JPH0698670B2 - Extruder temperature control method - Google Patents

Extruder temperature control method

Info

Publication number
JPH0698670B2
JPH0698670B2 JP62114954A JP11495487A JPH0698670B2 JP H0698670 B2 JPH0698670 B2 JP H0698670B2 JP 62114954 A JP62114954 A JP 62114954A JP 11495487 A JP11495487 A JP 11495487A JP H0698670 B2 JPH0698670 B2 JP H0698670B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
pid controller
solenoid valve
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62114954A
Other languages
Japanese (ja)
Other versions
JPS63278819A (en
Inventor
靖彦 長倉
隆俊 河野
勝啓 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP62114954A priority Critical patent/JPH0698670B2/en
Publication of JPS63278819A publication Critical patent/JPS63278819A/en
Publication of JPH0698670B2 publication Critical patent/JPH0698670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は押出機の温度制御方法に関する。Description: TECHNICAL FIELD The present invention relates to a temperature control method for an extruder.

[従来技術] 押出機の温度制御系で温度調節計の適正なPID定数を定
める装置や方法がいくつかある。従来から行われてきた
方法としてZiegler-Nicholsによる過度応答法や限界感
度法があり、最近では測定温度の応答波形を用いるエキ
スパート法や温度調節計からの操作出力に固定用信号を
のせて求める装置や方法がある。
[Prior Art] There are several devices and methods for determining an appropriate PID constant of a temperature controller in a temperature control system of an extruder. Conventional methods include the transient response method by Ziegler-Nichols and the limit sensitivity method.Recently, an expert method that uses the response waveform of the measured temperature, or a device that obtains a fixed signal on the operation output from the temperature controller And there are ways.

押出機に投入されたプラスチック材料は、スクリュによ
って前方へ移送されながらシリンダ外部からの加熱と、
スクリュの剪断作用により生じる内部発熱により溶融さ
れる。この際、自然放冷により冷却し切れない発熱量
は、強制的に、気体や液体により冷却する方法が採られ
ており、PID調節計で温度制御する場合、加熱出力と冷
却出力を有するデュアルタイプが使用されている。
The plastic material put into the extruder is heated from the outside of the cylinder while being transferred forward by the screw,
It is melted by the internal heat generated by the shearing action of the screw. At this time, the calorific value that cannot be completely cooled by natural cooling is forcibly cooled by gas or liquid.When controlling the temperature with a PID controller, a dual type that has heating output and cooling output Is used.

従来のPID調節計による制御方法は設定温度と温度セン
サーによる制御点温度を突合せ点で比較し、PID調節計
が下記の式で示すような操作出力y(t)%を算出し、
プロセスへ出力し、制御するようになっている。
The conventional control method by the PID controller compares the set temperature and the control point temperature by the temperature sensor at the butt point, and the PID controller calculates the operation output y (t)% as shown in the following formula,
It outputs it to the process and controls it.

(ただし、PB(℃);比例帯,Ti(秒);積分時間,Td
(秒);微分時間,e(t);温度偏差を示す) 前記したPB・Ti・TdはPID定数と呼ばれ運転状況を応じ
てユーザーが適宜決定するようになっている。従ってPI
D定数を不適切に設定すると良い制御ができなかった。
(However, PB (℃); proportional band, Ti (seconds); integration time, Td
(Seconds); differential time, e (t); indicates temperature deviation) The above-mentioned PB, Ti, and Td are called PID constants, and are appropriately determined by the user according to the operating conditions. Therefore PI
If the D constant was set improperly, good control could not be performed.

また押出機のシリンダは前述したように加熱制御と冷却
制御とがあり、加熱制御にはヒータを使用しており、PI
D調節計からの操作出力がプロセスに与える影響が線形
となり、適正なPID定数を決定することができるが、冷
却制御は冷却媒体である水の相変化(液体→気体)のた
め操作出力がプロセスに与える影響は非線形になり適正
なPID定数を決定することができなかった。
In addition, the cylinder of the extruder has heating control and cooling control as described above, and a heater is used for heating control.
D The influence of the operation output from the controller on the process becomes linear and the proper PID constant can be determined. However, the cooling control causes the operation output to change due to the phase change of water (liquid → gas). However, the effect on PID was non-linear and it was not possible to determine an appropriate PID constant.

