JPH069698A - Immobilization of protein - Google Patents

Immobilization of protein

Info

Publication number
JPH069698A
JPH069698A JP4311735A JP31173592A JPH069698A JP H069698 A JPH069698 A JP H069698A JP 4311735 A JP4311735 A JP 4311735A JP 31173592 A JP31173592 A JP 31173592A JP H069698 A JPH069698 A JP H069698A
Authority
JP
Japan
Prior art keywords
protein
group
immobilizing
monomolecular film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4311735A
Other languages
Japanese (ja)
Other versions
JP2563739B2 (en
Inventor
Kazufumi Ogawa
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP60190776A priority Critical patent/JPS6250657A/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4311735A priority patent/JP2563739B2/en
Publication of JPH069698A publication Critical patent/JPH069698A/en
Application granted granted Critical
Publication of JP2563739B2 publication Critical patent/JP2563739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Peptides Or Proteins (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To strongly immobilize a protein on the surface of a metal without losing its activity. CONSTITUTION:A reactive single molecular film 5 having functional groups is formed on the surface of a metal such as a gate electrode 4, and the functional groups are chemically treated to impart hydroxyl groups, etc., to the functional groups. A protein 11 is reacted with and immobilized on the chemically treated part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タンパク質の固定方法
に関するものである。
TECHNICAL FIELD The present invention relates to a method for immobilizing proteins.

【0002】さらに詳しくは、金属表面に単分子膜を介
して任意のタンパク質を固定する方法に関するものであ
る。
More specifically, it relates to a method for immobilizing an arbitrary protein on a metal surface via a monomolecular film.

【0003】[0003]

【従来の技術】これまで、タンパク質の固定の例は、ほ
とんど知られておらず、より近い例としてガラス電極表
面に酵素を固定した方式のものや、電界効果型トランジ
スタ(FET)のゲート電極上に酵素を固定した方式の
ものが知られている。しかしながら従来の方法ではタン
パクの固定法としては問題があり、あまり信頼性の良い
ものが得られていなかった。
2. Description of the Related Art Up to now, there have been almost no known examples of protein immobilization, and as a closer example, a method of immobilizing an enzyme on the surface of a glass electrode or a gate electrode of a field effect transistor (FET) is used. A method in which an enzyme is immobilized on is known. However, the conventional method has a problem as a protein immobilization method, and a highly reliable method has not been obtained.

【0004】すなわち、従来の酵素の固定法は、FET
の電極やガラス電極に直接酵素を塗布したり樹脂に酵素
を混入して塗布したり、樹脂粒子に固定したものを塗布
したりあるいは、有機膜を介して酵素を固定する方法が
用いられていた。
That is, the conventional enzyme immobilization method is FET
The method of directly applying the enzyme to the electrode or the glass electrode, mixing the enzyme with the resin and applying it, applying the one fixed on the resin particles, or fixing the enzyme through the organic film was used. .

【0005】[0005]

【発明が解決しようとする課題】ところが、直接塗布す
る方法では、測定中に酵素が脱離したりして、耐久性に
問題があったし、樹脂中にタンパクを混入して塗布した
り樹脂粒子に固定したものを塗布する方法では活性が低
かったり、有機膜を介してタンパク質を固定する方法で
もやはり耐久性に問題があった。
However, in the method of direct coating, there is a problem in durability because the enzyme is desorbed during the measurement, and there is a problem in that the protein is mixed into the resin for coating. The method of applying the one immobilized on the plate had low activity, and the method of immobilizing the protein through the organic film also had a problem in durability.

【0006】[0006]

【課題を解決するための手段】以上述べてきた従来法の
欠点に鑑み、本発明はFETゲート電極上等の金属表面
に反応性単分子膜を介してタンパクを反応固定する方法
を提供するものである。すなわち、一端に反応性基(例
えば、CH2 =CH−,CH≡C−基等)を有し他端に
金属表面上の酸化膜と反応し吸着される活性基(例え
ば、−SiCl3等)を有する有機分子を用いた化学吸
着法や、あるいは、一端に反応性基を有し、他端に親水
基(例えば−COOH等)を有する有機分子を用いたラ
ングシュアー・ブロジェット法(以下LB法という)に
より、反応性単分子膜を形成した後、前記反応性基を化
学処理して−OH基を付加し、さらに、シアノブロマイ
ド法やアルデヒド法を用いて単分子膜表面をタンパク質
のアミノ基(−NH2 )と反応する基に変換する工程を
経てタンパクのアミノ基を反応固定する方法を提供する
ものである。
In view of the drawbacks of the conventional method described above, the present invention provides a method for reactively immobilizing a protein on a metal surface such as on a FET gate electrode through a reactive monolayer. Is. That is, an active group (eg, —SiCl 3 etc.) that has a reactive group (eg, CH 2 ═CH—, CH≡C— group, etc.) at one end and that reacts with an oxide film on the metal surface at the other end and is adsorbed (eg, —SiCl 3 etc.). ) Or an Langmuir-Blodgett method using an organic molecule having a reactive group at one end and a hydrophilic group (for example, —COOH) at the other end (hereinafter (Hereinafter referred to as LB method), a reactive monolayer is formed, and then the reactive group is chemically treated to add an -OH group. Further, the cyanobromide method or the aldehyde method is used to coat the monolayer surface with a protein. through a process of converting a group reactive to an amino group (-NH 2) an amino group of the protein is to provide a method of reacting fixed.

【0007】[0007]

【作用】本発明を用いることにより、タンパク質は、分
子中に多量に存在するアミノ基と単分子膜との反応によ
り金属表面上に固定されるため、活性が高くしかも強固
に固定されることになる。
By using the present invention, the protein is immobilized on the metal surface by the reaction between the amino group, which is abundant in the molecule, and the monolayer, so that the protein has high activity and is firmly immobilized. Become.

【0008】[0008]

【実施例】以下に本発明の一実施例について図面ととも
に説明する。図1に示すように、あらかじめFET1の
形成された基板2上には、レジスト3をコートしてゲー
ト電極4上のみを露光現像して開口する(図1)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a resist 3 is coated on the substrate 2 on which the FET 1 is formed in advance, and only the gate electrode 4 is exposed and developed to form an opening (FIG. 1).

【0009】次に、化学吸着法により前記開口部にシラ
ン界面活性剤、例えば、CH2 =CH−(CH2 )n−
SiCl3 (nは整数で10〜20が良い、またCH2
=CH−は、CH≡C−でも良い)を化学吸着させる
(図2)。
Next, a silane surfactant such as CH 2 ═CH— (CH 2 ) n-is provided in the opening by a chemisorption method.
SiCl 3 (n is an integer of 10 to 20 is good, and CH 2
= CH- may be CH≡C-) (FIG. 2).

【0010】このとき、ゲート電極表面では選択的に金
属表面の酸素と−SiCl3 が反応して、
At this time, oxygen on the metal surface selectively reacts with -SiCl 3 on the surface of the gate electrode,

【0011】[0011]

【化1】 [Chemical 1]

【0012】の単分子膜5が形成される。例えば、2.
0×10-3〜5.0×10-2Mol/lの濃度で80%
n−ヘキサン,12%四塩化炭素,8%クロロホルム溶
液に溶かした活性剤溶液中に2〜3分浸漬すると、金属
界面で
A monomolecular film 5 of is formed. For example, 2.
80% at a concentration of 0 × 10 -3 to 5.0 × 10 -2 Mol / l
When immersed in an activator solution dissolved in n-hexane, 12% carbon tetrachloride, 8% chloroform solution for 2 to 3 minutes, at the metal interface.

【0013】[0013]

【化2】 [Chemical 2]

【0014】の結合6が形成される。しかもこのとき、
シラン界面活性剤のビニル基7は、電極4表面に並んで
単分子膜5が成膜される(図3)。
The bond 6 of is formed. And at this time,
The vinyl group 7 of the silane surfactant is lined up on the surface of the electrode 4 to form the monomolecular film 5 (FIG. 3).

【0015】次に、図2に示したレジストパターン3’
を除去した後、室温でジボラン1Mol/lのTHF溶
液を用い、単分子膜5の形成された基板を浸漬し、さら
にNaOH0.1Mol/l 30%H2 2 水溶液に
浸漬することにより、単分子膜5の表面のビニル基又
は、アセチレン基に水酸基(−OH)8を付加させる
(図4)。
Next, the resist pattern 3'shown in FIG.
After removing the solution, the substrate on which the monomolecular film 5 was formed was dipped in a THF solution containing 1 mol / l diborane at room temperature, and further dipped in an aqueous solution of NaOH 0.1 Mol / l 30% H 2 O 2 to remove the monomer. A hydroxyl group (—OH) 8 is added to the vinyl group or the acetylene group on the surface of the molecular film 5 (FIG. 4).

【0016】続いて、過沃素酸水溶液に浸漬し、次式
(1)に従って表面のOH基をアルデヒド基9に酸化す
る(図5)。
Then, it is immersed in an aqueous solution of periodic acid and the OH groups on the surface are oxidized into aldehyde groups 9 according to the following formula (1) (FIG. 5).

【0017】[0017]

【化3】 [Chemical 3]

【0018】さらに、特定の活性を持つタンパク質を次
式(2)に従って付加反応させて固定させる。
Further, a protein having a specific activity is subjected to an addition reaction according to the following formula (2) and immobilized.

【0019】[0019]

【化4】 [Chemical 4]

【0020】従って、タンパク質10は、選択時にゲー
ト電極4上に単分子膜5を介して化学反応によりタンパ
ク質薄膜11として強固に固定される(図6,図7)。
Therefore, the protein 10 is firmly fixed on the gate electrode 4 as a protein thin film 11 by a chemical reaction through the monomolecular film 5 at the time of selection (FIGS. 6 and 7).

【0021】最後に、基板をダイシングして電極の接続
等の組立を行うとバイオセンサが完成する。
Finally, the biosensor is completed by dicing the substrate and assembling the electrodes and the like.

【0022】なお、以上の実施例では、アルデヒド法を
示したが、次式(3)のようなシアノブロマイド法を用
いたタンパク質の固定も同じように行なえる。
Although the aldehyde method has been shown in the above examples, protein immobilization using the cyanobromide method represented by the following formula (3) can be carried out in the same manner.

【0023】[0023]

【化5】 [Chemical 5]

【0024】また、単分子膜の形成に化学吸着法を用い
た例を示したが、CH2 =CH−(CH2 )nCOOH
やCH≡C−(CH2 )nCOOH等を用い、ラングシ
ュアー・ブロジェット(LB)法にてもゲート電極上に
単分子膜を形成できることが確認された。
Further, an example in which the chemisorption method is used for forming the monomolecular film is shown. CH 2 ═CH— (CH 2 ) nCOOH
It has been confirmed that a monomolecular film can be formed on the gate electrode even by the Langsuer-Blodgett (LB) method using CH≡C- (CH 2 ) nCOOH or the like.

【0025】さらにまた、上記例では、レジストを用い
て選択的にゲート電極上にのみ単分子膜を形成したが、
ビニル基やアセチレン基は、エネルギー線で感応してポ
リマーを形成するので、全面に単分子膜を形成した後、
ゲート電極上のみを後して、エネルギー線12で露光
し、ビニル基やアセチレン基を部分的に死活(失活)1
3させてから、残ったビニル基14(またはアセチレン
基)の部分に−OH基を付加させることも可能である
(図8)。
Furthermore, in the above example, the monolayer is selectively formed only on the gate electrode using the resist,
Since vinyl groups and acetylene groups are sensitive to energy rays to form polymers, after forming a monomolecular film on the entire surface,
After leaving only the gate electrode, it is exposed to energy rays 12 to partially deactivate (deactivate) vinyl groups and acetylene groups.
It is also possible to add an -OH group to the remaining vinyl group 14 (or acetylene group) after the reaction is performed (Fig. 8).

【0026】なお、本発明の方法、すなわち、LB膜へ
のタンパク質の自己整合機構を応用し、分子素子の構築
が可能なことも明らかであろう。
It will be apparent that the molecular device can be constructed by applying the method of the present invention, that is, the self-alignment mechanism of the protein to the LB membrane.

【0027】[0027]

【発明の効果】以上のように本発明によれば、タンパク
質は単分子膜を介して選択的に、しかも強固に活性を失
うことなく固定される。従って、高感度でしかも信頼性
の高いバイオセンサーが提供できる。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, a protein is immobilized via a monolayer selectively and firmly without losing its activity. Therefore, a highly sensitive and highly reliable biosensor can be provided.

【0028】さらにまた、製造工程も簡単なため、コス
トを大幅に低減できる効果もある。
Further, since the manufacturing process is simple, there is also an effect that the cost can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のバイオセンサの一部の製造
工程断面図である。
FIG. 1 is a sectional view of a part of a manufacturing process of a biosensor according to an embodiment of the present invention.

【図2】同実施例の一部の製造工程断面図である。FIG. 2 is a sectional view of a part of the manufacturing process of the embodiment.

【図3】同実施例の一部の製造工程の拡大図である。FIG. 3 is an enlarged view of a part of the manufacturing process of the embodiment.

【図4】同実施例の一部の製造工程の拡大図である。FIG. 4 is an enlarged view of a part of the manufacturing process of the embodiment.

【図5】同実施例の一部の製造工程の拡大図である。FIG. 5 is an enlarged view of a part of the manufacturing process of the embodiment.

【図6】同実施例の一部の製造工程の拡大図である。FIG. 6 is an enlarged view of a part of the manufacturing process of the embodiment.

【図7】同実施例の一部の製造工程断面図である。FIG. 7 is a sectional view of a part of the manufacturing process for the embodiment.

【図8】同実施例の一部の製造工程拡大図である。FIG. 8 is an enlarged view of a part of the manufacturing process of the embodiment.

【符号の説明】[Explanation of symbols]

1 FET 2 基板 4 ゲート電極 5 単分子膜 11 タンパク質膜 1 FET 2 substrate 4 gate electrode 5 monomolecular film 11 protein film

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G01N 27/327 // H01L 29/78 Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location G01N 27/327 // H01L 29/78

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】金属表面に感応基を有する単分子膜を形成
する工程と、前記感応基を化学処理する工程と、前記化
学処理部にタンパク質を反応固定する工程を含むタンパ
ク質の固定方法。
1. A method for immobilizing a protein, which comprises the steps of forming a monomolecular film having a sensitive group on a metal surface, chemically treating the sensitive group, and reacting and immobilizing the protein on the chemically treated portion.
【請求項2】単分子膜を形成する工程において化学吸着
法を用いる請求項1記載のタンパク質の固定方法。
2. The method for immobilizing a protein according to claim 1, wherein a chemisorption method is used in the step of forming a monomolecular film.
【請求項3】単分子膜の原料として、一端化ビニル基ま
たはアセチレン基を有し他端にクロルシラン基を有する
直鎖状ハイドロカーボン分子を用いる請求項2記載のタ
ンパク質の固定方法。
3. The method for immobilizing a protein according to claim 2, wherein a linear hydrocarbon molecule having a vinyl group or an acetylene group at one end and a chlorosilane group at the other end is used as a raw material for the monomolecular film.
【請求項4】単分子膜を形成する工程においてラングシ
ュアー・ブロジェット法を用いる請求項2記載のタンパ
ク質の固定方法。
4. The method for immobilizing a protein according to claim 2, wherein the Langure-Blodgett method is used in the step of forming a monomolecular film.
【請求項5】化学処理する工程において、単分子膜表面
がビニル基またはアセチレン基になるような膜を用い、
一度水酸基を付加させた後、シアノブロマイド法または
アルデヒド法によりタンパク質を固定させる請求項1記
載のタンパク質の固定方法。
5. In the step of chemically treating, a film whose surface is a vinyl group or an acetylene group is used.
The method for immobilizing a protein according to claim 1, wherein the protein is immobilized by the cyanobromide method or the aldehyde method after once adding a hydroxyl group.
JP4311735A 1985-08-29 1992-11-20 Protein immobilization method Expired - Fee Related JP2563739B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60190776A JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production
JP4311735A JP2563739B2 (en) 1985-08-29 1992-11-20 Protein immobilization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60190776A JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production
JP4311735A JP2563739B2 (en) 1985-08-29 1992-11-20 Protein immobilization method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60190776A Division JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production

Publications (2)

