

Info

Publication number
JPH07101661B2
JPH07101661B2 JP6133192A JP13319294A JPH07101661B2 JP H07101661 B2 JPH07101661 B2 JP H07101661B2 JP 6133192 A JP6133192 A JP 6133192A JP 13319294 A JP13319294 A JP 13319294A JP H07101661 B2 JPH07101661 B2 JP H07101661B2
Authority
JP
Japan
Prior art keywords
double layer
electric double
layer capacitor
sulfolane
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6133192A
Other languages
Japanese (ja)
Other versions
JPH0774061A (en
Inventor
剛 森本
和也 平塚
恭宏 真田
広志 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Elna Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP6133192A priority Critical patent/JPH07101661B2/en
Publication of JPH0774061A publication Critical patent/JPH0774061A/en
Publication of JPH07101661B2 publication Critical patent/JPH07101661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電気二重層キャパシタに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electric double layer capacitor.

【0002】[0002]

【従来の技術】従来、電気二重層キャパシタの電解液と
しては、過塩素酸、六フッ化リン酸、四フッ化ホウ酸、
またはトリフルオロメタンスルホン酸のテトラアルキル
アンモニウム塩、アンモニウム塩、またはアルカリ金属
塩などの溶質を、炭酸プロピレン、γ−ブチロラクト
ン、アセトニトリル、ジメチルホルムアミドなどの有機
溶媒に溶解させた電解液が知られている(特開昭48−
50255、特開昭49−68254、特開昭59−2
32409等)。
2. Description of the Related Art Conventional electrolytic solutions for electric double layer capacitors include perchloric acid, hexafluorophosphoric acid, tetrafluoroboric acid,
Alternatively, an electrolyte solution in which a solute such as a tetraalkylammonium salt of trifluoromethanesulfonic acid, an ammonium salt, or an alkali metal salt is dissolved in an organic solvent such as propylene carbonate, γ-butyrolactone, acetonitrile, or dimethylformamide is known ( JP-A-48-
50255, JP-A-49-68254, JP-A-59-2
32409).

【0003】しかしながら、これら公知の溶媒を使用す
る場合には、得られるキャパシタの耐電圧は充分なもの
ではなく、また電圧を印加した状態で高温にさらされる
と、キャパシタの定格容量が低下してしまうという問題
が残されていた。
However, when these known solvents are used, the withstand voltage of the obtained capacitor is not sufficient, and when the capacitor is exposed to high temperature with a voltage applied, the rated capacity of the capacitor decreases. There was a problem of being lost.

【0004】[0004]

【発明が解決しようとする課題】本発明は、従来技術に
おける上記問題点を解消しようとするものであり、耐電
圧が高く、高温下での容量劣化が少なく、かつ低温特性
のよい電気二重層キャパシタを提供しようとするもので
ある。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above problems in the prior art, and has a high withstand voltage, little capacity deterioration at high temperatures, and an excellent electric double layer at low temperatures. It is intended to provide a capacitor.

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、活
性炭素からなる分極性電極と電解液との界面で形成され
る電気二重層を利用する電気二重層キャパシタにおい
て、該電解液が、スルホランとその誘導体からなる混合
溶媒に溶質を溶解させた溶液であることを特徴とする電
気二重層キャパシタを提供しようとするものである。
That is, the present invention provides an electric double layer capacitor utilizing an electric double layer formed at the interface between a polarizable electrode made of activated carbon and the electrolytic solution, wherein the electrolytic solution is sulfolane. Another object of the present invention is to provide an electric double layer capacitor, which is a solution in which a solute is dissolved in a mixed solvent composed of and a derivative thereof.

【0006】本発明において、電解質の溶媒として混合
使用されるスルホランの誘導体としては、好ましくは3
−メチルスルホラン、2,4−ジメチルスルホランが例
示される。
In the present invention, the sulfolane derivative mixed and used as a solvent for the electrolyte is preferably 3
-Methylsulfolane and 2,4-dimethylsulfolane are exemplified.

【0007】本発明では、スルホランとその誘導体を混
合した混合溶媒を使用する。この場合、スルホラン単独
では凝固点が28.5℃と高いが、誘電率が大きいとい
う特性を有し、一方、3−メチルスルホランまたは2,
4−ジメチルスルホランなどのスルホラン誘導体は凝固
点が低く、低温物性がよい。そして、これらの混合溶媒
は、両者の特性を兼ね備えた性質、すなわち、低温特性
および大きい誘電率をもつ。
In the present invention, a mixed solvent in which sulfolane and its derivative are mixed is used. In this case, sulfolane alone has a high freezing point of 28.5 ° C., but has a large dielectric constant, while 3-methylsulfolane or 2,
Sulfolane derivatives such as 4-dimethylsulfolane have a low freezing point and good physical properties at low temperatures. Then, these mixed solvents have both properties, that is, a low temperature property and a large dielectric constant.

【0008】スルホランにその誘導体を混合した混合溶
媒中の誘導体の混合量は、好ましくは、20〜70重量
%、特には30〜60重量%とすることが、充分な低温
特性および内部抵抗値を付与するために好ましい。
The amount of the derivative mixed in the mixed solvent prepared by mixing sulfolane with the derivative is preferably 20 to 70% by weight, particularly 30 to 60% by weight, so that sufficient low temperature characteristics and internal resistance can be obtained. Preferred for imparting.

【0009】上記スルホランとその誘導体には、もちろ
ん既知の他の溶媒、たとえば、炭酸プロピレン、γ−ブ
チロラクトン、アセトニトリルを添加して、その特性を
改善することができる。
Of course, other known solvents such as propylene carbonate, γ-butyrolactone and acetonitrile can be added to the above-mentioned sulfolane and its derivatives to improve its characteristics.

【0010】本発明において、電解液の溶質の種類は特
に限定されることがなく、従来より公知ないしは周知の
ものが種々採用可能である。好ましい例としては、電気
化学的に安定な溶質であるアルカリ金属、アルカリ土類
金属、アンモニウム、またはテトラアルキルアンモニウ
ムなどの四フッ化ホウ酸塩、六フッ化リン酸塩、過塩素
酸塩、六フッ化ヒ素酸塩、四塩化アルミン酸塩、または
トリフルオロアルカン(好ましくはメタン)スルホン酸
塩などが使用される。
In the present invention, the type of solute in the electrolytic solution is not particularly limited, and various conventionally known or well known solutes can be adopted. Preferred examples include tetrafluoroborate salts such as alkali metal, alkaline earth metal, ammonium or tetraalkylammonium which are electrochemically stable solutes, hexafluorophosphate salts, perchlorate salts, and hexachlorine salts. Fluoroarsenate, tetrachloroaluminate, or trifluoroalkane (preferably methane) sulfonate is used.

【0011】なかでも、溶媒に対する溶解度、電気導電
性、電気化学的安定性の面から、テトラアルキルアンモ
ニウムの四フッ化ホウ酸塩あるいは六フッ化リン酸塩は
好ましい溶質である。
Among them, tetraalkylammonium tetrafluoroborate or hexafluorophosphate is a preferable solute in view of solubility in a solvent, electric conductivity, and electrochemical stability.

【0012】本発明では、電解液中のこれら溶質を好ま
しくは0.1〜3モル、特には0.5〜1.5モルの濃
度で溶解せしめられる。
In the present invention, these solutes in the electrolytic solution are dissolved at a concentration of preferably 0.1 to 3 mol, particularly 0.5 to 1.5 mol.

【0013】[0013]

【実施例】つぎに、実施例と比較例により本発明をさら
に具体的に説明する。なお、以下の実施例および比較例
において、試験装置は下記のようにして組み立てた。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples and Comparative Examples. In the following examples and comparative examples, the test device was assembled as follows.

【0014】まず、内面にねじ山を設けたニッケル製円
筒形有底容器中に各々被試験電解液を含浸させた陰極側
活性炭繊維(比表面積2000m2 /g、3.14cm
2 、0.4mm厚)、ポリプロピレン不織布製セパレー
タ(4.9cm2 、0.4mm厚)、陽極側活性炭繊維
(3.14cm2 、2mm厚)を順次重ねて配置する。
First, a cathode-side activated carbon fiber (specific surface area: 2000 m 2 / g, 3.14 cm) impregnated with an electrolytic solution to be tested in a cylindrical bottomed container made of nickel having threads on its inner surface.
2 , 0.4 mm thickness), a polypropylene nonwoven fabric separator (4.9 cm 2 , 0.4 mm thickness), and anode side activated carbon fiber (3.14 cm 2 , 2 mm thickness) are sequentially stacked.

【0015】この際、活性炭繊維はセパレータを挟んで
完全に対向させた配置にする。つぎに、この容器に内外
両面にねじ山を設けたポリテトラフルオロエチレン製リ
ングをねじ込み活性炭繊維およびセパレータの位置を固
定する。
At this time, the activated carbon fibers are arranged so as to be completely opposed to each other with the separator interposed therebetween. Next, a polytetrafluoroethylene ring having threads on both inner and outer surfaces is screwed into this container to fix the positions of the activated carbon fiber and the separator.

【0016】そして、白金リード線付白金網集電体(2
00メッシュ)を先端に付けたねじ付きポリテトラフル
オロエチレン棒を前記リングの開口部にねじ込み、白金
リード線とニッケル製容器内の導通をLCRメータ交流
二端子法で確認することによりセットを完了する。な
お、白金リード線は前記棒の中心に設けた穴を介して外
部に引き出してある。
Then, a platinum net current collector with a platinum lead wire (2
(00 mesh) at the tip is screwed into a threaded polytetrafluoroethylene rod into the opening of the ring, and the conduction between the platinum lead wire and the nickel container is confirmed by the LCR meter AC two-terminal method to complete the setting. . The platinum lead wire is drawn to the outside through a hole provided at the center of the rod.

【0017】上記のように組み立てた試験装置を使用
し、表1に示される溶質と溶媒からなる種々の電解液を
活性炭繊維からなる陽極および陰極電極に充分に含浸す
るようにして使用したキャパシタについて特性を評価し
た。
Using the test apparatus assembled as described above, capacitors used by sufficiently impregnating the anode and cathode electrodes made of activated carbon fibers with various electrolytic solutions containing solutes and solvents shown in Table 1 were used. The characteristics were evaluated.

【0018】評価項目は耐電圧の指標となる電解液の分
解電圧、および高温貯蔵後の容量維持率であり、それぞ
れ以下の手順で測定した。
The evaluation items are the decomposition voltage of the electrolytic solution, which is an index of the withstand voltage, and the capacity retention rate after high temperature storage, which were measured by the following procedures.

【0019】分解電圧は、試験キャパシタをセットした
後、直流電圧を印加して10分後の漏れ電流を測定し、
印加電圧を徐々に増加させたとき漏れ電流が急激に立ち
上る電圧を分解電圧とした。
As for the decomposition voltage, after setting the test capacitor, a DC voltage was applied and the leakage current was measured 10 minutes later,
The voltage at which the leakage current rises rapidly when the applied voltage is gradually increased was taken as the decomposition voltage.

【0020】高温貯蔵後の容量維持率 (I0 )の測定は
次のように行なった。まず、試験キャパシタをセットし
た後、2.8Vで1時間定電圧充電を行なう。その後、
1mAで定電流放電し、放電時の端子電圧が1.0Vに
至るまでの時間を測定し、その値より初期容量 (F0
を算出した。
The capacity retention rate (I 0 ) after high temperature storage was measured as follows. First, after setting the test capacitor, constant voltage charging is performed at 2.8 V for 1 hour. afterwards,
After constant current discharge at 1mA, measure the time until the terminal voltage reaches 1.0V at the time of discharge, and from that value, measure the initial capacity (F 0 )
Was calculated.

【0021】つぎに同試験セルを2.8Vの電圧を印加
しながら、85℃の恒温槽中で1000時間貯蔵した
後、上記と同様の方法で貯蔵後の容量(F)を測定し、
高温貯蔵後の容量維持率、I0 =F/F0 ×100を算
出した。電解液の種類を変えて試験した結果を表1に示
す。
Next, the test cell was stored in a constant temperature bath at 85 ° C. for 1000 hours while applying a voltage of 2.8 V, and the capacity (F) after storage was measured by the same method as described above.
The capacity retention rate after high temperature storage, I 0 = F / F 0 × 100 was calculated. Table 1 shows the test results obtained by changing the type of the electrolytic solution.

【0022】表1中の例5〜9は本発明の実施例であ
り、他は比較例である。なお、表1において、SNはス
ルホラン、MSNは3−メチルスルホラン、DMSNは
2,4−ジメチルスルホラン、PCは炭酸プロピレン、
BLはγ−ブチロラクトン、DMFはジメチルホルムア
ミド、TEAはテトラエチルアンモニウム、TBAはテ
トラブチルアンモニウムを表す。
Examples 5 to 9 in Table 1 are examples of the present invention, and others are comparative examples. In Table 1, SN is sulfolane, MSN is 3-methylsulfolane, DMSN is 2,4-dimethylsulfolane, PC is propylene carbonate, and
BL represents γ-butyrolactone, DMF represents dimethylformamide, TEA represents tetraethylammonium, and TBA represents tetrabutylammonium.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明になる電気二重層キャパシタは、
耐電圧と高温下での容量劣化の点で従来のものより優れ
ており、低温特性が良好なので、その工業的価値はきわ
めて大である。
The electric double layer capacitor according to the present invention is
It is superior to conventional ones in terms of withstand voltage and capacity deterioration at high temperatures, and its low temperature characteristics are good, so its industrial value is extremely large.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−214417(JP,A) 特公 昭55−41015(JP,B2) O.POPOVYCH,R.P.T.T OMKINS 著”NONAQUEOUS SOLUTION CHEMISTR Y”(1981)JOHN WILEY & SONS.INC(米),P.406−418 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-61-214417 (JP, A) JP-B-55-41015 (JP, B2) O.K. Popovych, R.P. P. T. TOMKINS "NONAQUEOUS SOLUTION CHEMISTRY" (1981) JOHN WILEY & SONS. INC (US), P.I. 406-418

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】活性炭素からなる分極性電極と電解液の界
面で形成される電気二重層を利用する電気二重層キャパ
シタにおいて、該電解液が、スルホランとその誘導体か
らなる混合溶媒に溶質を溶解させた溶液であることを特
徴とする電気二重層キャパシタ。
1. An electric double layer capacitor using an electric double layer formed at an interface between a polarizable electrode made of activated carbon and an electrolytic solution, wherein the electrolytic solution dissolves a solute in a mixed solvent made of sulfolane and its derivative. An electric double layer capacitor, which is a prepared solution.
【請求項2】スルホランの誘導体が3−メチルスルホラ
ンまたは2,4−ジメチルスルホランである請求項1に
記載の電気二重層キャパシタ。
2. The electric double layer capacitor according to claim 1, wherein the derivative of sulfolane is 3-methylsulfolane or 2,4-dimethylsulfolane.
【請求項3】該混合溶媒中のスルホラン誘導体の混合量
が20〜70重量%である請求項1または2に記載の電
気二重層キャパシタ。
3. The electric double layer capacitor according to claim 1, wherein the mixed amount of the sulfolane derivative in the mixed solvent is 20 to 70% by weight.
JP6133192A 1994-06-15 1994-06-15 Electric double layer capacitor Expired - Lifetime JPH07101661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6133192A JPH07101661B2 (en) 1994-06-15 1994-06-15 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6133192A JPH07101661B2 (en) 1994-06-15 1994-06-15 Electric double layer capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61079206A Division JPS62237715A (en) 1986-04-08 1986-04-08 Electric double-layer capacitor

Publications (2)

Publication Number Publication Date
JPH0774061A JPH0774061A (en) 1995-03-17
JPH07101661B2 true JPH07101661B2 (en) 1995-11-01

Family

ID=15098865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6133192A Expired - Lifetime JPH07101661B2 (en) 1994-06-15 1994-06-15 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JPH07101661B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849701B2 (en) * 1997-12-25 2012-01-11 日本ケミコン株式会社 Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP4780811B2 (en) * 1998-02-18 2011-09-28 日本ケミコン株式会社 Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
CN104081487B (en) 2012-03-27 2018-01-02 住友精化株式会社 Electrolyte for capacitor, double layer capacitor and lithium-ion capacitor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
O.POPOVYCH,R.P.T.TOMKINS著"NONAQUEOUSSOLUTIONCHEMISTRY"(1981)JOHNWILEY&SONS.INC(米),P.406−418

Also Published As

Publication number Publication date
JPH0774061A (en) 1995-03-17

Similar Documents

Publication Publication Date Title
US4725927A (en) Electric double layer capacitor
US5754393A (en) Electric double layer capacitor
US7411777B2 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor
JP2000150316A (en) Electrolyte for use in a capacitor
US20140098466A1 (en) Electrolyte
KR101076513B1 (en) Electrolyte solution for electric double layer capacitor
US6496357B2 (en) Metal oxide electrochemical psedocapacitor employing organic electrolyte
JPH0332203B2 (en)
US4757424A (en) Electric double layer capacitor
JPH07101661B2 (en) Electric double layer capacitor
JPH04162510A (en) Electric double layer capacitor
JPS63173312A (en) Electric double-layer capacitor
JPH11329492A (en) Secondary power source
JP2017017281A (en) Electric double layer capacitor
JPH0666233B2 (en) Electric double layer capacitor
JPH0351284B2 (en)
JPH0845792A (en) Electric double layered capacitor
KR100706715B1 (en) Hybrid battery
JPH061750B2 (en) Improved electric double layer capacitor
JPS61252619A (en) New electric double-layer capacitor
JPS61289614A (en) Electric double layer capacitor
JPS6290919A (en) Electric double-layer capacitor
KR100663832B1 (en) Hybrid battery
JPH0351283B2 (en)
CN117912859A (en) Wide-temperature water-based strong alkaline electrolyte with higher working voltage at lower temperature

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960423

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term