例えば、第3図に示すような水冷パイプ付アルミ鋳込ヒ
ーターを用いてヒーター温度を200℃に保ったときの、
冷却水を通す電磁弁のON時間と冷却能力との関係を示し
た静的冷却特性で説明すると、一般に押出機が運転され
る100℃ないし300℃の温度では冷却水量が少いときは冷
却パイプ内のほとんど全ての水が気化するが、冷却水量
が多くなるに従って奪取熱量は増加し、冷却パイプ内壁
温度が充分に回復しない内に新たな冷却水が注入される
ため、水温と冷却パイプ内壁との温度差が小さくなり、
冷却水に与えるヒーター熱量の低下により気化する割合
が減少し、冷却効果が低下することが理解されよう。
For example, when using an aluminum casting heater with a water-cooled pipe as shown in FIG.
The static cooling characteristics that show the relationship between the ON time of the solenoid valve that allows cooling water to pass through and the cooling capacity are explained below. Generally, at a temperature of 100 ° C to 300 ° C at which the extruder is operated, the cooling pipe is used when the amount of cooling water is small. Almost all of the water inside is vaporized, but the amount of heat taken up increases as the amount of cooling water increases, and new cooling water is injected before the temperature of the inner wall of the cooling pipe recovers sufficiently. The temperature difference between
It will be understood that the rate of vaporization decreases due to the decrease in the heat quantity of the heater applied to the cooling water, and the cooling effect decreases.

更に詳細に説明すると、スクリュ速度が低速、即ち発熱
量が低く電磁弁のON率が低い時は、ヒーター内の冷却パ
イプに送られる冷却水の量は少く、冷却水は容易に気化
し、電磁弁ON時間当りの冷却熱量、即ち冷却ゲインは大
きくなる(領域I)。
More specifically, when the screw speed is low, that is, when the amount of heat generated is low and the ON rate of the solenoid valve is low, the amount of cooling water sent to the cooling pipe in the heater is small, and the cooling water is easily vaporized and The amount of cooling heat per valve ON time, that is, the cooling gain becomes large (region I).

一方スクリュの回転数が高速の場合は電磁弁ON率が高
く、供給水量が多くなる結果、冷却効果の低下により冷
却ゲインは減少する(領域III)。
On the other hand, when the screw rotation speed is high, the solenoid valve ON rate is high and the amount of water supplied increases, resulting in a decrease in the cooling effect and a decrease in the cooling gain (region III).

従って、領域IとIIIの間には変曲点が存在し、この近
辺の冷却ゲインは領域IとIIの中間の値となる(領域I
I)。
Therefore, there is an inflection point between the regions I and III, and the cooling gain in the vicinity of this is an intermediate value between the regions I and II (region I
I).

前述のように冷却特性は押出機のサイズや冷却系の設計
により若干異なるが、特性の傾きそのものはパルブ開度
・設定温度・冷却周期によりかなり異なる。また、当然
各領域によりPID定数も変ってくる。
As described above, the cooling characteristics are slightly different depending on the size of the extruder and the design of the cooling system, but the inclination of the characteristics itself is considerably different depending on the valve opening, the set temperature, and the cooling cycle. Naturally, the PID constant also changes depending on each area.

従来装置では、この非常に強い非線形性を測定すること
ができないため各領域での最適なPID定数を決めること
ができなかった。
With the conventional device, it was not possible to determine the optimum PID constant in each region because this very strong nonlinearity could not be measured.

[発明の目的] 本願発明はこのような観点からなされたもので、その目
的は、成形運転に入る前にPID調節計で加熱制御すると
共にシーケンサからの指令により、冷却用電磁弁を一定
のON-OFFパターンで制御して、押出機自体の静的冷却特
性を正しく測定することによりPID定数を最適化するよ
うにして、温度制御性を精密にした押出機の温度制御方
法を提供することにある。
[Object of the Invention] The present invention has been made from such a viewpoint, and its object is to perform heating control with a PID controller before starting a molding operation and to turn on a cooling solenoid valve at a constant level by a command from a sequencer. -Providing an extruder temperature control method with precise temperature control by optimizing the PID constant by controlling the static cooling characteristics of the extruder itself by controlling with the OFF pattern. is there.

[発明の要点] 本発明における押出機の温度制御方法は、温度検出用セ
ンサーと、加熱用ヒータと、冷却用電磁弁により操作す
る冷却装置とを備えて加熱冷却用の通信機能つきデュア
ル出力形PID調節計と、任意の一定のON-OFFパターンで
冷却用電磁弁を自動制御可能なシーケンスに接続する回
路とを切換え可能に設けて制御する押出機の温度制御方
法において、通常の成形運転に入る前に、PID調節計で
加熱制御すると共にシーケンスからの指令により冷却用
電磁弁を一定のON-OFFパターンで制御して静的冷却特性
を測定算出してPID調節計のPID定数を最適化し、通常の
成形運転時には、PID調節計に切り換えるようにした押
出機の制御方法としたことを特徴としている。
[Points of the Invention] An extruder temperature control method according to the present invention includes a temperature detection sensor, a heating heater, and a cooling device operated by a cooling solenoid valve, and has a dual output type with a communication function for heating and cooling. In the extruder temperature control method in which the PID controller and the circuit that connects the cooling solenoid valve to the sequence that can automatically control the cooling solenoid valve with an arbitrary constant ON-OFF pattern are switchably provided and controlled, the normal molding operation is performed. Before entering, control the heating with the PID controller and control the cooling solenoid valve with a constant ON-OFF pattern according to the command from the sequence to measure and calculate the static cooling characteristics and optimize the PID constant of the PID controller. The feature of the present invention is that the extruder is controlled so that the PID controller is switched during the normal molding operation.

[発明の実施例] 以下本発明の一実施例を示した第1図に基づいて説明す
る。コンピューター11には各種条件を設定するための設
定用キーボード12が設けてあり、コンピューター11と通
信機能つきデュアル出力形のPID調節計13とはRS232Cに
より通信可能になっており、内部にスクリュ14を設けた
押出機のバレル15の温度は、温度センサー16によりPID
調節計13に送られている。これによりバレル15の温度は
コンピューター11に、そして、コンピューター11に設定
された温度はPID調節計13へ双方向に伝送することがで
きる。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIG. The computer 11 is provided with a setting keyboard 12 for setting various conditions, and the computer 11 and the dual output type PID controller 13 with a communication function can communicate with each other by RS232C, and the screw 14 is internally provided. The temperature of the barrel 15 of the extruder provided is PID by the temperature sensor 16.
It is sent to the controller 13. As a result, the temperature of the barrel 15 can be transmitted to the computer 11, and the temperature set in the computer 11 can be transmitted to the PID controller 13 in both directions.

シーケンサ17は、コンピューター11からの指令により加
熱冷却の一定ON-OFFパターンの固定信号を発生させ、ま
た切替スイッチ18によりシリンダ15への加熱冷却出力を
PID調節計13からの指令で行うのか、或いはコンピュー
ター11からの指令で行うのかを加熱冷却別に選択するこ
とができる。そして、この切替スイッチ18の操作もコン
ピューター11からの指令で行うことができるし、切替ス
イッチ18がPID調節計13側にあっても測定した温度はコ
ンピューター11に伝送することができる。第1図は1チ
ャンネルであるが複数のバレル15を同時に制御すること
も可能である。また、切替スイッチ18を加熱冷却ともPI
D調節計13側にすると通常の温度制御になる。前述の温
度制御を用いて静的冷却特性を求める一例を以下に記載
する。PID調節計13によりバレル15の温度を設定温度に
し、制御する冷却周期で設定する冷却用電磁弁19のON時
間で強制的に冷却すると、温度は下がるがヒーター20に
よる加熱側の出力をPID調節計13で制御していれば、温
度は設定温度付近を維持する。そのとき測定温度と設定
温度との差が、例えば連続してある時間±1℃に入って
いるときのPID調節計13からの平均加熱操作出力を求め
れば、任意の冷却用電磁弁19のON時間での静的冷却能力
を求めることができる。これを示したものが第2図のフ
ローチャートである。
The sequencer 17 generates a fixed signal of a constant ON / OFF pattern for heating / cooling in response to a command from the computer 11, and outputs the heating / cooling output to the cylinder 15 by the changeover switch 18.
Whether to perform the command from the PID controller 13 or the command from the computer 11 can be selected for each heating and cooling. The operation of the changeover switch 18 can also be performed by a command from the computer 11, and even if the changeover switch 18 is on the PID controller 13 side, the measured temperature can be transmitted to the computer 11. Although FIG. 1 shows one channel, it is possible to control a plurality of barrels 15 at the same time. In addition, the changeover switch 18
When the D controller 13 side is set, normal temperature control is performed. An example of obtaining the static cooling characteristics by using the above temperature control will be described below. When the temperature of the barrel 15 is set to the set temperature by the PID controller 13 and it is forcibly cooled by the ON time of the cooling solenoid valve 19 which is set in the cooling cycle to be controlled, the temperature will drop, but the output on the heating side by the heater 20 will be PID adjusted. If it is controlled by the total 13, the temperature is maintained near the set temperature. At that time, if the difference between the measured temperature and the set temperature is, for example, continuously within ± 1 ° C for a certain period of time, if the average heating operation output from the PID controller 13 is obtained, the arbitrary cooling solenoid valve 19 turns ON. The static cooling capacity over time can be determined. This is shown in the flow chart of FIG.

ここでフローチャートの説明をする。31で予め設定され
た任意の一定のON-OFFパターンの冷却固定信号発生をシ
ーケンサ17へ指令し、32で切替スイッチ18に、ヒーター
20をPID調節計13で冷却用電磁弁19を冷却固定信号発生
側で制御することを指令する。33でPID調節計13からの
測定温度と加熱操作出力のデータとをサンプリングし、
34でサンプリングした測定温度と設定温度の偏差を計算
し例えばその偏差が±1℃以内であるか否かを判断し、
以内であれば35で温度連続平衡時間を計算し、36でその
温度連続平衡時間があらかじめ設定された平衡時間か否
かを判断しYESになるまで33から36を繰り返えす。YESに
なったとき温度連続平衡時間内にある全てのサンプリン
グした加熱操作出力を使用して37で平均加熱操作出力を
計算する。
The flowchart will be described here. The sequencer 17 is instructed to generate a cooling fixed signal with a preset constant ON-OFF pattern at 31, and the heater is switched to the heater 18 at 32.
The PID controller 13 controls 20 to control the cooling solenoid valve 19 on the cooling fixed signal generation side. At 33, the measured temperature from the PID controller 13 and the data of the heating operation output are sampled,
Calculate the deviation between the measured temperature and the set temperature sampled in 34 and judge whether the deviation is within ± 1 ° C,
If it is within the range, the temperature continuous equilibrium time is calculated at 35, and it is judged at 36 whether or not the temperature continuous equilibrium time is the preset equilibrium time, and steps 33 to 36 are repeated until YES. Calculate an average heating maneuver output at 37 using all sampled heating maneuver outputs that are within the temperature continuous equilibrium time when YES.

無冷却状態で設定温度を維持するには加熱が必要である
ため、あらかじめ無冷却状態での平均加熱操作出力を求
めておくことにより、任意の冷却用電磁弁19のON時間で
の冷却能力は次式に示すようにする。
Since heating is required to maintain the set temperature in the uncooled state, the average heating operation output in the uncooled state is obtained in advance to determine the cooling capacity for the ON time of any solenoid valve 19 for cooling. As shown in the following formula.

冷却能力=(任意の冷却用電磁弁ON時間の平均加熱操作
出力)−(無冷却での平均加熱操作出力) ここで一般にPID調節計13からの加熱操作出力は%で出
力されるが、ヒーター20の容量はあかっているため冷却
能力はKWに変換することが可能である。
Cooling capacity = (Average heating operation output for any cooling solenoid valve ON time)-(Average heating operation output without cooling) Generally, the heating operation output from the PID controller 13 is output in%. Since the capacity of 20 is available, the cooling capacity can be converted to KW.

このようにして冷却用電磁弁19のON時間を変更して前述
のことを繰り返えす(コンピューター11により可能にな
る)ことにより、制御する設定温度と冷却周期での静的
冷却特性を求めることが可能になる。
In this way, by changing the ON time of the solenoid valve for cooling 19 and repeating the above (enabled by the computer 11), the static cooling characteristics at the set temperature to be controlled and the cooling cycle can be obtained. Will be possible.

[発明の効果] 本発明における押出機の温度制御方法は、以上説明した
ように、操作出力がプロセスに与える影響が非線形とな
る静的冷却特性を正しく測定することが可能になるた
め、PID定数の最適化ができ押出機の温度制御性の精密
化が可能になる。
[Effect of the Invention] As described above, the method for controlling the temperature of an extruder according to the present invention makes it possible to correctly measure the static cooling characteristics in which the influence of the operation output on the process becomes nonlinear, and thus the PID constant is obtained. The temperature controllability of the extruder can be refined.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の一実施例を示し第1図は機構図、第2図は
フローチャート図、第3図は静的特性を示す線図であ
る。 11……コンピューター,13……通信機能つきデュアル出
力形PID調節計,17……シーケンサ,18……切換スイッ
チ。
FIG. 1 shows an embodiment of the present invention, FIG. 1 is a mechanism diagram, FIG. 2 is a flow chart diagram, and FIG. 3 is a diagram showing static characteristics. 11 …… Computer, 13 …… Dual output type PID controller with communication function, 17 …… Sequencer, 18 …… Changeover switch.

フロントページの続き (56)参考文献 特開 昭62−37122(JP,A) 実開 昭54−31066(JP,U)Continuation of the front page (56) References JP-A-62-37122 (JP, A) Actually developed Shou-54-31066 (JP, U)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】温度検出用センサーと、加熱用ヒータと、
冷却用電磁弁により操作する冷却装置とを備えて加熱冷
却用の通信機能つきデュアル出力形PID調節計と、任意
の一定のON-OFFパターンで前記冷却用電磁弁を自動制御
可能なシーケンサに接続する回路とを切換え可能に設け
て制御する押出機の温度制御方法において、 通常の成形運転に入る前に、前記PID調節計で加熱制御
すると共にシーケンサからの指令により冷却用電磁弁を
一定のON-OFFパターンで制御して静的冷却特性を測定算
出してPID調節計のPID定数を最適化し、通常の成形運転
時には、前記PID調節計に切り換えるようにした押出機
の温度制御方法。
1. A temperature detecting sensor, a heating heater,
A dual output type PID controller with a communication function for heating and cooling equipped with a cooling device operated by a cooling solenoid valve and a sequencer that can automatically control the cooling solenoid valve with an arbitrary constant ON-OFF pattern In the temperature control method of the extruder, which is switchably provided with a circuit to control, the heating is controlled by the PID controller and the cooling solenoid valve is constantly turned on by the command from the sequencer before starting the normal molding operation. -Extruder temperature control method in which static cooling characteristics are measured and calculated by controlling with an OFF pattern to optimize the PID constant of the PID controller, and the PID controller is switched to during normal molding operation.
JP62114954A 1987-05-12 1987-05-12 Extruder temperature control method Expired - Lifetime JPH0698670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114954A JPH0698670B2 (en) 1987-05-12 1987-05-12 Extruder temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114954A JPH0698670B2 (en) 1987-05-12 1987-05-12 Extruder temperature control method

Publications (2)

Publication Number Publication Date
JPS63278819A JPS63278819A (en) 1988-11-16
JPH0698670B2 true JPH0698670B2 (en) 1994-12-07

Family

ID=14650757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114954A Expired - Lifetime JPH0698670B2 (en) 1987-05-12 1987-05-12 Extruder temperature control method

Country Status (1)

Country Link
JP (1) JPH0698670B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845880Y2 (en) * 1977-08-01 1983-10-19 株式会社池貝 Extruder temperature control device
JPS6237122A (en) * 1985-08-12 1987-02-18 Hitachi Cable Ltd Controller of cylinder temperature of chemical foam extruding machine

Also Published As

Publication number Publication date
JPS63278819A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
EP1321836B1 (en) Controller, temperature controller and heat processor using same
US4570054A (en) Open loop control for spectrophotometer atomizer furnace
JPH0425004B2 (en)
JPH07122619B2 (en) Analysis equipment
JPH0698670B2 (en) Extruder temperature control method
JP3620981B2 (en) Sample temperature control method
JPH09193225A (en) Method for controlling temperature of molding machine
JPH07180904A (en) Hot water-supplying apparatus
JPH09109216A (en) Nozzle temperature controller for injection molding machine
JP3053896B2 (en) Cooling device temperature control device
JPH06257852A (en) Hot-water supplier
JP2002140119A (en) Work temperature controller
JPS6027405B2 (en) temperature control device
JP2619044B2 (en) Temperature control device
JPH0565883B2 (en)
JPS63115719A (en) Method of control ling cylinder temperature of extrusion machine
SU1470792A1 (en) Method of controlling metal-heating
JP3509892B2 (en) Temperature feedback control method for molding machine
JPS5831373B2 (en) Temperature control method and device for continuous strip heat treatment furnace
SU1104479A1 (en) Device for adjusting evaporated metal pressure in thermal emission transducer
JP2910136B2 (en) Temperature control system for tundish molten steel plasma heating system
JPS5830499B2 (en) Combustion amount control method with two types of control modes
JP2512519B2 (en) Extruder cylinder temperature control method
JPH0557770A (en) Mold temperature-controlling device for injection molding machine
JP3334356B2 (en) Automatic temperature control device