Publication Number Publication Date
JPH069698A true JPH069698A (en) 1994-01-18
JP2563739B2 JP2563739B2 (en) 1996-12-18

Family

ID=26506305

Family Applications (2)

Application Number Title Priority Date Filing Date
JP60190776A Granted JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production
JP4311735A Expired - Fee Related JP2563739B2 (en) 1985-08-29 1992-11-20 Protein immobilization method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP60190776A Granted JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production

Country Status (1)

Country Link
JP (2) JPS6250657A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8695406B2 (en) 2011-01-17 2014-04-15 Panasonic Corporation Safety device and preparatory movement determination method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250657A (en) * 1985-08-29 1987-03-05 Matsushita Electric Ind Co Ltd Biosensor and its production
JPH026488A (en) * 1988-06-24 1990-01-10 Shin Etsu Chem Co Ltd Omega-alkynylsilane compound
JP4850854B2 (en) 2007-03-22 2012-01-11 信越化学工業株式会社 Manufacturing method of substrate for producing microarray
JP4512607B2 (en) 2007-03-22 2010-07-28 信越化学工業株式会社 Manufacturing method of substrate for producing microarray

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250657A (en) * 1985-08-29 1987-03-05 Matsushita Electric Ind Co Ltd Biosensor and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176845A (en) * 1985-01-31 1986-08-08 Nok Corp Film deposited by evaporation for immobilization of physiologically active material and field effect transistor urea sensor using said film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250657A (en) * 1985-08-29 1987-03-05 Matsushita Electric Ind Co Ltd Biosensor and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8695406B2 (en) 2011-01-17 2014-04-15 Panasonic Corporation Safety device and preparatory movement determination method

Also Published As

Publication number Publication date
JP2563739B2 (en) 1996-12-18
JPH0533743B2 (en) 1993-05-20
JPS6250657A (en) 1987-03-05

Similar Documents

Publication Publication Date Title
EP0214805B1 (en) Sensor using a field effect transistor and method of fabricating the same
Nakamoto et al. A lift-off method for patterning enzyme-immobilized membranes in multi-biosensors
Collinson et al. Voltammetry of covalently immobilized cytochrome c on self-assembled monolayer electrodes
JP3151330B2 (en) Biosensor
US5407818A (en) Biosensor containing a biochemical substance immobilized on a layer of olefinic-unsaturated, epoxy functional cross-linked polysiloxane
US5154808A (en) Functional organic thin film and process for producing the same
US5955335A (en) Biomaterial immobilization on an Si3 N4 surface containing Si-NH2 groups with a heterobifunctional cross-linking agent
EP0748658A3 (en) A method for manufacturing a chemically adsorbed film and a chemical adsorbent solution for the method
Ren et al. Hydrogen peroxide sensor based on horseradish peroxidase immobilized on a silver nanoparticles/cysteamine/gold electrode
JP2563739B2 (en) Protein immobilization method
US20070039834A1 (en) Method for detecting or asssaying target material, and electrode substrate, device, and kit used for the same
US7034164B1 (en) Electrically conductive polymers capable of being covalently grafted on by light, method for obtaining same and uses as supports in probes for specific identification in electronic biosensors
Kampfrath et al. Plasma-polymerized thin films for enzyme immobilization in biosensors
JP2010117339A (en) Method for immobilizing active material on substrate surface
Muguruma Plasma-polymerized films for biosensors II
US20030129740A1 (en) Method of preparing substrate having functional group pattern for immobilizing physiological material
Longo et al. New insights from X-ray photoelectron spectroscopy into the chemistry of covalent enzyme immobilization, with glutamate dehydrogenase (GDH) on silicon dioxide as an example
JPS60247151A (en) Fet biosensor
JP3952193B2 (en) Semiconductor sensing device
JPH01240188A (en) Functional organic thin film
Komarova et al. Optimization of silicon dioxide surface functionalization protocol for designing the receptor layer of a biosensor for detecting explosives
JPS59203951A (en) Production of bioelectrochemical sensor
JPH0564732B2 (en)
JPS61176845A (en) Film deposited by evaporation for immobilization of physiologically active material and field effect transistor urea sensor using said film
JPS63231257A (en) Biosensor and its preparation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees