JPH0533743B2 - - Google Patents

Info

Publication number
JPH0533743B2
JPH0533743B2 JP60190776A JP19077685A JPH0533743B2 JP H0533743 B2 JPH0533743 B2 JP H0533743B2 JP 60190776 A JP60190776 A JP 60190776A JP 19077685 A JP19077685 A JP 19077685A JP H0533743 B2 JPH0533743 B2 JP H0533743B2
Authority
JP
Japan
Prior art keywords
group
gate electrode
enzyme
monomolecular film
reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60190776A
Other languages
Japanese (ja)
Other versions
JPS6250657A (en
Inventor
Kazufumi Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60190776A priority Critical patent/JPS6250657A/en
Priority to US06/900,629 priority patent/US4881109A/en
Priority to EP86306571A priority patent/EP0214805B1/en
Priority to DE8686306571T priority patent/DE3688489T2/en
Publication of JPS6250657A publication Critical patent/JPS6250657A/en
Priority to US07/353,326 priority patent/US4960722A/en
Priority to JP4311735A priority patent/JP2563739B2/en
Publication of JPH0533743B2 publication Critical patent/JPH0533743B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Pathology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Peptides Or Proteins (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、バイオセンサーおよびその製造方法
に関するものである。 さらに詳しくは、電解効果トランジスタのゲー
ト電極に任意のタンパク質と酵素を固定した生体
物質に特異的に感応するバイオセンサーに関する
ものであり、生体物質の計測に利用するものであ
る。 従来の技術 これまで、バイオセンサーは、ガラス電極表面
にタンパクや酵素を固定した方式のものや、電界
効果型トランジスタ(FET)のゲート電極上に
タンパクや酵素を固定した方式のものが知られて
いるが、従来の方法では酵素やタンパクの固定法
に問題があり、あまり高感度のものが得られてい
なかつた。 すなわち、従来のタンパクや酵素の固定法は、
FETの電極やガラス電極に直接酵素やタンパク
を塗布したり樹脂にタンパクや酵素を混入して塗
布したり、樹脂粒子に固定したものを塗布したり
あるいは、有機膜を介してタンパク質や酵素を固
定する方法が用いられていた。 発明が解決しようとする問題点 ところが、直接塗布する方法では、測定中にタ
ンパクや酵素が脱離したりして、耐久性に問題が
あつたし、樹脂中にタンパクを混入して塗布した
り樹脂粒子に固定したものを塗布する方法では活
性が低かつたり、有機膜を介してタンパク質を固
定する方法でもやはり耐久性に問題があつた。 問題点を解決するための手段 以上述べてきた従来法と欠点に鑑み、本発明は
FETゲート電極上に、このゲート電極と直接化
学結合で固定された反応性単分子膜を介して酵素
を反応固定する方法を提供するものである。すな
わち、一端に反応性官応基(例えば、CH2=CH
−、CH≡C−基等)を有し他端にゲート電極上
の酸化膜と反応し吸着される活性基(例えば、−
SiCl3等)を有する有機分子を用いた化学吸着法
や、あるいは、一端に反応性基を有し、他端に親
水基(例えば−COOH等)を有する有機分子を
用いたラングシユアー・ブロジエツト法(以下
LB法という)により、反応性単分子膜を形成し
た後、前記反応性基を化学処理して−OH基を付
加し、さらに、シアノブロマイド法やアルデヒド
法を用いて単分子膜表面を酵素のアミノ基(−
NH2)と反応する基に変換する工程を経てアミ
ノ基を反応させて酵素を固定する方法を提供する
ものである。 作 用 本発明を用いることにより、酵素は、分子中に
多量に存在するアミノ基と単分子膜との反応によ
りゲート電極上に固定されるため、活性が高くし
かも強固に固定されることになる。また、ゲート
電極と酵素は、単分子膜を挾んだのみで固定され
るのできわめて電界効果のロスが少いものとな
る。 従つて、耐久性が高く高感度のバイオセンサー
を提供できることになる。 実施例 以下に本発明の一実施例について図面とともに
説明する。第1図に示すように、あらかじめ
FET1の形成された基板2上には、レジスト3
をコートしてゲート電極4上のみを露光現像して
開口する(第1図)。 次に、化学吸着法により前記開口部にシラン界
面活性剤、例えば、CH2=CH−(CH2o−SiCl3
(nは整数で10〜20が良い、またCH2=CH−は、
CH≡C−でも良い)を化学吸着させる(第2
図)。 このとき、ゲート電極表面では選択的に金属表
面の酵素と−SiCl3が反応して、 の単分子膜5が形成される。例えば、2.0×10-3
〜5.0×10-2Mol/の濃度で80%n−ヘキサン、
12%四塩化炭素、8%クロロホルム溶液に溶かし
た活性剤溶液中に2〜3分浸漬すると、金属界面
INDUSTRIAL APPLICATION FIELD The present invention relates to a biosensor and its manufacturing method. More specifically, the present invention relates to a biosensor that is specifically sensitive to biological substances, in which arbitrary proteins and enzymes are immobilized on the gate electrode of a field effect transistor, and is used for measuring biological substances. Conventional technology Until now, biosensors have been known to have a type in which proteins or enzymes are immobilized on the surface of a glass electrode, or a type in which proteins or enzymes are immobilized on the gate electrode of a field effect transistor (FET). However, conventional methods have had problems with the method of immobilizing enzymes and proteins, and have not been able to achieve very high sensitivity. In other words, conventional methods of immobilizing proteins and enzymes are
Enzymes and proteins can be applied directly to FET electrodes and glass electrodes, proteins and enzymes mixed with resin can be applied, proteins and enzymes can be immobilized on resin particles, or proteins and enzymes can be immobilized through organic films. The method was used. Problems to be Solved by the Invention However, with the direct coating method, proteins and enzymes may be detached during measurement, resulting in durability problems. Methods in which proteins are immobilized on particles and coated have low activity, and methods in which proteins are immobilized through organic membranes also have problems in durability. Means for Solving the Problems In view of the conventional methods and drawbacks described above, the present invention has been developed.
The present invention provides a method for reaction-immobilizing an enzyme on a FET gate electrode via a reactive monolayer film that is directly immobilized with the gate electrode through chemical bonds. That is, a reactive functional group (e.g., CH 2 =CH
-, CH≡C- group, etc.) and an active group (e.g., -
chemisorption method using an organic molecule that has a reactive group at one end and a hydrophilic group (e.g. -COOH , etc.) at the other end. below
After forming a reactive monolayer using the LB method, the reactive groups are chemically treated to add -OH groups, and the surface of the monolayer is coated with enzymes using the cyanobromide method or aldehyde method. Amino group (-
The present invention provides a method for immobilizing an enzyme by reacting an amino group through a step of converting it into a group that reacts with NH 2 ). Effect: By using the present invention, the enzyme is immobilized on the gate electrode through a reaction between the amino groups present in large amounts in the molecule and the monolayer, resulting in high activity and firm immobilization. . Further, since the gate electrode and the enzyme are fixed only by sandwiching the monomolecular film, the loss of electric field effect is extremely small. Therefore, a highly durable and highly sensitive biosensor can be provided. Embodiment An embodiment of the present invention will be described below with reference to the drawings. As shown in Figure 1,
A resist 3 is placed on the substrate 2 on which the FET 1 is formed.
is coated, and only the top of the gate electrode 4 is exposed and developed to form an opening (FIG. 1). Next, a silane surfactant, e.g., CH2 =CH-( CH2 ) o - SiCl3 , is added to the opening by chemisorption.
(n is an integer, preferably 10 to 20, and CH 2 = CH- is
CH≡C- may also be adsorbed (second
figure). At this time, the enzyme on the metal surface selectively reacts with -SiCl 3 on the gate electrode surface, A monomolecular film 5 is formed. For example, 2.0×10 -3
80% n-hexane at a concentration of ~5.0×10 -2 Mol/;
When immersed in an activator solution of 12% carbon tetrachloride and 8% chloroform for 2 to 3 minutes, the metal interface

【式】の結合6が形成される。しかもこ のとき、シラン界面活性剤のビニル基7は、電極
4表面に並んで単分子膜5が成膜される(第3
図)。 次に、第2図に示したレジストパターン3′を
除去した後、室温でジボラン1Mol/のTHF溶
液を用い、単分子膜5の形成された基板を浸漬
し、さらにNaOH0.1Mol/30%H2O2水溶液に
浸漬することにより、単分子膜5の表面のビニル
基又は、アセチレン基に水酸基(−OH)8を付加
させる(第4図)。 続して、過沃素酸水溶液に浸漬し、次式(1)に従
つて表面のOH基をアルデヒド基9に酸化する
(第5図)。 R1−CH2OHHIO4 ―――→ ……(1) さらに、特定の活性を持つ酵素を次式(2)に従つ
て付加反応させて固定させる。 従つて、酵素10は、選択時にゲート電極4上
に単分子膜5を介して化学反応により酵素薄膜1
1として強固に固定される(第6,7図)。 最後に、基板をダイシングして電極の接続等の
組立を行うとバイオセンサが完成する。 なお、以上の実施例では、アルデヒド法を示し
たが、次式(3)のようなシアノブロマイド法を用い
た酵素の固定も同じように行なえる。 また、単分子膜の形成に化学吸着法を用いた例
を示したが、CH2=CH−(CH2oCOOHやCH≡
C−(CH2oCOOH等を用い、ラングシユアー・
ブロジエツト(LB)法にてもゲート電極上に単
分子膜を形成できることが確認された。 さらにまた、上記例では、レジストを用いて選
択的にゲート電極上にのみ単分子膜を形成した
が、ビニル基やアセチレン基は、エネルギー線で
感応してポリマーを形成するので、全面に単分子
膜を形成した後、ゲート電極上のみを後して、エ
ネルギー線12で露光し、ビニル基やアセチレン
基を部分的に死活(失活)13させてから、残つ
たビニル基14(またはアセチレン基)の部分に
−OH基を付加させることも可能である(第8
図)。 なお、本発明の方法、すなわち、LB膜へのタ
ンパク質の自己整合機構を応用し、分子素子の構
築が可能なことも明らかであろう。 発明の効果 以上のように本発明によれば、酵素は単分子膜
を介して選択的に、しかも強固に活性を失うこと
なく固定される。従つて、高感度でしかも信頼性
の高いバイオセンサーが提供できる。 さらにまた、製造工程も簡単なため、コストを
大幅に低減できる効果もある。
A bond 6 of the formula is formed. Moreover, at this time, the vinyl groups 7 of the silane surfactant form a monomolecular film 5 in line with the surface of the electrode 4 (third
figure). Next, after removing the resist pattern 3' shown in FIG. 2, the substrate on which the monomolecular film 5 was formed was immersed in a THF solution containing 1Mol of diborane at room temperature, and then immersed in a THF solution containing 0.1Mol of diborane/30%H. Hydroxyl groups (-OH) 8 are added to the vinyl groups or acetylene groups on the surface of the monomolecular film 5 by immersion in a 2 O 2 aqueous solution (FIG. 4). Subsequently, it is immersed in an aqueous periodic acid solution, and the OH groups on the surface are oxidized to aldehyde groups 9 according to the following formula (1) (FIG. 5). R 1 −CH 2 OHHIO 4 ---→ ...(1) Furthermore, an enzyme having a specific activity is immobilized by an addition reaction according to the following formula (2). Therefore, when the enzyme 10 is selected, the enzyme thin film 1 is formed on the gate electrode 4 through the monomolecular film 5 by a chemical reaction.
1 and is firmly fixed (Figures 6 and 7). Finally, the biosensor is completed by dicing the substrate and performing assembly such as electrode connections. In addition, although the aldehyde method was shown in the above example, enzyme immobilization using the cyanobromide method as shown in the following formula (3) can also be carried out in the same way. We also showed an example of using chemisorption to form a monomolecular film, but CH 2 = CH- (CH 2 ) o COOH and CH≡
Using C-(CH 2 ) o COOH etc., Langsheur
It was confirmed that a monomolecular film can also be formed on the gate electrode using the Blodget (LB) method. Furthermore, in the above example, a monomolecular film was selectively formed only on the gate electrode using a resist, but since vinyl groups and acetylene groups are sensitive to energy rays and form polymers, monomolecular films are formed over the entire surface. After forming the film, only the gate electrode is exposed to energy rays 12 to partially inactivate the vinyl groups and acetylene groups 13, and then the remaining vinyl groups 14 (or acetylene groups ) It is also possible to add an -OH group to the part (8th
figure). It is also clear that it is possible to construct molecular devices by applying the method of the present invention, that is, the self-alignment mechanism of proteins to LB membranes. Effects of the Invention As described above, according to the present invention, enzymes are selectively and firmly immobilized through a monolayer without losing activity. Therefore, a highly sensitive and highly reliable biosensor can be provided. Furthermore, since the manufacturing process is simple, there is also the effect of significantly reducing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第8図は本発明の一実施例におけるバ
イオセンサとその製造工程を説明するための工程
図であり、特に第3,4,5,6,8図は第2図
のA部の分子オーダーでの拡大図である。 1……FET、2……基板、4……ゲート電極、
5……単分子膜、11……酵素膜。
Figures 1 to 8 are process diagrams for explaining a biosensor and its manufacturing process in one embodiment of the present invention. In particular, Figures 3, 4, 5, 6, and 8 are part A of Figure 2. This is an enlarged view in molecular order. 1...FET, 2...Substrate, 4...Gate electrode,
5... Monomolecular membrane, 11... Enzyme membrane.

Claims (1)

【特許請求の範囲】 1 電解効果トランジスタのゲート電極上に前記
ゲート電極と直接化学結合で固定された反応性単
分子膜を設け、前記反応性単分子膜の表面に酵素
を化学結合で固定してなるバイオセンサー。 2 反応性単分子膜にSiを含む特許請求の範囲第
1項記載のバイオセンサー。 3 電解効果トランジスターのゲート電極上に、
一端に反応性官応基を有し、他端にゲート電極上
の酸化膜と反応する活性基を有する有機分子より
成る単分子膜を形成し化学結合して前記ゲート電
極と直接結合固定する工程と、前記反応性官応基
を化学処理して水酸基を付加する工程と、前記水
酸基をさらに化学処理した後酵素を反応させ固定
する工程を含むバイオセンサーの製造方法。 4 単分子膜を形成する工程において化学吸着法
を用いる特許請求の範囲第3項記載のバイオセン
サーの製造方法。 5 単分子膜の原料として、一端に反応性の官応
基としてビニル基またはアセチレン基を有し他端
にクロルシラン基を有する直鎖状ハイドロカーボ
ン分子を用いる特許請求の範囲第4項記載のバイ
オセンサーの製造方法。 6 単分子膜を形成する工程においてラングミユ
アー・ブロジエツト法を用いる特許請求の範囲第
3項記載のバイオセンサーの製造方法。 7 反応性の官応基として、単分子膜表面にビニ
ル基またはアセチレン基を含む膜を用い、前記ビ
ニル基またはアセチレン基に水酸基を付加させた
後、シアノブロマイド法またはアルデヒド法によ
り酵素と反応する官応基を導入する工程と、前記
酵素と反応する官応基に前記酵素を固定させるこ
とを特徴とした特許請求の範囲第3項記載のバイ
オセンサーの製造方法。
[Scope of Claims] 1. A reactive monomolecular film directly fixed to the gate electrode by chemical bonds is provided on the gate electrode of a field effect transistor, and an enzyme is fixed to the surface of the reactive monomolecular film by chemical bonds. A biosensor. 2. The biosensor according to claim 1, wherein the reactive monolayer contains Si. 3 On the gate electrode of the field effect transistor,
A process of forming a monomolecular film made of organic molecules having a reactive functional group at one end and an active group that reacts with the oxide film on the gate electrode at the other end, and chemically bonding the film to directly bond and fix the gate electrode. A method for producing a biosensor, comprising: a step of chemically treating the reactive functional group to add a hydroxyl group; and a step of further chemically treating the hydroxyl group and then reacting and immobilizing an enzyme. 4. The method for producing a biosensor according to claim 3, in which a chemical adsorption method is used in the step of forming a monomolecular film. 5. The biotechnology according to claim 4, in which a linear hydrocarbon molecule having a vinyl group or acetylene group as a reactive functional group at one end and a chlorosilane group at the other end is used as a raw material for the monomolecular film. How the sensor is manufactured. 6. The method for producing a biosensor according to claim 3, in which the Langmuir-Blodget method is used in the step of forming a monomolecular film. 7 Using a membrane containing a vinyl group or acetylene group on the surface of the monolayer as a reactive functional group, adding a hydroxyl group to the vinyl group or acetylene group, and then reacting with an enzyme by a cyanobromide method or an aldehyde method. 4. The method for producing a biosensor according to claim 3, comprising the steps of introducing a functional group and immobilizing the enzyme on the functional group that reacts with the enzyme.
JP60190776A 1985-08-29 1985-08-29 Biosensor and its production Granted JPS6250657A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP60190776A JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production
US06/900,629 US4881109A (en) 1985-08-29 1986-08-26 Sensor using a field effect transistor and method of fabricating the same
EP86306571A EP0214805B1 (en) 1985-08-29 1986-08-26 Sensor using a field effect transistor and method of fabricating the same
DE8686306571T DE3688489T2 (en) 1985-08-29 1986-08-26 SENSORS USING A FIELD EFFECT TRANSISTOR AND THEIR PRODUCTION METHOD.
US07/353,326 US4960722A (en) 1985-08-29 1989-05-15 Sensor using a field effect transistor and method of fabricating the same
JP4311735A JP2563739B2 (en) 1985-08-29 1992-11-20 Protein immobilization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60190776A JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production
JP4311735A JP2563739B2 (en) 1985-08-29 1992-11-20 Protein immobilization method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4311735A Division JP2563739B2 (en) 1985-08-29 1992-11-20 Protein immobilization method

Publications (2)

Publication Number Publication Date
JPS6250657A JPS6250657A (en) 1987-03-05
JPH0533743B2 true JPH0533743B2 (en) 1993-05-20

Family

ID=26506305

Family Applications (2)

Application Number Title Priority Date Filing Date
JP60190776A Granted JPS6250657A (en) 1985-08-29 1985-08-29 Biosensor and its production
JP4311735A Expired - Fee Related JP2563739B2 (en) 1985-08-29 1992-11-20 Protein immobilization method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP4311735A Expired - Fee Related JP2563739B2 (en) 1985-08-29 1992-11-20 Protein immobilization method

Country Status (1)

Country Link
JP (2) JPS6250657A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250657A (en) * 1985-08-29 1987-03-05 Matsushita Electric Ind Co Ltd Biosensor and its production
JPH026488A (en) * 1988-06-24 1990-01-10 Shin Etsu Chem Co Ltd Omega-alkynylsilane compound
JP4850854B2 (en) 2007-03-22 2012-01-11 信越化学工業株式会社 Manufacturing method of substrate for producing microarray
JP4512607B2 (en) * 2007-03-22 2010-07-28 信越化学工業株式会社 Manufacturing method of substrate for producing microarray
CN103052455A (en) 2011-01-17 2013-04-17 松下电器产业株式会社 Safety device and preliminary action determination method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176845A (en) * 1985-01-31 1986-08-08 Nok Corp Film deposited by evaporation for immobilization of physiologically active material and field effect transistor urea sensor using said film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6250657A (en) * 1985-08-29 1987-03-05 Matsushita Electric Ind Co Ltd Biosensor and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176845A (en) * 1985-01-31 1986-08-08 Nok Corp Film deposited by evaporation for immobilization of physiologically active material and field effect transistor urea sensor using said film

Also Published As

Publication number Publication date
JPS6250657A (en) 1987-03-05
JPH069698A (en) 1994-01-18
JP2563739B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
Collinson et al. Voltammetry of covalently immobilized cytochrome c on self-assembled monolayer electrodes
Shi et al. A novel label-free amperometric immunosensor for carcinoembryonic antigen based on redox membrane
US5407818A (en) Biosensor containing a biochemical substance immobilized on a layer of olefinic-unsaturated, epoxy functional cross-linked polysiloxane
Yoon et al. Affinity biosensor for avidin using a double functionalized dendrimer monolayer on a gold electrode
EP0214805A2 (en) Sensor using a field effect transistor and method of fabricating the same
Tiefenauer et al. Towards amperometric immunosensor devices
CA2092042A1 (en) Biosensor
WO2000063685A1 (en) Biosensor
JP2010531434A (en) All-solid contact ion-selective electrode based on carbon nanotubes
Yoon et al. Reversible association/dissociation reaction of avidin on the dendrimer monolayer functionalized with a biotin analogue for a regenerable affinity-sensing surface
US20100284860A1 (en) Molecules suitable for binding to a metal layer for covalently immobilizing biomolecules
US20070039834A1 (en) Method for detecting or asssaying target material, and electrode substrate, device, and kit used for the same
JPH0533743B2 (en)
Won et al. Bioelectrocatalytic signaling from immunosensors with back‐filling immobilization of glucose oxidase on biorecognition surfaces
JP2010117339A (en) Method for immobilizing active material on substrate surface
Muguruma Plasma-polymerized films for biosensors II
CN111693589A (en) Method for manufacturing biosensor, and application of biosensor
CN108845121B (en) Preparation method of okadaic acid three-dimensional gold nano-column array immuno-electrode
Vopel et al. Amperometric glucose sensor with a photolithographically patterned enzyme membrane
JPH0564732B2 (en)
Tsuji et al. An amperometric glucose sensor with modified Langmuir–Blodgett films
Yang et al. Enzyme electrodes with glucose oxidase immobilized on Stöber glass beads
CN1166874A (en) Biosensor with biomaterial covalently fixed on signal-active surface
JPS63231257A (en) Biosensor and its preparation
JPH0570103B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees