JPS63278819A - Temperature controlling apparatus for extruder - Google Patents

Temperature controlling apparatus for extruder

Info

Publication number
JPS63278819A
JPS63278819A JP62114954A JP11495487A JPS63278819A JP S63278819 A JPS63278819 A JP S63278819A JP 62114954 A JP62114954 A JP 62114954A JP 11495487 A JP11495487 A JP 11495487A JP S63278819 A JPS63278819 A JP S63278819A
Authority
JP
Japan
Prior art keywords
cooling
temperature
computer
pid controller
extruder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62114954A
Other languages
Japanese (ja)
Other versions
JPH0698670B2 (en
Inventor
Yasuhiko Nagakura
長倉 靖彦
Takatoshi Kono
河野 隆俊
Katsuhiro Iguchi
勝啓 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP62114954A priority Critical patent/JPH0698670B2/en
Publication of JPS63278819A publication Critical patent/JPS63278819A/en
Publication of JPH0698670B2 publication Critical patent/JPH0698670B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92895Barrel or housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To measure precisely a static cooling characteristic and to attempt to make temp. controlling characteristics such as optimization of PID constant and so on to be precise, by setting a switch selecting an electromagnetic valve for cooling base on the signal from either both a sequencer being capable of continuously and automatically operating in an optional and constant on-off pattern and a dual-output type PID controller with a communication functionality or the sequencer. CONSTITUTION:A computer 11 and a dual-output type PID controller 13 with a communication functionality can be communicated by RS232C and the temp. of the barrel 15 of an extruder is sent to the PID controller 13 by means of a temp. sensor 16. A sequencer 17 generates a constant signal being a constant on-off pattern for heating and cooling by an order from the computer 11 and selects whether an output for heating and cooling to the cylinder 15 is carried out by an order from the PID controller 13 or by an order from the computer 11, by means of a switch 18 separately for heating or cooling. The operation of this switch 18 is also done by the order from a computer 11. Even if the switch 18 is on the side of PID controller 13, the measured temp. is transmitted to the computer 11.

Description

【発明の詳細な説明】 [発明の屈する技術分野] 本発明は押出機の温度制御装置に関する。[Detailed description of the invention] [Technical fields where inventions succumb] The present invention relates to a temperature control device for an extruder.

[従来技術] 押出機の温度制御系で温度調商計の適IトなPID定数
を定める装置や方法がいくつかある。
[Prior Art] There are several devices and methods for determining an appropriate PID constant for temperature adjustment in the temperature control system of an extruder.

従来から行われてきた方法としてZiegler−Ni
cholSによる過度応答法や限界感度法があり、最近
では測定温度の応答波形を用いるエキスパート法や湿度
調節計からの操作出力に固定用信号をのせて求める装置
や方法がある。
As a conventional method, Ziegler-Ni
There is a transient response method and a limit sensitivity method based on cholS, and recently there are devices and methods such as an expert method using a response waveform of a measured temperature and a fixing signal added to the operation output from a humidity controller.

押出機に投入されたプラスチック材料はスクリュによっ
て、荊方へ移送されながらシリンダ外部からの加熱と、
スクリュの剪断作用により生じる内部発熱により溶融さ
れる。この際自然放冷により冷却し切れない発熱量は強
制的に、気体や液体により冷却する方式が採られており
、PID調百計で温度制御する場合、加熱出力と冷却出
力を有するデュアルタイプが使用されている。
The plastic material fed into the extruder is transferred to the cylinder by a screw and heated from outside the cylinder.
It is melted by the internal heat generated by the shearing action of the screw. At this time, the calorific value that cannot be completely cooled by natural cooling is forcibly cooled with gas or liquid.When controlling the temperature with a PID controller, a dual type with heating output and cooling output is used. It is used.

従来のPII1mm計による制御方法は設定温度と温度
センサーによる制御点温度を突合せ点で比較し、PID
調節計が下記の式で示すような操作出力y (t)%を
算出し、プロセスXへ出カシ、制御するようになってい
る。
The conventional control method using a PII 1mm meter compares the set temperature and the temperature at the control point detected by the temperature sensor at a matching point, and calculates the PID.
The controller calculates the operating output y(t)% as shown in the following formula, and outputs the output to process X for control.

(ただし、PB;比例帯、Ti(秒);積分時間、Td
 (秒);微分時間、e(t);温度偏差を示す) 前記したPB@Ti@TdはPID定数と呼ばれ運転状
況に応じてユーザーが適宜決定するようになっている。
(However, PB: proportional band, Ti (seconds): integral time, Td
(seconds): differential time, e(t): temperature deviation) The above-mentioned PB@Ti@Td is called a PID constant and is appropriately determined by the user according to the operating conditions.

従ってPID定数を不適切に設定すると良い制御ができ
なかった。
Therefore, if the PID constant is inappropriately set, good control cannot be achieved.

また押出機のシリンダは前述したように加熱制御と冷却
制御とがあり、加熱制御にはヒーターを使用しており、
PID調節計からの操作出力がプロセスに与える影響が
線形となり適正なPID定数を決定することができるが
、冷却制御は冷却媒体である水の相変化(液体→気体)
のため操作出力がプロセスに与える影響は非線形になり
、適正なPID定数を決定することができなかった。
In addition, as mentioned above, the extruder cylinder has heating control and cooling control, and a heater is used for heating control.
The influence of the operation output from the PID controller on the process is linear and it is possible to determine an appropriate PID constant, but cooling control is based on the phase change of the cooling medium (liquid → gas).
Therefore, the influence of the operation output on the process becomes non-linear, making it impossible to determine an appropriate PID constant.

例えば第3図に示すような水冷パイプ付アルミ鋳込ヒー
ターを用いてヒータ一温度を200℃に保ったときの、
冷却水を通す電磁弁のON時間と冷却能力との関係を示
した静的冷却特性で説明すると、一般に押出機が運転さ
れる100℃ないし300℃の温度では冷却水量が少い
ときは冷却パイプ内のほとんど全ての水が気化するが、
冷却水量が多くなるに従って奪取熱量は増加し、冷却パ
イプ内壁温度が充分に回復しない内に新たな冷却水が注
入されるため水温と冷却パイプ内壁との温度差が小さく
なり、冷却水に与えるヒーター熱量の低下により気化す
る割合が減少し、冷却効果が低下することが理解されよ
う。
For example, when using a cast aluminum heater with a water cooling pipe as shown in Figure 3 and keeping the temperature of the heater at 200℃,
To explain the static cooling characteristics, which shows the relationship between the ON time of the solenoid valve that passes cooling water and the cooling capacity, when the amount of cooling water is small at the temperature of 100°C to 300°C, where the extruder is generally operated, the cooling pipe Almost all the water in it evaporates, but
As the amount of cooling water increases, the amount of heat absorbed increases, and new cooling water is injected before the inner wall temperature of the cooling pipe has fully recovered, so the temperature difference between the water temperature and the inner wall of the cooling pipe becomes smaller, and the heater that supplies the cooling water It will be understood that the rate of vaporization decreases as the amount of heat decreases, and the cooling effect decreases.

更に詳細に説明すると、スクリュ速度が低速。To explain in more detail, the screw speed is low.

即ち発熱量が低く電磁弁のON率が低い時はヒーター内
の冷却パイプに送られる冷却水の量は少く、冷却水は容
易に気化し、電磁弁ON時間当りの冷却熱量、即ち冷却
ゲインは大きくなる。
In other words, when the amount of heat generated is low and the ON rate of the solenoid valve is low, the amount of cooling water sent to the cooling pipe in the heater is small, the cooling water is easily vaporized, and the amount of cooling heat per solenoid valve ON time, that is, the cooling gain, is growing.

(領域り。(Region.

一方スクリュの回転数が高速の場合は電磁弁ON率が高
く、供給水量が多くなる結果、冷却効果の低下により冷
却ゲインは減少する(領域■)。
On the other hand, when the rotational speed of the screw is high, the solenoid valve ON rate is high and the amount of water supplied increases, resulting in a decrease in cooling effect and a decrease in cooling gain (region ■).

従って、領域工とmの間には変曲点が存在し、この近辺
の冷却ゲインは領域工とHの中間の値となる。(領域■
)。
Therefore, there is an inflection point between the area and m, and the cooling gain around this point has a value intermediate between the area and H. (Area ■
).

前述のように冷却特性は押出機のサイズや冷却系の設計
により若干光なるが、特性の傾きそのものはバルブ開度
・設定温度・冷却周期によりかなり異なる。また当然各
領域によりPID定数も変ってくる。
As mentioned above, the cooling characteristics vary depending on the size of the extruder and the design of the cooling system, but the slope of the characteristics itself varies considerably depending on the valve opening, set temperature, and cooling cycle. Naturally, the PID constant also changes depending on each area.

従来装置ではこの非常に強い非線形性を測定することが
できないため各領域での最適なPID定数を決めること
ができなかった。
Conventional devices cannot measure this extremely strong nonlinearity, and therefore cannot determine the optimal PID constant in each region.

[考案の目的] 本考案はこのような観点からなされたものでその目的は
、静的冷却特性を正しく測定することによりPID定数
の最適化等の温度制御性を精密にした押出機の温度制御
装置を提供することにある。
[Purpose of the invention] The present invention was made from this point of view, and its purpose is to improve temperature control of an extruder with precise temperature control such as optimization of PID constant by accurately measuring static cooling characteristics. The goal is to provide equipment.

[発明の要点] 本発明における押出機の温度制御装置は、温度検出用セ
ンサーと加熱用ヒーターと冷却用電磁弁により操作する
水冷装とならびに加熱冷却用の通信機能つきデュアル出
力形PIDJ節計を有する押出機において、冷却用電磁
弁を任意の一定ON−OFFハターンで連続自動操作可
能なシーケンサと、冷却用電磁弁を通信機能つきデュア
ル出力型PID3!J節計かあるいはシーケンサのいづ
れからの指令によって操作可能なように選択する切換ス
イッチを設けたことを特徴にしている。
[Summary of the Invention] The extruder temperature control device of the present invention includes a water cooling system operated by a temperature detection sensor, a heating heater, and a cooling solenoid valve, as well as a dual output type PIDJ meter with a communication function for heating and cooling. The extruder has a sequencer that can automatically operate the cooling solenoid valve continuously with any constant ON-OFF pattern, and a dual output type PID3 with communication function for the cooling solenoid valve! It is characterized by the provision of a selector switch that can be operated by commands from either the J-meter or the sequencer.

[発明の実施例1 以下本発明の一実施例を示した第1図に基づいて説明す
る。コンピューター11には各種条件を設定するための
設定用キーボード12が設けてあり、コ、ンピューター
11と通信機能つきデュアル出力形のPIDJ1m計1
3とはR5232Cにより通信可能になっており、内部
にスクリュ14を設けた押出機のバレル15の温度は温
度センサー16によりPIDr14節計13に送られて
いる。これによりバレル15の温度はコンピューター1
1にそして、コンピューター11に設定された温度はP
ID7Afti計13へ双方向に伝送することができる
[Embodiment 1 of the Invention An embodiment of the present invention will be explained below based on FIG. 1 showing an embodiment of the invention. The computer 11 is equipped with a setting keyboard 12 for setting various conditions.
3 through R5232C, and the temperature of the barrel 15 of the extruder, which has a screw 14 inside, is sent to the PIDr 14 meter 13 by a temperature sensor 16. As a result, the temperature of barrel 15 is
1 and the temperature set on the computer 11 is P
Bidirectional transmission is possible to a total of 13 ID7Afti.

シーケンサ17はコンピューター11からの指令により
加熱冷却の一定ON−OFFパターンの固定信号を発生
させ、また切付スイッチ18によりシリンダ15への加
熱冷却出力をPID調節計13からの指令で行うのか、
或いはコンピューター11からの指令で行うのかを加熱
冷却別に選択することができる。そしてこの切付スイッ
チ18の操作もコンピューター11からの指令で行うこ
とができるし、切付スイッチ18がPID調節計13側
にあっても測定した温度はコンピューター11に伝送す
ることができる。第1図は1チヤンネルであるが複数の
バレル15を同時に制御することも可能である。また!
/18スイッチ18を加熱冷却ともPID調節計13側
にすると通常の温度制御になる。
The sequencer 17 generates a fixed signal with a constant ON-OFF pattern for heating and cooling based on commands from the computer 11, and outputs heating and cooling to the cylinder 15 using the cut-off switch 18 based on commands from the PID controller 13.
Alternatively, it is possible to select whether heating or cooling is to be performed based on instructions from the computer 11. This cut-off switch 18 can also be operated by a command from the computer 11, and even if the cut-off switch 18 is located on the PID controller 13 side, the measured temperature can be transmitted to the computer 11. Although FIG. 1 shows one channel, it is also possible to control a plurality of barrels 15 simultaneously. Also!
When the /18 switch 18 is set to the PID controller 13 side for both heating and cooling, normal temperature control is achieved.

前述の温度制御を用いて静的冷却特性を求める一例を以
下に記載する。PID調箇討13によりバレル15の温
度を設定温度にし、制御する冷却周期で強制的に測定す
る冷却用電磁弁19のON時間で冷却すると、温度は下
るがヒーター20による加熱側の出力をPID調節計1
3でル制御していれば、温度は設定温度付近を維持する
An example of determining static cooling characteristics using the temperature control described above will be described below. When the temperature of the barrel 15 is set to the set temperature according to PID investigation section 13 and cooled by the ON time of the cooling solenoid valve 19 that is forcibly measured in the controlled cooling cycle, the temperature decreases, but the output on the heating side by the heater 20 is Controller 1
If the temperature is controlled in step 3, the temperature will be maintained near the set temperature.

そのとき測定温度と設定温度との差が、例えば連続しで
ある時間±1℃に入っているときのPID調節計13か
らの平均加熱操作出力を求めれば、任、aの冷却用電磁
弁19のON時間での静的冷却ここでフローチャートの
説明をする。31であらかじめ設定された任意の一定の
ON−OFFパターンの冷却固定信号発生をシーケンサ
17へ指令し、32で切換スイッチ18に、ヒーター2
0をPIDJ!11tl計13で冷却用電磁弁19を冷
却固定信号発生側で制御することを指令する。33でP
ID3Jjlf計13からの測定温度と加熱操作出力の
データとをサンプリングし、34でサンプリングした測
定温度と設定温度の偏差を計算し例えばその偏差が±1
℃以内であるか否かを判断し1以内であれば35で温度
連続平衡時間を計算し、36でその温度連続平衡時間が
あらかじめ設定された平衡時間か否かな判断しYESに
なるまで33から36を鰻り返えす、 YESになった
とき温度連続平衡時間内にある全てのサンプリングした
加熱操作出力を使用して37で平均加熱操作出力を計算
する。
At that time, if we calculate the average heating operation output from the PID controller 13 when the difference between the measured temperature and the set temperature is within ±1°C for a certain period of time, we can calculate the average heating operation output from the PID controller 13. Static cooling during ON time The flowchart will now be explained. At 31, the sequencer 17 is commanded to generate a cooling fixed signal of an arbitrary constant ON-OFF pattern set in advance, and at 32, the selector switch 18 is instructed to
PIDJ 0! The 11tl meter 13 instructs the cooling solenoid valve 19 to be controlled on the cooling fixed signal generation side. P at 33
The measured temperature from the ID3Jjlf meter 13 and the heating operation output data are sampled, and the deviation between the sampled measured temperature and the set temperature is calculated at 34. For example, if the deviation is ±1
Determine whether or not it is within 1°C, and if it is within 1, calculate the temperature continuous equilibrium time at 35, and at 36 judge whether the temperature continuous equilibrium time is the preset equilibrium time, and continue from 33 until YES. Repeat step 36. If YES, calculate the average heating operation output in step 37 using all sampled heating operation outputs within the temperature continuous equilibrium time.

無冷却状態で設定温度を維持するには加熱が必要である
ため、あらかじめ無冷却状態での平均加熱操作出力を求
めておくことにより、任意の冷却用電磁弁19のON時
間での冷却能力は次式に示すようになる。
Since heating is required to maintain the set temperature in the non-cooling state, by calculating the average heating operation output in the non-cooling state in advance, the cooling capacity during the ON time of any cooling solenoid valve 19 can be determined. It becomes as shown in the following formula.

冷却能力=(任意の冷却用電磁弁ON時間の平均加熱操
作出力)−(無冷却での平均加熱操作出力) ここで一般にPID調箇計13からの加熱操作出力は%
で出力されるが、ヒーター20の古諺はわかっているた
め冷却能力はKWに変換することが可能である。
Cooling capacity = (Average heating operation output during any cooling solenoid valve ON time) - (Average heating operation output without cooling) Here, generally the heating operation output from PID control unit 13 is %
However, since the old proverb about the heater 20 is known, the cooling capacity can be converted to KW.

このようにして冷却用電磁弁19のON時間を変更して
前述のことを繰り返へす(コンピューター11により可
能になる)ことにより、制御する設定温度と冷却周期で
の静的冷却特性を求めることが可能になる。
In this way, by changing the ON time of the cooling solenoid valve 19 and repeating the above steps (this is made possible by the computer 11), the static cooling characteristics at the controlled set temperature and cooling cycle are determined. becomes possible.

[発明の効果] 本発明における押出機の温度制御装置は以上説明したよ
うに、静的冷却特性を正しく測定することが可能になる
ためPID定数の最適化等押出機の温度制御性の精密化
が可能になる。
[Effects of the Invention] As explained above, the temperature control device for an extruder according to the present invention can accurately measure the static cooling characteristics, so it is possible to improve the precision of temperature control of the extruder, such as by optimizing the PID constant. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示し第1図は機構図、第2図は
フローチャート図、第3図は静的特性を示す線図である
。 11・・・コンピューター、13・・・通信機能つきデ
ュアル出力形PID21[1計、17・・・シーケンサ
、18・・・切換、スイッチ。
The drawings show an embodiment of the present invention; FIG. 1 is a mechanical diagram, FIG. 2 is a flowchart, and FIG. 3 is a diagram showing static characteristics. 11... Computer, 13... Dual output type PID21 with communication function [1 total, 17... Sequencer, 18... Changeover, switch.

Claims (1)

【特許請求の範囲】[Claims] 温度検出用センサーと加熱用ヒータと冷却用電磁弁によ
り操作する水冷装置ならびに加熱冷却用の通信機能つき
デュアル出力形PID調節計を有する押出機において、
前記冷却用電磁弁を任意の一定のON−OFFパターン
で連続自動操作可能なシーケンサと、前記冷却用電磁弁
を前記通信機能つきデュアル出力形PID調節計かある
いは前記シーケンサのいづれからの指令によって操作可
能なように選択する切換スイッチを設けたことを特徴と
する押出機の温度制御装置。
In an extruder that has a water cooling device operated by a temperature detection sensor, a heating heater, and a cooling solenoid valve, and a dual output type PID controller with communication function for heating and cooling,
A sequencer that can continuously and automatically operate the cooling solenoid valve in any fixed ON-OFF pattern, and the cooling solenoid valve is operated by a command from either the dual output type PID controller with communication function or the sequencer. 1. A temperature control device for an extruder, characterized in that it is provided with a changeover switch that allows selection.
JP62114954A 1987-05-12 1987-05-12 Extruder temperature control method Expired - Lifetime JPH0698670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114954A JPH0698670B2 (en) 1987-05-12 1987-05-12 Extruder temperature control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114954A JPH0698670B2 (en) 1987-05-12 1987-05-12 Extruder temperature control method

Publications (2)

Publication Number Publication Date
JPS63278819A true JPS63278819A (en) 1988-11-16
JPH0698670B2 JPH0698670B2 (en) 1994-12-07

Family

ID=14650757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114954A Expired - Lifetime JPH0698670B2 (en) 1987-05-12 1987-05-12 Extruder temperature control method

Country Status (1)

Country Link
JP (1) JPH0698670B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431066U (en) * 1977-08-01 1979-03-01
JPS6237122A (en) * 1985-08-12 1987-02-18 Hitachi Cable Ltd Controller of cylinder temperature of chemical foam extruding machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5431066U (en) * 1977-08-01 1979-03-01
JPS6237122A (en) * 1985-08-12 1987-02-18 Hitachi Cable Ltd Controller of cylinder temperature of chemical foam extruding machine

Also Published As

Publication number Publication date
JPH0698670B2 (en) 1994-12-07

Similar Documents

Publication Publication Date Title
RU2553783C2 (en) Method and device of pressure control in continuous annealing furnace
EP1127301B1 (en) Automatic temperature control
CA2052556A1 (en) Adaptive controller in a process control system and a method therefor
US3827252A (en) Method of regulation of the frigorific power of a joule-thomson refrigerator and a refrigerator utilizing said method
JPH07122619B2 (en) Analysis equipment
JPS63278819A (en) Temperature controlling apparatus for extruder
JP3620981B2 (en) Sample temperature control method
JPH07180904A (en) Hot water-supplying apparatus
JP2619044B2 (en) Temperature control device
JPH03279736A (en) Temperature controller
JPS6021730Y2 (en) Low temperature constant temperature device
JP3629325B2 (en) Sample temperature control method
JPH02183734A (en) Setting of mean of supply temperature for heating medium and circuit for executing the same
JP2002140119A (en) Work temperature controller
JPH06236201A (en) Control method for process
JPS54108180A (en) Temperature and humidity controller
JPH1073546A (en) Sample temperature control method
JPH01234700A (en) Steam tracing device
JPH0565883B2 (en)
SU1470792A1 (en) Method of controlling metal-heating
JPS5831373B2 (en) Temperature control method and device for continuous strip heat treatment furnace
SU709988A1 (en) Method of continuous monitoring of dew point
JPS5830499B2 (en) Combustion amount control method with two types of control modes
JPH05346804A (en) Control method for process
CA1195756A (en) Temperature distribution regulating sample holder- adapter for forming conditions for gradient heat treatment in heat treatment ovens or furnaces