JP2563739B2 - Protein immobilization method - Google Patents

Protein immobilization method

Info

Publication number
JP2563739B2
JP2563739B2 JP4311735A JP31173592A JP2563739B2 JP 2563739 B2 JP2563739 B2 JP 2563739B2 JP 4311735 A JP4311735 A JP 4311735A JP 31173592 A JP31173592 A JP 31173592A JP 2563739 B2 JP2563739 B2 JP 2563739B2
Authority
JP
Japan
Prior art keywords
protein
group
immobilizing
monomolecular film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4311735A
Other languages
Japanese (ja)
Other versions
JPH069698A (en
Inventor
小川  一文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP60190776A priority Critical patent/JPS6250657A/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4311735A priority patent/JP2563739B2/en
Publication of JPH069698A publication Critical patent/JPH069698A/en
Application granted granted Critical
Publication of JP2563739B2 publication Critical patent/JP2563739B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タンパク質の固定方法
に関するものである。
TECHNICAL FIELD The present invention relates to a method for immobilizing proteins.

【0002】さらに詳しくは、金属表面に単分子膜を介
して任意のタンパク質を固定する方法に関するものであ
る。
More specifically, it relates to a method for immobilizing an arbitrary protein on a metal surface via a monomolecular film.

【0003】[0003]

【従来の技術】これまで、タンパク質の固定の例は、ほ
とんど知られておらず、より近い例としてガラス電極表
面に酵素を固定した方式のものや、電界効果型トランジ
スタ(FET)のゲート電極上に酵素を固定した方式の
ものが知られている。しかしながら従来の方法ではタン
パクの固定法としては問題があり、あまり信頼性の良い
ものが得られていなかった。
2. Description of the Related Art Up to now, there have been almost no known examples of protein immobilization, and as a closer example, a method of immobilizing an enzyme on the surface of a glass electrode or a gate electrode of a field effect transistor (FET) is used. A method in which an enzyme is immobilized on is known. However, the conventional method has a problem as a protein immobilization method, and a highly reliable method has not been obtained.

【0004】すなわち、従来の酵素の固定法は、FET
の電極やガラス電極に直接酵素を塗布したり樹脂に酵素
を混入して塗布したり、樹脂粒子に固定したものを塗布
したりあるいは、有機膜を介して酵素を固定する方法が
用いられていた。
That is, the conventional enzyme immobilization method is FET
The method of directly applying the enzyme to the electrode or the glass electrode, mixing the enzyme with the resin and applying it, applying the one fixed on the resin particles, or fixing the enzyme through the organic film was used. .

【0005】[0005]

【発明が解決しようとする課題】ところが、直接塗布す
る方法では、測定中に酵素が脱離したりして、耐久性に
問題があったし、樹脂中にタンパクを混入して塗布した
り樹脂粒子に固定したものを塗布する方法では活性が低
かったり、有機膜を介してタンパク質を固定する方法で
もやはり耐久性に問題があった。
However, in the method of direct coating, there is a problem in durability because the enzyme is desorbed during the measurement, and there is a problem in that the protein is mixed into the resin for coating. The method of applying the one immobilized on the plate had low activity, and the method of immobilizing the protein through the organic film also had a problem in durability.

【0006】[0006]

【課題を解決するための手段】以上述べてきた従来法の
欠点に鑑み、本発明はFETゲート電極上等の金属表面
に反応性単分子膜を介してタンパクを反応固定する方法
を提供するものである。すなわち、一端に反応性基(例
えば、CH2 =CH−,CH≡C−基等)を有し他端に
金属表面上の酸化膜と反応し吸着される活性基(例え
ば、−SiCl3等)を有する有機分子を用いた化学吸
着法や、あるいは、一端に反応性基を有し、他端に親水
基(例えば−COOH等)を有する有機分子を用いたラ
ングシュアー・ブロジェット法(以下LB法という)に
より、反応性単分子膜を形成した後、前記反応性基を化
学処理して−OH基を付加し、さらに、シアノブロマイ
ド法やアルデヒド法を用いて単分子膜表面をタンパク質
のアミノ基(−NH2 )と反応する基に変換する工程を
経てタンパクのアミノ基を反応固定する方法を提供する
ものである。
In view of the drawbacks of the conventional method described above, the present invention provides a method for reactively immobilizing a protein on a metal surface such as on a FET gate electrode through a reactive monolayer. Is. That is, an active group (eg, —SiCl 3 etc.) that has a reactive group (eg, CH 2 ═CH—, CH≡C— group, etc.) at one end and that reacts with an oxide film on the metal surface at the other end and is adsorbed (eg, —SiCl 3 etc.). ) Or an Langmuir-Blodgett method using an organic molecule having a reactive group at one end and a hydrophilic group (for example, —COOH) at the other end (hereinafter (Hereinafter referred to as LB method), a reactive monolayer is formed, and then the reactive group is chemically treated to add an -OH group. Further, the cyanobromide method or the aldehyde method is used to coat the monolayer surface with a protein. through a process of converting a group reactive to an amino group (-NH 2) an amino group of the protein is to provide a method of reacting fixed.

【0007】[0007]

【作用】本発明を用いることにより、タンパク質は、分
子中に多量に存在するアミノ基と単分子膜との反応によ
り金属表面上に固定されるため、活性が高くしかも強固
に固定される。従って、このタンパク質の固定方法は、
バイオセンサはともより化学センサやバイオ化学プラン
トにおける反応塔や分離塔などにも反応できる。
By using the present invention, a protein is immobilized on a metal surface by a reaction between an amino group existing in a large amount in a molecule and a monomolecular film, so that the protein has high activity and is firmly immobilized . Therefore, the method of immobilizing this protein is
Biosensors are better than chemical sensors and biochemical plans
It can also react in the reaction tower and separation tower in

【0008】[0008]

【実施例】以下に本発明の一実施例について図面ととも
に説明する。図1に示すように、あらかじめFET1の
形成された基板2上には、レジスト3をコートしてゲー
ト電極4上のみを露光現像して開口する(図1)。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a resist 3 is coated on the substrate 2 on which the FET 1 is formed in advance, and only the gate electrode 4 is exposed and developed to form an opening (FIG. 1).

【0009】次に、化学吸着法により前記開口部にシラ
ン界面活性剤、例えば、CH2 =CH−(CH2 )n−
SiCl3 (nは整数で10〜20が良い、またCH2
=CH−は、CH≡C−でも良い)を化学吸着させる
(図2)。
Next, a silane surfactant such as CH 2 ═CH— (CH 2 ) n-is provided in the opening by a chemisorption method.
SiCl 3 (n is an integer of 10 to 20 is good, and CH 2
= CH- may be CH≡C-) (FIG. 2).

【0010】このとき、ゲート電極表面では選択的に金
属表面の酸素と−SiCl3 が反応して、
At this time, oxygen on the metal surface selectively reacts with -SiCl 3 on the surface of the gate electrode,

【0011】[0011]

【化1】 Embedded image

【0012】の単分子膜5が形成される。例えば、2.
0×10-3〜5.0×10-2Mol/lの濃度で80%
n−ヘキサン,12%四塩化炭素,8%クロロホルム溶
液に溶かした活性剤溶液中に2〜3分浸漬すると、金属
界面で
A monomolecular film 5 of is formed. For example, 2.
80% at a concentration of 0 × 10 -3 to 5.0 × 10 -2 Mol / l
When immersed in an activator solution dissolved in n-hexane, 12% carbon tetrachloride, 8% chloroform solution for 2 to 3 minutes, at the metal interface.

【0013】[0013]

【化2】 Embedded image

【0014】の結合6が形成される。なお、Siの3本
の結合は3つすべてあるいは2つがOを介して金属と結
合している場合もあるが、通常第3図に示すように1つ
がOを介して金属と結合しており、残り2つの結合は隣
の分子同士でOを介して結合して固定される。しかもこ
のとき、シラン界面活性剤のビニル基7は、電極4表面
に並んで単分子膜5が成膜される(図3)。
The bond 6 of is formed. 3 pieces of Si
The bond of all three or two is connected to the metal via O.
There are cases where they match, but usually one as shown in Fig. 3
Are bonded to the metal via O, and the other two bonds are next to each other.
Are bound to each other via O and fixed. Moreover, at this time, the vinyl group 7 of the silane surfactant is lined up on the surface of the electrode 4 to form the monomolecular film 5 (FIG. 3).

【0015】次に、図2に示したレジストパターン3’
を除去した後、室温でジボラン1Mol/lのTHF溶
液を用い、単分子膜5の形成された基板を浸漬し、さら
にNaOH0.1Mol/l 30%H2 2 水溶液に
浸漬することにより、単分子膜5の表面のビニル基又
は、アセチレン基に水酸基(−OH)8を付加させる
(図4)。
Next, the resist pattern 3'shown in FIG.
After removing the solution, the substrate on which the monomolecular film 5 was formed was dipped in a THF solution containing 1 mol / l diborane at room temperature, and further dipped in an aqueous solution of NaOH 0.1 Mol / l 30% H 2 O 2 to remove the monomer. A hydroxyl group (—OH) 8 is added to the vinyl group or the acetylene group on the surface of the molecular film 5 (FIG. 4).

