JPS62237715A - Electric double-layer capacitor - Google Patents

Electric double-layer capacitor

Info

Publication number
JPS62237715A
JPS62237715A JP61079206A JP7920686A JPS62237715A JP S62237715 A JPS62237715 A JP S62237715A JP 61079206 A JP61079206 A JP 61079206A JP 7920686 A JP7920686 A JP 7920686A JP S62237715 A JPS62237715 A JP S62237715A
Authority
JP
Japan
Prior art keywords
electric double
layer capacitor
double layer
voltage
sulfolane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61079206A
Other languages
Japanese (ja)
Other versions
JPH0332203B2 (en
Inventor
剛 森本
和也 平塚
恭宏 真田
広志 有賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Elna Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP61079206A priority Critical patent/JPS62237715A/en
Priority to US07/035,866 priority patent/US4725927A/en
Publication of JPS62237715A publication Critical patent/JPS62237715A/en
Publication of JPH0332203B2 publication Critical patent/JPH0332203B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電気二重層キャパシタに関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to an electric double layer capacitor.

[従来の技術] 従来電気二重層キャパシタの電解液としては過塩素酸、
六フッ化リン酸、四フッ化ホウ素又はトリフルオロメタ
ンスルホン酸のテトラアルキルアンモニウム塩、アンモ
ニウム塩、又はアルカリ金属塩等の溶質を炭素プロピレ
ン、γ−ブチロラクトン、アセトニトリル、ジメチルホ
ルムアミド、アセトニトリル、などの有機溶媒に溶解さ
せた電解液が知られている(特開昭48−50255、
特開昭49−88254.特開昭59−2324097
等)。
[Conventional technology] Conventionally, perchloric acid,
Solutes such as tetraalkylammonium salts, ammonium salts, or alkali metal salts of hexafluorophosphoric acid, boron tetrafluoride, or trifluoromethanesulfonic acid are combined with organic solvents such as carbon propylene, γ-butyrolactone, acetonitrile, dimethylformamide, acetonitrile, etc. An electrolytic solution dissolved in
Japanese Patent Publication No. 49-88254. Japanese Patent Publication No. 59-2324097
etc).

しかしながら、これら公知の溶媒を使用する場合には、
得られるキャパシタの耐電圧は充分なものではなく、ま
た電圧を印加した状態で高温下にさらされると、キャパ
シタの定格容量が低下してしまうという問題が残されて
いた。
However, when using these known solvents,
The resulting capacitor does not have sufficient withstand voltage, and there remains the problem that the rated capacity of the capacitor decreases when exposed to high temperatures with voltage applied.

[発明の解決しようとする問題点] 本発明は、従来技術における上記問題点を解消しようと
するものであり、#電圧が高くかつ高温下での容量劣化
の少ない電気二重層キャパシタを提供しようとするもの
である。
[Problems to be Solved by the Invention] The present invention attempts to solve the above-mentioned problems in the prior art. It is something to do.

[問題点を解決するための手段] すなわち、本発明は分極性電極と電解液との界面で形成
される電気二重層を利用する電気二重層キャパシタにお
いて、該電解液が、スルホラン、又はその誘導体からな
る溶媒に溶質を溶解させた溶液であることを特徴とする
電気二重層キャパシタを提供しようとするものである。
[Means for Solving the Problems] That is, the present invention provides an electric double layer capacitor that utilizes an electric double layer formed at the interface between a polarizable electrode and an electrolyte, in which the electrolyte is sulfolane or a derivative thereof. An object of the present invention is to provide an electric double layer capacitor characterized by being a solution in which a solute is dissolved in a solvent consisting of:

本発明において、電解質の溶媒として使用されるスルホ
ランの誘導体としては、好ましくは3−メチルスルホラ
ン、2.4−ジメチルスルホランなどが例示され、これ
らスルホラン又はその誘導体はそれぞれ単独に用いるこ
とができる。しかしながら1本発明では、場合により、
これらスルホラン又はその誘導体を混合し混合溶媒とし
て使用することができる。かくした場合、メタンあるい
は2.4−ジメチルスルホランは凝固点が低く、低温物
性がよいため、これらの混合溶九 媒は1両者の特性を兼ね備Vた性質、即ち、低温特性及
び大きい誘電率をもっことができる。
In the present invention, preferred examples of the sulfolane derivatives used as the electrolyte solvent include 3-methylsulfolane and 2,4-dimethylsulfolane, and each of these sulfolane or its derivatives can be used alone. However, in the present invention, in some cases,
These sulfolane or its derivatives can be mixed and used as a mixed solvent. In this case, since methane or 2,4-dimethylsulfolane has a low freezing point and good low-temperature physical properties, these mixed solvents have properties that combine the characteristics of both, that is, low-temperature properties and a large dielectric constant. I can do more.

スルホランとその誘導体が混合される場合、誘導体の混
合量は、好ましくは、20〜70重量%、特には30〜
60重量%とすることが、十分な低温特性及び内部抵抗
値を付与するために好ましい。
When sulfolane and its derivatives are mixed, the amount of the derivative mixed is preferably 20 to 70% by weight, particularly 30 to 70% by weight.
The content is preferably 60% by weight in order to provide sufficient low-temperature properties and internal resistance.

上記スルホラン又はその誘導体には、もちろん既知の他
の溶媒、例えば、炭酸プロピレン、γ−ブチロラクトン
、アセトニトリルを添加して、その特性を改善すること
ができる。
Of course, other known solvents such as propylene carbonate, γ-butyrolactone, acetonitrile can be added to the sulfolane or its derivatives to improve its properties.

本発明において、電解液の溶質の種類は特に限定される
ことがなく、従来より公知ないしは周知のものが種々採
用可能である。好ましい例としては、電気化学的に安定
な溶質であるアルカリ金属、アルカリ土類金属、アンモ
ニウム又はテトラアルキルアンモニウムなどの47フ化
ホウ酸塩、6フツ化リン酸塩、過塩素酸塩、6フツ化ヒ
素酸塩、4塩化アルミン酸塩、又はトリフルオロアルキ
ル(好ましくはメタン)スルホン酸塩などが使用される
。なかでも、溶媒に対する溶解度、電気導電性、電気化
学的安定性の面から、テトラアルキルアンモニウムの4
7フ化ホウ酸塩あるいは6フツ化リン酸塩は好ましい溶
質である0本発明の電解液中のこれら溶質を好ましくは
0.1〜3モル、特には0.5〜1.5モルの濃度で溶
解せしめられる。
In the present invention, the type of solute in the electrolytic solution is not particularly limited, and various conventionally known or well-known solutes can be employed. Preferred examples include electrochemically stable solutes such as alkali metals, alkaline earth metals, ammonium or tetraalkylammonium, such as 47-fluoroborates, hexafluorophosphates, perchlorates, and 6-fluorophosphates. Arsenates, tetrachloroaluminates, or trifluoroalkyl (preferably methane) sulfonates are used. Among them, from the viewpoint of solubility in solvents, electrical conductivity, and electrochemical stability, tetraalkylammonium 4
Heptafluoroborates or hexafluorophosphates are preferred solutes.The concentration of these solutes in the electrolyte of the invention is preferably from 0.1 to 3 molar, especially from 0.5 to 1.5 molar. It is dissolved in

[実施例1 つぎに、実施例および比較例により本発明をさらに具体
的に説明する。
[Example 1] Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

なお、以下の実施例および比較例において。In addition, in the following examples and comparative examples.

試験装置は下記のようにして組立た。The test apparatus was assembled as follows.

せた陰極側活性炭繊維(比表面積2000rrl’ /
g、3.14 crn’、0.4+am厚)、ポリプロ
ピレン不織布製セパレータ(4,9crn’、0.4■
厚)、陽極側活性炭fa !a (3,14cm’、2
■厚)を順次重ねて配置する。この際活性炭繊維はセパ
レータを挟んで完全に対向させた配置にする。
activated carbon fiber on cathode side (specific surface area 2000rrl'/
g, 3.14 crn', 0.4+am thickness), polypropylene nonwoven fabric separator (4.9 crn', 0.4
thickness), anode side activated carbon fa! a (3,14cm', 2
■Thickness) are placed one on top of the other. At this time, the activated carbon fibers are placed completely opposite each other with a separator in between.

つぎに、この容器に内外両面にねじ山を設けたポリテト
ラフルオロエチレン製リングをねじ込み活性炭m維およ
びセパレータの位置を固定する。
Next, a polytetrafluoroethylene ring having threads on both the inside and outside surfaces is screwed into the container to fix the positions of the activated carbon fibers and the separator.

そして、白金リード線付白金網集電体(200メツシユ
)を先端に付けたねじ付きポリテトラフルオロエチレン
棒を前記リングの開口部にねじ込み、白金リード線とニ
ッケル製容器内の導通をLCRメータ交流二端子法で確
認することによりセットを完了する。なお、白金リード
線は前記体の中心に設けた穴を介して外部に引きだしで
ある。
Then, a threaded polytetrafluoroethylene rod with a platinum wire mesh current collector (200 mesh) attached to the tip was screwed into the opening of the ring, and the continuity between the platinum lead wire and the nickel container was measured using an LCR meter. Complete the set by checking with the two terminal method. Note that the platinum lead wire is drawn out to the outside through a hole provided in the center of the body.

上記のように組み立てた試験装置を使用し、第1表に示
される溶質と溶媒からなる種々の電解液を活性炭mmか
らなる陽極及び陰極電極に十分に含浸するようにして使
用したキャパシタについて特性を評価した。
Using the test apparatus assembled as described above, the characteristics of capacitors were determined by sufficiently impregnating the anode and cathode electrodes made of activated carbon with various electrolytes consisting of the solutes and solvents shown in Table 1. evaluated.

評価項目は耐電圧の指標となる電解液の分解電圧、およ
び高温貯蔵後の容量維持率であり、それぞれ以下の手順
で測定した。
The evaluation items were the decomposition voltage of the electrolytic solution, which is an indicator of withstand voltage, and the capacity retention rate after high-temperature storage, and each was measured using the following procedure.

分解電圧は、試験キャパシタをセットした後、直流電圧
を印加して10分後の漏れ電流を測定し、印加電圧を徐
々に増加させたとき漏れ電流が急激に立ち上る電圧を分
解電圧とした。
The decomposition voltage was determined by setting the test capacitor, applying a DC voltage, measuring the leakage current 10 minutes later, and determining the voltage at which the leakage current suddenly rose when the applied voltage was gradually increased as the decomposition voltage.

高温貯蔵後の容量維持率(Io)の測定は次のように行
なった。まず、試験キャパシタをセットした後、2.8
vで1時間定電圧充電を行なう。
The capacity retention rate (Io) after high-temperature storage was measured as follows. First, after setting the test capacitor, 2.8
Perform constant voltage charging at v for 1 hour.

その後、1mAで定電流放電し、放電時の端子電圧が1
.0Vに至るまでの時間を測定し、その値より初期容量
 (Fo)  算出した。
After that, constant current discharge is performed at 1 mA, and the terminal voltage at the time of discharge is 1 mA.
.. The time required to reach 0V was measured, and the initial capacity (Fo) was calculated from the measured value.

次に同試験セルを2.8vの電圧を印加しながら、85
°Cの恒温槽中で1000時間貯蔵した後、上記の同様
の方法で貯蔵後の容量CF)を測定し、高温貯蔵後の容
量維持率、Io=F/F。
Next, while applying a voltage of 2.8V to the same test cell,
After storage for 1000 hours in a constant temperature bath at °C, the capacity after storage (CF) was measured using the same method as above, and the capacity retention rate after high temperature storage, Io = F/F.

×100を算出した。×100 was calculated.

電解液の種類を変えて試験した結果を第1表に示す。な
お、試験No、 10.11.12は、比較のために従
来例を示したものである0表中TEAはテトラエチルア
ンモニウム、TBAはテトラブチルアンモニウムを表わ
す。
Table 1 shows the results of tests using different types of electrolyte. Test No. 10.11.12 shows conventional examples for comparison. In Table 0, TEA represents tetraethylammonium and TBA represents tetrabutylammonium.

第1表 [発明の効果] 本発明になるキャパシタは、耐電圧および高温下での容
量劣化の点で従来のものより優れており、その工業的価
値はきわめて大である。
Table 1 [Effects of the Invention] The capacitor of the present invention is superior to conventional capacitors in terms of withstand voltage and capacity deterioration under high temperatures, and its industrial value is extremely large.

Claims (2)

【特許請求の範囲】[Claims] (1)分極性電極と電解液の界面で形成される電気二重
層を利用する電気二重層コンデンサにおいて、該電解液
が、スルホラン、又はその誘導体からなる溶媒に溶質を
溶解させた溶液であることを特徴とする電気二重層キャ
パシタ。
(1) In an electric double layer capacitor that utilizes an electric double layer formed at the interface between a polarizable electrode and an electrolyte, the electrolyte is a solution in which a solute is dissolved in a solvent consisting of sulfolane or a derivative thereof. An electric double layer capacitor featuring:
(2)スルホランの誘導体が3−メチルスルホランもし
くは2.4−ジメチルスルホランである特許請求の範囲
第1項記載の電気二重層キャパシタ。
(2) The electric double layer capacitor according to claim 1, wherein the sulfolane derivative is 3-methylsulfolane or 2,4-dimethylsulfolane.
JP61079206A 1986-04-08 1986-04-08 Electric double-layer capacitor Granted JPS62237715A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61079206A JPS62237715A (en) 1986-04-08 1986-04-08 Electric double-layer capacitor
US07/035,866 US4725927A (en) 1986-04-08 1987-04-08 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61079206A JPS62237715A (en) 1986-04-08 1986-04-08 Electric double-layer capacitor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6133192A Division JPH07101661B2 (en) 1994-06-15 1994-06-15 Electric double layer capacitor

Publications (2)

Publication Number Publication Date
JPS62237715A true JPS62237715A (en) 1987-10-17
JPH0332203B2 JPH0332203B2 (en) 1991-05-10

Family

ID=13683470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61079206A Granted JPS62237715A (en) 1986-04-08 1986-04-08 Electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JPS62237715A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665171B1 (en) 1999-09-16 2003-12-16 Matsushita Electric Industrial Co., Ltd. Electrochemical capacitor
US6710999B2 (en) 2001-12-11 2004-03-23 Asahi Glass Company, Limited Electric double layer capacitor
US6879482B2 (en) 2002-04-22 2005-04-12 Asahi Glass Company, Limited Electric double layer capacitor
US7173807B2 (en) 2003-07-17 2007-02-06 Asahi Glass Company, Limited Electric double layer capacitor
WO2010055744A1 (en) 2008-11-17 2010-05-20 住友精化株式会社 Sulfone compound
US7755879B2 (en) 2006-08-11 2010-07-13 Asahi Glass Company, Limited Non-aqueous electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
JP2012056925A (en) * 2010-09-13 2012-03-22 Sumitomo Seika Chem Co Ltd Sulfone compound and nonaqueous electrolyte using the same
WO2013145890A1 (en) 2012-03-29 2013-10-03 住友精化株式会社 Electrolyte solution for electrochemical devices, aluminum electrolytic capacitor, and electric double layer capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541015A (en) * 1978-09-18 1980-03-22 Hitachi Ltd Signal processing method in high speed facsimile

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541015A (en) * 1978-09-18 1980-03-22 Hitachi Ltd Signal processing method in high speed facsimile

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665171B1 (en) 1999-09-16 2003-12-16 Matsushita Electric Industrial Co., Ltd. Electrochemical capacitor
US6710999B2 (en) 2001-12-11 2004-03-23 Asahi Glass Company, Limited Electric double layer capacitor
US6879482B2 (en) 2002-04-22 2005-04-12 Asahi Glass Company, Limited Electric double layer capacitor
US7173807B2 (en) 2003-07-17 2007-02-06 Asahi Glass Company, Limited Electric double layer capacitor
US7755879B2 (en) 2006-08-11 2010-07-13 Asahi Glass Company, Limited Non-aqueous electrolytic solution for electric double layer capacitor and electric double layer capacitor using the same
WO2010055744A1 (en) 2008-11-17 2010-05-20 住友精化株式会社 Sulfone compound
KR20110082587A (en) 2008-11-17 2011-07-19 스미또모 세이까 가부시키가이샤 Sulfone compound
JP2012056925A (en) * 2010-09-13 2012-03-22 Sumitomo Seika Chem Co Ltd Sulfone compound and nonaqueous electrolyte using the same
WO2013145890A1 (en) 2012-03-29 2013-10-03 住友精化株式会社 Electrolyte solution for electrochemical devices, aluminum electrolytic capacitor, and electric double layer capacitor
US9583272B2 (en) 2012-03-29 2017-02-28 Sumitomo Seika Chemicals Co., Ltd. Electrolyte solution for electrochemical devices, aluminum electrolytic capacitor, and electric double layer capacitor

Also Published As

Publication number Publication date
JPH0332203B2 (en) 1991-05-10

Similar Documents

Publication Publication Date Title
US4725927A (en) Electric double layer capacitor
US4725926A (en) Electric double layer capacitor having high capacity
US7411777B2 (en) Electrolytic solution for electric double layer capacitor and electric double layer capacitor
US4959753A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2000150316A (en) Electrolyte for use in a capacitor
US6496357B2 (en) Metal oxide electrochemical psedocapacitor employing organic electrolyte
JPS62237715A (en) Electric double-layer capacitor
Zhang et al. “Double-salt” electrolytes for high voltage electrochemical double-layer capacitors
JPH04162510A (en) Electric double layer capacitor
JPS63173312A (en) Electric double-layer capacitor
JPH0774061A (en) Electrical double-layer capacitor
KR20170005753A (en) Electric double layer capacitor
JPS62252927A (en) High capacitance electric double-layer capacitor
JPS6312122A (en) Electric double-layer capacitor
JPS61252619A (en) New electric double-layer capacitor
JPS61252620A (en) Improved electric double-layer capacitor
JPS61289614A (en) Electric double layer capacitor
JP2005175239A5 (en)
JPS61248513A (en) Improved electric double-layer capacitor
JPS61244011A (en) Electric double layer capacitor
JPS61239616A (en) Electric double layer capacitor
CN117912859A (en) Wide-temperature water-based strong alkaline electrolyte with higher working voltage at lower temperature
JPS6235609A (en) Electric double layer capacitor
JPS6290919A (en) Electric double-layer capacitor
JPS6386416A (en) Electric double-layer capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term