【0016】続いて、過沃素酸水溶液に浸漬し、次式
(1)に従って表面のOH基をアルデヒド基9に酸化す
る(図5)。
Then, it is immersed in an aqueous solution of periodic acid and the OH groups on the surface are oxidized into aldehyde groups 9 according to the following formula (1) (FIG. 5).

【0017】[0017]

【化3】 Embedded image

【0018】さらに、特定の活性を持つタンパク質を次
式(2)に従って付加反応させて固定させる。
Further, a protein having a specific activity is subjected to an addition reaction according to the following formula (2) and immobilized.

【0019】[0019]

【化4】 [Chemical 4]

【0020】従って、タンパク質10は、選択時にゲー
ト電極4上に単分子膜5を介して化学反応によりタンパ
ク質薄膜11として強固に固定される(図6,図7)。
Therefore, the protein 10 is firmly fixed on the gate electrode 4 as a protein thin film 11 by a chemical reaction through the monomolecular film 5 at the time of selection (FIGS. 6 and 7).

【0021】最後に、基板をダイシングして電極の接続
等の組立を行うとバイオセンサが完成する。
Finally, the biosensor is completed by dicing the substrate and assembling the electrodes and the like.

【0022】なお、以上の実施例では、アルデヒド法を
示したが、次式(3)のようなシアノブロマイド法を用
いたタンパク質の固定も同じように行なえる。
Although the aldehyde method has been shown in the above examples, protein immobilization using the cyanobromide method represented by the following formula (3) can be carried out in the same manner.

【0023】[0023]

【化5】 Embedded image

【0024】また、上記実施例では、FETのゲート金
属電極表面に単分子膜を介してタンパク質を固定した例
を示したが、本発明のタンパク質の固定方法は、バイオ
センサの製造に限定して用いられるものではない。前述
の如く、一端に反応性基を有し他端に金属表面上の酸化
膜と反応し吸着される活性基を有する有機分子を用い
て、金属表面に化学吸着法により反応性単分子膜を形成
した後、前記反応性基を化学処理して−OH基を付加
し、さらに、シアノブロマイド法やアルデヒド法を用い
て単分子膜表面をタンパク質のアミノ基と反応する官能
基に変換する工程を経て前記アミノ基と反応する官能基
にタンパクのアミノ基を反応させて固定することを構成
要件としているので、化学センサーはもとより医薬等の
製造に用いられているバイオ化学プラントにおける反応
塔や分離塔などにも反応できる。なお、単分子膜は、化
学吸着法に代えて、CH2=CH−(CH2)nCOOH
やCHqC−(CH2)nCOOH等を用い、ラングシ
ュアー・ブロジェット(LB)法にてもゲート電極上に
形成できることが確認された。
In the above embodiment, the gate metal of the FET is
Example of immobilizing protein on the surface of genus electrode through monolayer
However, the method for immobilizing proteins of the present invention is
It is not limited to the manufacture of the sensor. Above
As shown in the figure, one end has a reactive group and the other end is oxidized on the metal surface.
Using organic molecules with active groups that react with and are adsorbed on the membrane
To form a reactive monolayer on the metal surface by chemisorption method
Then, the reactive group is chemically treated to add an -OH group.
In addition, using the cyanobromide method or the aldehyde method
To react the surface of the monolayer with amino groups of protein
Functional group that reacts with the amino group through the step of converting into a group
Consisting of reacting with amino group of protein to immobilize
As a requirement, chemical sensors as well as pharmaceuticals
Reactions in biochemical plants used in manufacturing
It can also react in towers and separation towers. The monolayer is
Instead of the academic adsorption method, CH 2 = CH- (CH 2 ) nCOOH
Or CHqC- (CH 2 ) nCOOH, etc., and on the gate electrode even by the Langsur-Blodgett (LB) method.
It was confirmed that it could be formed .

【0025】さらにまた、上記例では、レジストを用い
て選択的にゲート電極上にのみ単分子膜を形成したが、
ビニル基やアセチレン基は、エネルギー線で感応してポ
リマーを形成するので、全面に単分子膜を形成した後、
ゲート電極上のみを後して、エネルギー線12で露光
し、ビニル基やアセチレン基を部分的に死活(失活)1
3させてから、残ったビニル基14(またはアセチレン
基)の部分に−OH基を付加させることも可能である
(図8)。
Furthermore, in the above example, the monolayer is selectively formed only on the gate electrode using the resist,
Since vinyl groups and acetylene groups are sensitive to energy rays to form polymers, after forming a monomolecular film on the entire surface,
After leaving only the gate electrode, it is exposed to energy rays 12 to partially deactivate (deactivate) vinyl groups and acetylene groups.
It is also possible to add an -OH group to the remaining vinyl group 14 (or acetylene group) after the reaction is performed (Fig. 8).

【0026】なお、本発明の方法、すなわち、LB膜へ
のタンパク質の自己整合機構を応用し、分子素子の構築
が可能なことも明らかであろう。
It will be apparent that the molecular device can be constructed by applying the method of the present invention, that is, the self-alignment mechanism of the protein to the LB membrane.

【0027】[0027]

【発明の効果】以上のように本発明によれば、タンパク
質は化学吸着した単分子膜を介して金属表面に強固にし
かも活性を失うことなく固定される。従って、高感度で
しかも信頼性の高い化学センターやバイオ化学プラント
における高効率な反応塔や分離塔を提供できる。
As described above, according to the present invention, the protein
The quality is firmly fixed to the metal surface through the chemisorbed monolayer.
Also fixed without losing activity. Therefore, with high sensitivity
And reliable chemical centers and biochemical plants
It is possible to provide a highly efficient reaction tower and separation tower in .

【0028】さらにまた、製造工程も簡単なため、コス
トを大幅に低減できる効果もある。
Further, since the manufacturing process is simple, there is also an effect that the cost can be greatly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のバイオセンサの一部の製造
工程断面図である。
FIG. 1 is a sectional view of a part of a manufacturing process of a biosensor according to an embodiment of the present invention.

【図2】同実施例の一部の製造工程断面図である。FIG. 2 is a sectional view of a part of the manufacturing process of the embodiment.

【図3】同実施例の一部の製造工程の拡大図である。FIG. 3 is an enlarged view of a part of the manufacturing process of the embodiment.

【図4】同実施例の一部の製造工程の拡大図である。FIG. 4 is an enlarged view of a part of the manufacturing process of the embodiment.

【図5】同実施例の一部の製造工程の拡大図である。FIG. 5 is an enlarged view of a part of the manufacturing process of the embodiment.

【図6】同実施例の一部の製造工程の拡大図である。FIG. 6 is an enlarged view of a part of the manufacturing process of the embodiment.

【図7】同実施例の一部の製造工程断面図である。FIG. 7 is a sectional view of a part of the manufacturing process for the embodiment.

【図8】同実施例の一部の製造工程拡大図である。FIG. 8 is an enlarged view of a part of the manufacturing process of the embodiment.

【符号の説明】[Explanation of symbols]

1 FET 2 基板 4 ゲート電極 5 単分子膜 11 タンパク質膜 1 FET 2 substrate 4 gate electrode 5 monomolecular film 11 protein film

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属表面に官能基を有する単分子膜を化学
結合を介して固定形成する工程と、前記官能基を化学処
理する工程と、前記化学処理部にタンパク質を反応固定
する工程を含むタンパク質の固定方法。
1. A monomolecular film having a functional group on a metal surface is chemically treated.
A method for immobilizing a protein, which comprises a step of immobilizing and forming via a bond, a step of chemically treating the functional group, and a step of reacting and immobilizing a protein in the chemical treatment part.
【請求項2】単分子膜を形成する工程において化学吸着
法を用いる請求項1記載のタンパク質の固定方法。
2. The method for immobilizing a protein according to claim 1, wherein a chemisorption method is used in the step of forming a monomolecular film.
【請求項3】単分子膜の原料として、一端化ビニル基ま
たはアセチレン基を有し他端にクロルシラン基を有する
直鎖状ハイドロカーボン分子を用いる請求項2記載のタ
ンパク質の固定方法。
3. The method for immobilizing a protein according to claim 2, wherein a linear hydrocarbon molecule having a vinyl group or an acetylene group at one end and a chlorosilane group at the other end is used as a raw material for the monomolecular film.
【請求項4】単分子膜を形成する工程においてラングシ
ュアー・ブロジェット法を用いる請求項2記載のタンパ
ク質の固定方法。
4. The method for immobilizing a protein according to claim 2, wherein the Langure-Blodgett method is used in the step of forming a monomolecular film.
【請求項5】化学処理する工程において、単分子膜表面
がビニル基またはアセチレン基になるような膜を用い、
一度水酸基を付加させた後、シアノブロマイド法または
アルデヒド法によりタンパク質を固定させる請求項1記
載のタンパク質の固定方法。
5. In the step of chemically treating, a film whose surface is a vinyl group or an acetylene group is used.
The method for immobilizing a protein according to claim 1, wherein the protein is immobilized by the cyanobromide method or the aldehyde method after once adding a hydroxyl group.
JP4311735A 1985-08-29 1992-11-20 Protein immobilization method Expired - Fee Related JP2563739B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60190776A JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production
JP4311735A JP2563739B2 (en) 1985-08-29 1992-11-20 Protein immobilization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60190776A JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production
JP4311735A JP2563739B2 (en) 1985-08-29 1992-11-20 Protein immobilization method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60190776A Division JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production

Publications (2)

Publication Number Publication Date
JPH069698A JPH069698A (en) 1994-01-18
JP2563739B2 true JP2563739B2 (en) 1996-12-18

Family

ID=26506305

Family Applications (2)

Application Number Title Priority Date Filing Date
JP60190776A Granted JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production
JP4311735A Expired - Fee Related JP2563739B2 (en) 1985-08-29 1992-11-20 Protein immobilization method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP60190776A Granted JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production

Country Status (1)

Country Link
JP (2) JPS6250657A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250657A (en) * 1985-08-29 1987-03-05 Matsushita Electric Ind Co Ltd Biosensor and its production
JPH026488A (en) * 1988-06-24 1990-01-10 Shin Etsu Chem Co Ltd Omega-alkynylsilane compound
JP4512607B2 (en) * 2007-03-22 2010-07-28 信越化学工業株式会社 Manufacturing method of substrate for producing microarray
JP4850854B2 (en) 2007-03-22 2012-01-11 信越化学工業株式会社 Manufacturing method of substrate for producing microarray
JP5048886B2 (en) 2011-01-17 2012-10-17 パナソニック株式会社 Safety device and preliminary operation determination method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250657A (en) * 1985-08-29 1987-03-05 Matsushita Electric Ind Co Ltd Biosensor and its production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176845A (en) * 1985-01-31 1986-08-08 Nok Corp Film deposited by evaporation for immobilization of physiologically active material and field effect transistor urea sensor using said film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250657A (en) * 1985-08-29 1987-03-05 Matsushita Electric Ind Co Ltd Biosensor and its production

Also Published As

Publication number Publication date
JPH069698A (en) 1994-01-18
JPH0533743B2 (en) 1993-05-20
JPS6250657A (en) 1987-03-05

Similar Documents

Publication Publication Date Title
EP0214805A2 (en) Sensor using a field effect transistor and method of fabricating the same
US5407818A (en) Biosensor containing a biochemical substance immobilized on a layer of olefinic-unsaturated, epoxy functional cross-linked polysiloxane
Pearson et al. Analytical aspects of biosensors
Collinson et al. Voltammetry of covalently immobilized cytochrome c on self-assembled monolayer electrodes
Nakamoto et al. A lift-off method for patterning enzyme-immobilized membranes in multi-biosensors
Halliwell et al. A factorial analysis of silanization conditions for the immobilization of oligonucleotides on glass surfaces
Zhang et al. DNA micropatterning on polycrystalline diamond via one-step direct amination
Tiefenauer et al. Towards amperometric immunosensor devices
JP3151330B2 (en) Biosensor
US20060286682A1 (en) Surface treatment
WO2000063685A1 (en) Biosensor
EP0748658A3 (en) A method for manufacturing a chemically adsorbed film and a chemical adsorbent solution for the method
Yoon et al. Reversible association/dissociation reaction of avidin on the dendrimer monolayer functionalized with a biotin analogue for a regenerable affinity-sensing surface
JP2563739B2 (en) Protein immobilization method
EP1724573A1 (en) Electrochemical method and apparatus for assaying or detecting biological material
Mourzina et al. Immobilization of urease and cholinesterase on the surface of semiconductor transducer for the development of light-addressable potentiometric sensors
US7034164B1 (en) Electrically conductive polymers capable of being covalently grafted on by light, method for obtaining same and uses as supports in probes for specific identification in electronic biosensors
Won et al. Bioelectrocatalytic signaling from immunosensors with back‐filling immobilization of glucose oxidase on biorecognition surfaces
Muguruma Plasma-polymerized films for biosensors II
KR20100052631A (en) Method of fixing an active material on a surface of a substrate
JP4614630B2 (en) Functional polymer compound and biosensor using the same
Haruyama Design and fabrication of a molecular interface on an electrode with functional protein molecules for bioelectronic properties
JPH0564732B2 (en)
EP1413886A1 (en) Sensor surface
JPS63231257A (en) Biosensor and its preparation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees