JPH0696752B2 - Low Cr heat resistant steel with excellent toughness for chromizing - Google Patents

Low Cr heat resistant steel with excellent toughness for chromizing

Info

Publication number
JPH0696752B2
JPH0696752B2 JP762690A JP762690A JPH0696752B2 JP H0696752 B2 JPH0696752 B2 JP H0696752B2 JP 762690 A JP762690 A JP 762690A JP 762690 A JP762690 A JP 762690A JP H0696752 B2 JPH0696752 B2 JP H0696752B2
Authority
JP
Japan
Prior art keywords
steel
low
chromizing
toughness
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP762690A
Other languages
Japanese (ja)
Other versions
JPH03211254A (en
Inventor
敦朗 伊勢田
義淳 椹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP762690A priority Critical patent/JPH0696752B2/en
Publication of JPH03211254A publication Critical patent/JPH03211254A/en
Publication of JPH0696752B2 publication Critical patent/JPH0696752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ボイラ、化学工業、原子力用などの耐熱材料
としてクロマイジング処理をして使用される低Cr系耐熱
鋼に関し、更に詳しくは、上記分野の熱交換器、配管材
料、鍛造品として使用されるクロマイジング用鋼であっ
て、靱性、耐食性の改善された低Cr系耐熱鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a low Cr heat-resistant steel used after being subjected to a chromizing treatment as a heat resistant material for boilers, chemical industry, nuclear power, etc., and more specifically, The present invention relates to a chromizing steel used as a heat exchanger, a piping material, and a forged product in the above fields, and relates to a low Cr heat-resistant steel having improved toughness and corrosion resistance.

(従来の技術) ボイラ、化学工業、原子力用などの高温耐熱耐圧熱交換
器管としては、オーステナイトステンレス鋼、9〜12Cr
系高Crフェライト鋼、Cr含有量が3.5%(この明細書に
おいて、合金成分含有量についての%は全て重量%を意
味する)以下の低Cr鋼と炭素鋼に分類される。
(Prior Art) As a high temperature heat resistant pressure resistant heat exchanger tube for boiler, chemical industry, nuclear power, etc., austenitic stainless steel, 9-12Cr
The high Cr ferritic steels are classified into low Cr steels and carbon steels having a Cr content of 3.5% or less (in this specification, all% of alloy component contents mean% by weight).

上記のような材料のうち、Cr含有量が3.5%以下の低合
金鋼の特徴は、Crを含有することによって炭素鋼よりも
耐酸化性、高温耐食性および高温強度に優れること、一
方、オーステナイトステンレス鋼に比べ、安価で熱膨張
係数が小さく且つ応力腐食割れをおこさないこと、ま
た、高Crフェライト鋼に比べて安価で熱伝導性、溶接性
に優れていることである。従って、この種の低合金鋼は
古くから広く使われており、その代表的なものとして2
・1/4Cr−1Mo鋼(STBA24)、STBA22、STBA20などが規格
化されている。その他にも強度を重視して、Nb、V、Ti
などによる析出強化を利用した特開昭63−62848号公報
記載の鋼、強度と靱性を改善した特公昭64−2185号公報
記載の鋼などがある。しかしながら、これらの低合金
は、高温耐食性の点で、オーステナイトステンレス鋼に
は遥かに及ばない。
Among the above materials, the low alloy steel with a Cr content of 3.5% or less is characterized by containing Cr and being superior in oxidation resistance, high temperature corrosion resistance and high temperature strength to carbon steel, while it is austenitic stainless steel. It is cheaper than steel, has a small coefficient of thermal expansion and does not cause stress corrosion cracking, and is cheaper and has better thermal conductivity and weldability than high Cr ferritic steel. Therefore, this type of low-alloy steel has been widely used since ancient times.
・ 1 / 4Cr-1Mo steel (STBA24), STBA22, STBA20, etc. are standardized. In addition, with emphasis on strength, Nb, V, Ti
There is a steel described in Japanese Patent Laid-Open No. 63-62848 utilizing the precipitation strengthening by the above, and a steel described in Japanese Patent Publication No. 64-2185 improved in strength and toughness. However, these low alloys are far inferior to austenitic stainless steels in terms of high temperature corrosion resistance.

たとえば、火力発電ボイラ熱交換器では、管外面が重
油、石炭、LNGなどの燃焼ガスにさらされ、これらの燃
料中のNa、K、S、Vによる著しい腐食減肉を起こす。
従来、この対策として低合金鋼の表面にCr濃度の高い被
覆を生成させて耐食性を改善する、いわゆるクロマイジ
ング処理が有効とされている。しかしながら、既存の低
合金鋼にクロマイジング処理を施した場合、処理後の冷
却中に母材の固溶CとCrが反応してCr炭化物を生成する
結果、Cr拡散層(通常表面から50μm〜数100μmの深
さ)内で粒界にCr欠乏層を生じ、腐食環境によっては著
しく孔食を生ずることが判明した。このような厳しい環
境として、近年開発がすすめられている石炭ガス化ボイ
ラがある。これまでの報告では、燃料中のCl-によるHCl
孔食を生ずるため、既存の材料をクロマイジング処理し
たものは耐食性不足という理由から使用できないことが
わかった。
For example, in a thermal power boiler heat exchanger, the outer surface of the pipe is exposed to combustion gases such as heavy oil, coal, and LNG, which causes significant corrosion thinning due to Na, K, S, and V in these fuels.
As a countermeasure against this, so-called chromizing treatment has been considered effective as a countermeasure for improving the corrosion resistance by forming a coating having a high Cr concentration on the surface of a low alloy steel. However, when the existing low alloy steel is subjected to chromizing treatment, the solid solution C of the base material reacts with Cr during the cooling after the treatment to generate Cr carbide, resulting in a Cr diffusion layer (usually 50 μm from the surface). It was found that a Cr-deficient layer was formed at the grain boundaries within a depth of several hundreds of μm, and that pitting was significantly caused depending on the corrosive environment. As such a severe environment, there is a coal gasification boiler which has been recently developed. Previous reports in the fuel Cl - by HCl
It has been found that existing materials subjected to chromizing treatment cannot be used because of pitting corrosion because of insufficient corrosion resistance.

クロマイジング層にCr炭化物を生成させない材料とし
て、Nb、Tiを多量に添加したいわゆる安定化低Cr鋼とC
量の低いフェライト単相型低Cr鋼が考えられるが、これ
らの材料には次のような問題がある。すなわち、クロマ
イジング処理では1000℃以上で長時間の加熱処理を行う
ため、これらの安定化鋼や低Cフェライト鋼では結晶粒
が著しく粗大化してしまい、強度と靱性を損ない、設計
基準を満たさなくなる。特に、低Cフェライト単相鋼
は、強度、靱性ともに不足で全く実用に供することがで
きない。
As a material that does not generate Cr carbide in the chromizing layer, so-called stabilized low Cr steel and C containing a large amount of Nb and Ti added.
Ferrite single-phase type low Cr steels with a low content are considered, but these materials have the following problems. That is, in the chromizing treatment, since heat treatment is performed at 1000 ° C. or longer for a long time, crystal grains are significantly coarsened in these stabilized steels and low C ferritic steels, and strength and toughness are impaired, and design criteria cannot be satisfied. . In particular, the low C ferritic single phase steel cannot be put to practical use at all because of insufficient strength and toughness.

(発明が解決しようとする課題) 既存の耐熱鋼の中でも、安価で且つ熱伝導性、強度に優
れる低Cr鋼のクロマイジング処理材の問題点は、次の通
りである。
(Problems to be Solved by the Invention) Among existing heat-resistant steels, the problems with the chromizing material of low Cr steel, which is inexpensive, and has excellent thermal conductivity and strength, are as follows.

(i)クロマイジング処理中のCr炭化物析出によりCr欠
乏層を生成し、耐食性が著しく劣化する。(ii)C量を
低くした既存のフェライト単相鋼では、クロマイジング
処理により結晶粒が粗大化し、著しい靱性劣化をおこす
とともに、強度不足で実用に適さない。
(I) A Cr-deficient layer is formed due to the precipitation of Cr carbide during the chromizing treatment, and the corrosion resistance is significantly deteriorated. (Ii) In the existing ferritic single-phase steel with a low C content, the crystal grains become coarse due to the chromizing treatment, which causes remarkable deterioration in toughness, and is not suitable for practical use due to insufficient strength.

(iii)既存鋼のクロマイジング処理で、靱性の点から
結晶粒成長をおさえるため、1000℃以下の低温処理とし
た場合、Cr拡散層生成に長時間を要するばかりか、50μ
m以上の十分な厚さの拡散層を得ることができず実用に
耐えない。
(Iii) In the chromizing treatment of the existing steel, in order to suppress grain growth from the viewpoint of toughness, when a low temperature treatment of 1000 ° C or less is required, it takes not only a long time to form the Cr diffusion layer but also 50μ.
A diffusion layer having a sufficient thickness of m or more cannot be obtained and cannot be practically used.

(iv)Nb、Tiを多量添加したいわゆる安定化鋼として
も、クロマイジング処理による靱性劣化が著しく、強度
および溶接性の低下、さらにはコスト高も合わせて、実
用に向かない。
(Iv) Even as a so-called stabilized steel containing a large amount of Nb and Ti added, it is not suitable for practical use due to remarkable deterioration of toughness due to chromizing treatment, deterioration of strength and weldability, and high cost.

本発明の目的は、従来の低Cr鋼の特徴を生かしながら、
クロマイジング処理を行っても耐食性劣化、強度と靱性
の低下を生じない新規な低Cr系耐熱鋼であって、特に耐
HCl孔食性が改善され、従来、材質的に適用が困難であ
った厳しい腐食環境下でも使用できる低Cr系耐熱鋼を提
供することにある。
The object of the present invention is to utilize the characteristics of conventional low Cr steel,
It is a new low Cr heat resistant steel that does not cause deterioration of corrosion resistance and deterioration of strength and toughness even when subjected to chromizing treatment.
An object of the present invention is to provide a low Cr heat resistant steel which has improved HCl pitting property and can be used even in a severe corrosive environment which has been difficult to apply due to its material.

(課題を解決するための手段) 本発明者らは、低Cr鋼のクロマイジング処理によるCr炭
化物の形成と結晶粒粗大化による靱性劣化、強度低下は
下記1)および2)の手段をとることで解消できること
を見出した。
(Means for Solving the Problem) The present inventors take the means of 1) and 2) described below for the deterioration of toughness and the reduction of strength due to the formation of Cr carbide by the chromizing treatment of low Cr steel and the coarsening of crystal grains. I found that can be solved by.

1)鋼に強度と靱性を付与する適量のCを添加するとと
もに、Ti、Nbを適量複合添加することによって、クロマ
イジング処理温度(1000〜1200℃)でα+γ2相組織と
する。これによって結晶粒粗大化が抑制され、且つ冷却
後に微細なフェライト+炭化物の組織となり、強度、靱
性の劣化が防止できる。
1) An appropriate amount of C that imparts strength and toughness to the steel is added, and an appropriate amount of Ti and Nb are added in combination to form an α + γ2 phase structure at the chromizing treatment temperature (1000 to 1200 ° C). As a result, coarsening of crystal grains is suppressed, and a fine ferrite + carbide structure is formed after cooling, and deterioration of strength and toughness can be prevented.

2)Cr炭化物が生成しない限界固溶C量を求め、クロマ
イジング処理中の固溶C量を調整するNb、Ti、N、Cの
添加量を調整する。これらは、多数の実験結果から得ら
れる実験式によって調整することができる。
2) Obtain the limit amount of solute C that does not form Cr carbide, and adjust the amount of Nb, Ti, N, and C added to adjust the amount of solute C during the chromizing treatment. These can be adjusted by an empirical formula obtained from many experimental results.

上記知見を基とする本発明は、下記〜のクロマイジ
ング用耐熱鋼を要旨とする。
The present invention based on the above findings is summarized by the following heat resistant steels for chromizing.

重量%において、C:0.02〜0.15%、Si:0.7%以下、
P:0.025%以下、S:0.015%以下、Mn:0.1〜1.5%、Ni:0.
8%以下、Cr:1.5〜3.5%、Mo:0.01〜2.2%、W:0.01〜3.
0%、Ti:0.005〜0.6%、Nb:0.005〜0.9%、N:0.001〜0.
05%、Al:0.001〜0.05%を含有し、さらに上記Nb、Ti、
NおよびCの含有量が後述の(a)式を満足し、残部が
鉄および不可避的不純物から成る靱性に優れたクロマイ
ジング用低Cr系耐熱鋼。
In weight%, C: 0.02 to 0.15%, Si: 0.7% or less,
P: 0.025% or less, S: 0.015% or less, Mn: 0.1 to 1.5%, Ni: 0.
8% or less, Cr: 1.5 to 3.5%, Mo: 0.01 to 2.2%, W: 0.01 to 3.
0%, Ti: 0.005 to 0.6%, Nb: 0.005 to 0.9%, N: 0.001 to 0.
05%, Al: 0.001-0.05%, Nb, Ti,
A low Cr heat-resisting steel for chromizing, which has an N and C content satisfying the formula (a) described later, and the balance is iron and inevitable impurities and has excellent toughness.

更に、V:0.01〜0.3重量%を含有する上記の低Cr
系耐熱鋼。
In addition, V: 0.01-0.3 wt% containing the above low Cr
Series heat resistant steel.

更に、B:0.0001〜0.02重量%を含有する上記また
はの低Cr系耐熱鋼。
Further, the above or the low Cr heat resistant steel containing 0.0001 to 0.02% by weight of B.

更に、それぞれ0.01〜0.2重量%のLa、Ce、Y、C
a、Zr、Taのうちの1種以上を含有する上記、、ま
たはの低Cr系耐熱鋼。
Furthermore, 0.01 to 0.2 wt% of La, Ce, Y, and C, respectively
A low Cr heat resistant steel as described above or containing at least one of a, Zr and Ta.

なお、(a)式とは、下記の実験式である。The expression (a) is the following empirical expression.

但し、(a)式中の元素記号はその元素の含有量 (重量%)を意味する。 However, the element symbol in the formula (a) means the content (% by weight) of the element.

(作用) 以下、本発明の耐熱鋼を構成する合金元素の作用とその
含有量の限定理由、および前記(a)式の技術的意味に
ついて詳しく説明する。
(Operation) Hereinafter, the operation of the alloying elements constituting the heat-resistant steel of the present invention, the reason for limiting the content thereof, and the technical meaning of the formula (a) will be described in detail.

C: Cは、鋼中のNb、Ti、Cr、Mo等と結合して炭化物を形成
し、強度を付与するが、それ自身がオーステナイト安定
化元素であるから、高温でγ相を形成させる相バランス
を調整する上で重要な役割をもつ。0.02%未満では、母
材中に完全固溶してフェライト単相となり、高温でγ変
態を起こさないため、フェライト粒成長が甚だしくなり
鋼の靱性と強度が低くなって実用に供せない。一方、C
が0.15%を超えると、鋼は著しく硬化して靱性が低下す
るとともに、クロマイジング層のCr炭化物析出によって
Cr欠乏層を生ずるため、耐食性も劣化する。よって、C
の適正含有量は0.02〜0.15%である。
C: C combines with Nb, Ti, Cr, Mo, etc. in the steel to form carbides and give strength, but since it is an austenite stabilizing element itself, it is a phase that forms a γ phase at high temperatures. It plays an important role in adjusting balance. If it is less than 0.02%, it completely dissolves in the base material to form a single ferrite phase, and γ-transformation does not occur at high temperature, so the ferrite grain growth becomes so great that the toughness and strength of the steel are lowered and it cannot be put to practical use. On the other hand, C
If the content exceeds 0.15%, the steel will be significantly hardened and the toughness will be reduced.
Since a Cr-deficient layer is generated, the corrosion resistance also deteriorates. Therefore, C
The proper content of is 0.02-0.15%.

Cr: Crは、低Cr鋼の母材に耐食性、耐酸化性、高温強度を与
える不可欠な元素で、1.5%未満では母材の所定特性が
得られない。一方、3.5%を超える場合は、もはや低Cr
鋼の長所を失い、靱性および溶接性が劣化し、熱伝導性
も悪くなる。従って、Cr含有量の適正範囲は、1.5〜3.5
%である。
Cr: Cr is an indispensable element that imparts corrosion resistance, oxidation resistance and high temperature strength to the base material of low Cr steel, and if it is less than 1.5%, the predetermined characteristics of the base material cannot be obtained. On the other hand, when it exceeds 3.5%, it is no longer low Cr
It loses the advantages of steel, deteriorates toughness and weldability, and deteriorates thermal conductivity. Therefore, the proper range of Cr content is 1.5 to 3.5.
%.

Si: Siは脱酸剤として添加され、耐水蒸気酸化性能を高める
元素であるが、0.7%を超えると、靱性、加工性が著し
く低下し、強度に対しても有害である。特に低Cr鋼で
は、P、Sの粒界偏析による焼もどし脆化を促進するの
で、0.7%以下とした。
Si: Si is an element that is added as a deoxidizer and enhances the steam oxidation resistance performance, but if it exceeds 0.7%, the toughness and workability are significantly deteriorated and it is also harmful to the strength. Especially in low Cr steel, since it promotes temper embrittlement due to segregation of P and S at grain boundaries, it is set to 0.7% or less.

Mn: Mnは熱間加工性を改善し、組織の安定化に有効な元素で
あるが、0.1%未満では十分な効果が得られず、1.5%を
超えると鋼を硬化させ加工性、溶接性を損なうとともに
Siと同様に焼もどし脆化感受性を高める。よって、Mn量
は0.1〜1.5%とする。
Mn: Mn is an element that improves hot workability and is effective in stabilizing the structure, but if it is less than 0.1%, it will not have a sufficient effect, and if it exceeds 1.5%, it hardens the steel and causes workability and weldability. Along with damaging
Increases susceptibility to temper embrittlement like Si. Therefore, the amount of Mn is set to 0.1 to 1.5%.

PおよびS: PとSは鋼の不可避不純物であり、いずれも靱性、加工
性、溶接性に有害であり、特に焼もどし脆化を促進す
る。従って、不純物として、Pは0.025%以下、Sは0.0
15%以下に抑制することとした。
P and S: P and S are unavoidable impurities of steel, and both are harmful to toughness, workability, and weldability, and particularly promote the temper embrittlement. Therefore, P is 0.025% or less and S is 0.0
It was decided to limit it to 15% or less.

Ni: Niはオーステナイト安定化元素であり、且つ靱性改善に
寄与するが、0.8%を超えて添加されると高温強度を損
なうとともに、変態温度が低下して実用的でなくなる。
従って、0.8%以下とした。
Ni: Ni is an austenite stabilizing element and contributes to the improvement of toughness, but if it is added in an amount exceeding 0.8%, the high temperature strength will be impaired and the transformation temperature will decrease, making it impractical.
Therefore, it is set to 0.8% or less.

Mo: Moは固溶強化元素であり、Wと複合添加すると少量から
強度向上に寄与するとともに、耐食性を改善する重要な
元素である。0.01%未満では耐熱鋼として十分な強度が
得られず、また耐食性改善の効果も乏しい。一方、2.2
%を超えると鋼は著しく硬化して靱性、加工性、溶接性
を損なう。よって、Moの適正含有量は0.01〜2.2%であ
る。
Mo: Mo is a solid solution strengthening element, and when added together with W, it contributes to the strength improvement from a small amount and is an important element that improves the corrosion resistance. If it is less than 0.01%, sufficient strength as a heat resistant steel cannot be obtained, and the effect of improving corrosion resistance is poor. On the other hand, 2.2
%, The steel is significantly hardened and impairs toughness, workability and weldability. Therefore, the proper content of Mo is 0.01 to 2.2%.

W: Wも固溶強化元素であり、Moと複合添加された場合は単
独添加以上に固溶強化作用が発揮され、一層強度が向上
する。特に、高温クリープ強度が改善される。0.01%未
満では前記効果がなく、3.0%を超えると鋼が著しく硬
化し、靱性、加工性、溶接性を損なう。よって、Wの適
正含有量は0.01〜3.0%である。なお、Mo+1/2W量で0.8
〜1.5%となるように前記適正範囲内でW含有量を調整
することが望ましい。
W: W is also a solid solution strengthening element, and when it is added in combination with Mo, the solid solution strengthening action is exhibited more than the single addition, and the strength is further improved. In particular, the high temperature creep strength is improved. If it is less than 0.01%, the above effect is not obtained, and if it exceeds 3.0%, the steel is significantly hardened and the toughness, workability and weldability are impaired. Therefore, the proper content of W is 0.01 to 3.0%. In addition, it is 0.8 with the amount of Mo + 1 / 2W
It is desirable to adjust the W content within the above-mentioned appropriate range so as to be ~ 1.5%.

Ti: TiはNbとともに本発明鋼における重要な元素である。即
ち、母材中のN、Cと結合して炭窒化物を生成し、高温
クロマイジング処理中のCr炭化物生成を阻止する。0.00
5%未満では、炭窒化物生成が不十分であり、意図する
特性が得られない。一方、0.6%を超えると加工性、溶
接性を損なうとともに、Cが全て炭化物として安定化し
てしまい、鋼の組織がフェライト単相となり靱性および
強度を損なう。よって、Tiの適正含有量は0.005〜0.6%
である。
Ti: Ti is an important element in the steel of the present invention together with Nb. That is, it combines with N and C in the base material to form carbonitrides, and prevents the formation of Cr carbides during the high temperature chromizing treatment. 0.00
If it is less than 5%, carbonitride formation is insufficient and the intended properties cannot be obtained. On the other hand, if it exceeds 0.6%, not only the workability and weldability are impaired, but also all C is stabilized as a carbide, and the steel structure becomes a ferrite single phase, impairing toughness and strength. Therefore, the proper content of Ti is 0.005-0.6%
Is.

Nb: NbはTiとともに、主にCと結合してCr炭化物生成を阻止
する。0.005%未満ではその効果が充分でなく、高温ク
ロマイジング処理中に著しく結晶粒成長によって脆化す
る。一方、0.9%を超える場合、加工性、溶接性を損な
うばかりか、組織がフェライト単相化して靱性、強度を
損なう。よって、Nbの含有量は0.005〜0.9%が適当であ
る。
Nb: Nb, together with Ti, mainly combines with C to prevent Cr carbide formation. If it is less than 0.005%, the effect is not sufficient, and during the high temperature chromizing treatment, it is significantly embrittled by grain growth. On the other hand, if it exceeds 0.9%, not only the workability and weldability are impaired, but also the structure becomes a ferrite single phase and impairs toughness and strength. Therefore, the Nb content is properly 0.005 to 0.9%.

N(窒素): Nは溶解時に原料や雰囲気から混入するが、Ti、Nbの炭
窒化物を形成して鋼の結晶粒の微細化により強度改善に
寄与する。0.001%未満では上記の効果はなく、0.05%
を超えると、Ti窒化物を多量に析出して靱性を損なう。
よって、Nの含有量は0.001〜0.05%とする。好ましい
範囲は、0.005〜0.015%である。
N (nitrogen): N is mixed in from the raw material and atmosphere during melting, but forms carbonitrides of Ti and Nb and contributes to strength improvement by refining the crystal grains of the steel. If less than 0.001%, the above effect does not occur, and 0.05%
If it exceeds 1.0, a large amount of Ti nitride is precipitated and the toughness is impaired.
Therefore, the content of N is set to 0.001 to 0.05%. A preferred range is 0.005 to 0.015%.

上記以外に必要に応じて含有させることができる合金成
分は次のようなものである。
In addition to the above, alloy components that can be contained as necessary are as follows.

V: Vは炭窒化物生成元素であるが、その作用はNb、Tiに比
べて小さい。しかし、微量添加することにより、靱性、
加工性が改善される。この特性は0.01%未満では得られ
ず、一方、0.3%を超える場合は、かえって強度、靱性
を損なう。よって、Vを添加する場合には、その含有量
は0.01〜0.3%とする。
V: V is a carbonitride forming element, but its action is smaller than that of Nb and Ti. However, by adding a trace amount, toughness,
Workability is improved. This property cannot be obtained if it is less than 0.01%, while if it exceeds 0.3%, the strength and toughness are rather deteriorated. Therefore, when V is added, its content is set to 0.01 to 0.3%.

B: Bは極微量の添加により炭化物を分散、安定化させると
ともに、粒界強化と結晶粒の微細化にも寄与する。0.00
01%未満ではその効果がなく、0.02%を超えると溶接
性、加工性を損なうからBを添加する場合はその含有量
は0.0001〜0.02%とする。
B: B disperses and stabilizes carbides by adding an extremely small amount, and also contributes to grain boundary strengthening and grain refinement. 0.00
If it is less than 01%, there is no effect, and if it exceeds 0.02%, the weldability and workability are impaired. Therefore, when B is added, its content should be 0.0001 to 0.02%.

Cu、La、Ce、Y、Ca、Zr、Ta: これらの元素は、1種または2種以上含有させると、不
純物元素であるP、S、O(酸素)と結合して鋼の靱
性、加工性、強度を改善する。それぞれ0.01%未満では
上記の効果が明らかでなく、0.2%を超えると介在物と
して窒化物、酸化物が増加し、靱性、強度を損なうの
で、これらの元素を添加するときは、その含有量をそれ
ぞれ0.01〜0.2%の範囲にするのがよい。
Cu, La, Ce, Y, Ca, Zr, Ta: When one or more of these elements are contained, they are combined with the impurity elements P, S, O (oxygen) and the toughness and working of steel are performed. Improves sex and strength. If the content is less than 0.01%, the above effect is not clear, and if it exceeds 0.2%, nitrides and oxides increase as inclusions, and the toughness and strength are impaired. It is preferable to set each in the range of 0.01 to 0.2%.

更に、Nb、Ti、N、Cの含有量は、前述の範囲内で且つ
下記(a)式の条件を満足するように調整することが本
発明の大きな特徴である。
Furthermore, it is a major feature of the present invention that the contents of Nb, Ti, N, and C are adjusted within the above range and satisfy the condition of the following formula (a).

この(a)式は、本発明者の多数の実験結果から得たも
ので、 は固溶C量の計算式を表す。以下、この式で計算される
値をP値という。このP値が−0.020(%)から0.030
(%)の範囲にあるのが本発明鋼の特徴である。
This equation (a) is obtained from many experimental results of the inventor, Represents a calculation formula for the amount of dissolved C. Hereinafter, the value calculated by this formula is referred to as the P value. This P value is -0.020 (%) to 0.030
It is a characteristic of the steel of the present invention that it is in the range of (%).

上記P値の式の第1項のCは、Cの含有量、第2項がTi
Cとして結合するC量の計算式、第3項がNbCとして結合
するC量の計算式を表す。従って、上の式で表されるP
値は、全C含有量から炭化物として結合するC量を引い
た固溶C量を表す指標である。
C in the first term of the above P value formula is the content of C, and the second term is Ti.
The formula for the amount of C bound as C, and the third term for the formula for the amount of C bound as NbC. Therefore, P expressed by the above equation
The value is an index showing the amount of solid solution C obtained by subtracting the amount of C bound as a carbide from the total C content.

後の実施例にも示すとおり、この固溶C量を適正範囲に
することによってはじめて優れた靱性と十分な耐食性を
備えたクロマイジング用耐熱鋼となる。上式のP値が−
0.020(%)よりさらに小さくなる場合、即ち、C、N
に対して、Ti、Nbを多量添加したいわゆる安定化型フェ
ライト鋼では、組織がフェライト単相になり、クロマイ
ジング処理中に著しく結晶粒成長を起こし靱性が劣化す
る。
As will be shown in later Examples, the heat resistant steel for chromizing having excellent toughness and sufficient corrosion resistance can be obtained only by setting the amount of solute C in an appropriate range. If the P value in the above equation is −
When it is smaller than 0.020 (%), that is, C, N
On the other hand, in a so-called stabilized ferritic steel to which a large amount of Ti and Nb are added, the structure becomes a ferrite single phase, and crystal grain growth remarkably occurs during the chromizing treatment to deteriorate the toughness.

一方、P値が0.030(%)を超える場合、すなわちC、
Nに対し十分にNb、Tiで安定化されていないときは、ク
ロマイジング処理中にCr拡散層の粒界に多量のCr炭化物
が析出し、Cr欠乏層ができて耐食性を著しく劣化させ
る。
On the other hand, when the P value exceeds 0.030 (%), that is, C,
When not sufficiently stabilized with Nb and Ti with respect to N, a large amount of Cr carbide is precipitated at the grain boundaries of the Cr diffusion layer during the chromizing treatment, and a Cr deficient layer is formed, which significantly deteriorates the corrosion resistance.

本発明鋼の熱処理条件は、特に限定されるものではない
が、通常950〜1050℃での焼ならしと720〜800℃での焼
もどし処理、または950〜1050℃での加熱および徐冷に
よる焼なまし、もしくは950〜1050℃での加熱後の冷却
途中に720〜750℃で保持する等温焼なまし処理、が適用
できる。また、熱処理を省略するか、あるいは650〜850
℃程度での残留ひずみ除去焼鈍だけにとどめてクロマイ
ジング処理に供してもかまわない。
The heat treatment conditions for the steel of the present invention are not particularly limited, but usually by normalizing at 950 to 1050 ° C and tempering at 720 to 800 ° C, or by heating at 950 to 1050 ° C and slow cooling. Annealing or isothermal annealing treatment of holding at 720 to 750 ° C during cooling after heating at 950 to 1050 ° C can be applied. Also, omit heat treatment or 650-850
The residual strain removal annealing at about ℃ may be used for chromizing treatment.

クロマイジング処理は、通常1000〜1200℃で1時間以上
行い、数10μm以上のCr拡散層を得る。好ましい条件は
1100℃で10時間程度である。
The chromizing treatment is usually performed at 1000 to 1200 ° C. for 1 hour or more to obtain a Cr diffusion layer having a thickness of several tens of μm or more. Preferred conditions
It is about 10 hours at 1100 ℃.

後熱処理は、上記の焼ならし+焼もどし、焼なまし、等
温焼なまし、残留ひずみ除去焼鈍のいずれでもかまわな
いが、クロマイジング層を安定に保つため、750〜850℃
での軟化処理が好ましい。
The post heat treatment may be any of the above normalization + tempering, annealing, isothermal annealing, and residual strain removal annealing, but 750 to 850 ° C to keep the chromizing layer stable.
The softening treatment is preferable.

(実施例) 第1表に示す化学組成の鋼を各50kg真空溶解炉で溶解
し、インゴットを1150〜950℃で鍛造して厚さ15mmの板
とした。A鋼〜S鋼は本発明鋼である。T鋼、U鋼は従
来の2・1/4Cr−1Mo鋼(STBA24)に少量のNb、Tiを添加
した比較鋼、Y鋼は同じくMo、W複合添加鋼に少量のN
b、Tiを添加した比較鋼、V鋼、W鋼は過剰のNb、Tiを
添加した比較鋼、そしてX鋼はP値は本発明の条件を満
たすがC量が低い比較鋼である。
(Example) Steels each having a chemical composition shown in Table 1 were melted in a 50 kg vacuum melting furnace, and ingots were forged at 1150 to 950 ° C to form a plate having a thickness of 15 mm. Steels A to S are steels of the present invention. T steel and U steel are comparative steels in which a small amount of Nb and Ti are added to the conventional 2.1 / 4Cr-1Mo steel (STBA24), and Y steel is a small amount of N in the same Mo and W additive steel.
Comparative steels containing b and Ti, V steels and W steels are comparative steels containing excess Nb and Ti, and X steels are comparative steels having a P value satisfying the conditions of the present invention but having a low C content.

熱処理は省略して、後に示す寸法の各腐食試験片と機械
的試験用試験片を切出し、クロマイジング処理に供し
た。処理は通常用いられている粉末パック法で、鋼製容
器にクロム粉末(粒径8〜32メッシュ)Al2O3およびNH4
Clを配合し、その中に前記各試験片を埋め込み、H2ガス
を通気しながら1100℃で10時間の拡散処理を行った。こ
れにより100μm程度のCr拡散層が得られた。後熱処理
は、800℃×10分の軟化処理とした。
The heat treatment was omitted, and each corrosion test piece and the mechanical test piece having the dimensions described later were cut out and subjected to chromizing treatment. The treatment is a powder pack method which is usually used, and chromium powder (particle size 8 to 32 mesh) Al 2 O 3 and NH 4 is put in a steel container.
Cl was blended, each of the test pieces was embedded in the mixture, and diffusion treatment was performed at 1100 ° C. for 10 hours while passing H 2 gas. As a result, a Cr diffusion layer having a thickness of about 100 μm was obtained. The post heat treatment was a softening treatment at 800 ° C. for 10 minutes.

機械的試験および高温腐食試験の条件を次に示す。The conditions of the mechanical test and the high temperature corrosion test are shown below.

(1)シャルピー衝撃試験 試験片:10×10×l55(mm)、2mmVノッチ(JIS4号) 試験温度:0℃ (2)常温引張試験 試験片:φ6×GL30(mm) 試験温度:常温 (3)塩水噴霧腐食試験(JIS Z2371) 試験片:φ10×l50(mm) 条件:5%NaCl(35℃)で24時間 (4)塩化第二鉄溶液腐食試験 試験片:30×30×t3mm 溶液:FeCl3・6H2O(50g/l)+1/20HCl 条件:35℃、50℃、65℃の各温度で24時間 (5)硫酸浸漬腐食試験 試験片:30×30×t3(mm) 条件:0.1%、1%、5%の各濃度のH2SO4(40℃)で24
時間 (6)塩酸浸漬腐食試験 試験片:30×30×t3(mm) 条件:1%、5%の各濃度のHCl(60℃)で24時間 (7)高温腐食試験 試験片:30×30×3t(mm) ガス組成:30vol.%H2−44vol.%CO−10vol.%CO2−14vo
l.%H2O−0.6vol.%H2S−0.2vol.%HCl−1.2vol.%N2 条件:600℃×100時間 第2表に常温引張性質と0℃でのシャルピー衝撃値を示
す。本発明鋼はいずれも引張強さ42kgf/mm2以上、耐力2
1kgf/mm2以上、0℃衝撃値10kgf−m/cm2以上と良好であ
る。
(1) Charpy impact test Specimen: 10 × 10 × l55 (mm), 2mmV notch (JIS4) Test temperature: 0 ℃ (2) Normal temperature tensile test Specimen: φ6 × GL30 (mm) Test temperature: Normal temperature (3 ) Salt spray corrosion test (JIS Z2371) Specimen: φ10 × l50 (mm) Conditions: 5% NaCl (35 ° C) for 24 hours (4) Ferric chloride solution corrosion test Specimen: 30 × 30 × t3mm Solution: FeCl 3 · 6H 2 O (50g / l) + 1 / 20HCl Conditions: 35 ° C, 50 ° C, 65 ° C for 24 hours (5) Sulfuric acid immersion corrosion test specimen: 30 × 30 × t3 (mm) Conditions: 24 with 0.1%, 1%, and 5% H 2 SO 4 (40 ℃)
Time (6) Hydrochloric acid immersion corrosion test specimen: 30 × 30 × t3 (mm) Condition: 1%, 5% HCl (60 ℃) for 24 hours (7) High temperature corrosion test specimen: 30 × 30 × 3t (mm) Gas composition: 30vol.% H 2 −44vol.% CO−10vol.% CO 2 −14vo
l.% H 2 O-0.6vol.% H 2 S-0.2vol.% HCl-1.2vol.% N 2 condition: 600 ℃ × 100 hours Table 2 shows the tensile properties at room temperature and the Charpy impact value at 0 ℃. Show. Each of the steels of the present invention has a tensile strength of 42 kgf / mm 2 or more and a proof stress of 2
Good at 1 kgf / mm 2 or more and 0 ° C impact value of 10 kgf-m / cm 2 or more.

一方、比較鋼では、過剰のNb、Tiを添加し、フェライト
単相となったV鋼、W鋼、Z鋼の強度、靱性が低い。ま
た、C量の低いX鋼も同じく組織がフェライト単相化
し、強度、靱性が低い。これらはいずれも使用に適さな
い。
On the other hand, in the comparative steel, the strength and toughness of the V steel, the W steel, and the Z steel, which have become ferrite single-phase by adding excessive amounts of Nb and Ti, are low. Further, X steel having a low C content also has a single-phase ferrite structure, and has low strength and toughness. None of these are suitable for use.

第1図は、第1表の0℃衝撃値とP値との関係を示した
ものである。この図からわかるようにP値が−0.030
(%)以上であれば、10kgf−m/cm2以上の良好な靱性が
得られている。
FIG. 1 shows the relationship between the 0 ° C. impact value and P value in Table 1. As can be seen from this figure, the P value is -0.030.
If it is (%) or more, good toughness of 10 kgf-m / cm 2 or more is obtained.

これはクロマイジング処理中に組織がα+γの2相とな
り、著しい結晶粒の粗大化が防止された結果である。
This is a result of the structure becoming two phases of α + γ during the chromizing treatment, and the remarkable coarsening of crystal grains was prevented.

次に各種腐食試験結果を第3表に、およびその腐食試験
結果をP値との関係でグラフに表したものを第2図から
第5図に示す。第2図は、塩化第二鉄試験による結果を
グラフにしたものであり、第3図は硫酸浸漬試験による
結果をグラフにしたものであり、第4図は塩酸浸漬試験
による結果をグラフにしたものであり、第5図は高温腐
食試験による結果をグラフにしたものである。
Next, various corrosion test results are shown in Table 3, and graphs showing the corrosion test results in relation to the P value are shown in FIGS. 2 to 5. FIG. 2 is a graph of the results of the ferric chloride test, FIG. 3 is a graph of the results of the sulfuric acid immersion test, and FIG. 4 is a graph of the results of the hydrochloric acid immersion test. FIG. 5 is a graph showing the results of the high temperature corrosion test.

これらの表および図に明らかなように、どの腐食試験で
もP値が0.030(%)を超えると腐食による減量、浸食
深さは大きくなり、耐食性が劣化している。Nb、Ti含有
量の少ないT鋼、U鋼、およびY鋼について詳しく調査
した結果、Cr拡散層にCr炭化物が多量に生成し、且つCr
欠乏層ができて耐食性を劣化させていることがわかっ
た。
As is clear from these tables and figures, in any corrosion test, when the P value exceeds 0.030 (%), the weight loss due to corrosion and the erosion depth increase and the corrosion resistance deteriorates. As a result of detailed investigation of T steel, U steel, and Y steel with low Nb and Ti contents, a large amount of Cr carbide was generated in the Cr diffusion layer and
It was found that a deficient layer was formed and the corrosion resistance was deteriorated.

本発明鋼では、このような耐食性劣化原因となるCr炭化
物生成がきわめて少なく、且つCr欠乏層がない。これ
が、本発明鋼が優れた耐食性を示す主たる理由である。
In the steel of the present invention, the generation of Cr carbide that causes such deterioration of corrosion resistance is extremely small, and there is no Cr-deficient layer. This is the main reason why the steel of the present invention exhibits excellent corrosion resistance.

これらの試験結果から、P値は−0.020(%)から0.030
(%)の範囲にあることが必要であり、それによって強
度、靱性に優れ、且つ耐食性のよいクロマイジング用鋼
が得られることが明らかになった。
From these test results, the P value is -0.020 (%) to 0.030.
It is necessary to be in the range of (%), and it has been revealed that a chromizing steel having excellent strength and toughness and good corrosion resistance can be obtained.

(発明の効果) 本発明により、クロマイジング処理用の低Cr鋼として靱
性に優れ、且つ耐食性に優れた新しい材料を提供でき
る。
(Effects of the Invention) According to the present invention, a new material having excellent toughness and corrosion resistance can be provided as a low Cr steel for chromizing treatment.

本発明鋼はボイラ、化学工業、原子力用などの腐食の厳
しいところで使用されるクロマイジング用材料として産
業上、極めて有用なものである。
INDUSTRIAL APPLICABILITY The steel of the present invention is industrially extremely useful as a chromizing material used in places where corrosion is severe, such as in boilers, chemical industries, and nuclear power.

【図面の簡単な説明】[Brief description of drawings]

第1図は、固溶C量を示す実験式の値(P値)と0℃シ
ャルピー衝撃値との関係を示す図、 第2図は、同じくP値と塩化第二鉄腐食試験による腐食
減量との関係を示す図、 第3図は、同じくP値と硫酸浸漬腐食試験による腐食減
量との関係を示す図、 第4図は、同じくP値と塩酸浸漬腐食試験による腐食減
量との関係を示す図、 第5図は、同じくP値と高温腐食試験による内部浸食深
さとの関係を示す図、である。
FIG. 1 is a diagram showing the relationship between the value (P value) of the empirical formula indicating the amount of solid solution C and the 0 ° C. Charpy impact value. FIG. 2 is the same P value and the corrosion weight loss by the ferric chloride corrosion test. FIG. 3 is a diagram showing the relationship between the P value and the corrosion weight loss by the sulfuric acid immersion corrosion test, and FIG. 4 is a diagram showing the relationship between the P value and the corrosion weight loss by the hydrochloric acid immersion corrosion test. FIG. 5 is a diagram showing the relationship between the P value and the internal erosion depth in the high temperature corrosion test.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】重量%で、C:0.02〜0.15%、Si:0.7%以
下、P:0.025%以下、S:0.015%以下、Mn:0.1〜1.5%、N
i:0.8%以下、Cr:1.5〜3.5%、Mo:0.01〜2.2%、W:0.01
〜3.0%、Ti:0.005〜0.6%、Nb:0.005〜0.9%、N:0.001
〜0.05%、Al:0.001〜0.05%を含有し、さらに上記Nb、
Ti、NおよびCの含有量が下記の(a)式を満足し、残
部がFeおよび不可避不純物から成る靱性に優れたクロマ
イジング用低Cr系耐熱鋼。 但し、(a)式中の元素記号はその元素の含有量(重量
%)を意味する。
1. By weight%, C: 0.02 to 0.15%, Si: 0.7% or less, P: 0.025% or less, S: 0.015% or less, Mn: 0.1 to 1.5%, N
i: 0.8% or less, Cr: 1.5 to 3.5%, Mo: 0.01 to 2.2%, W: 0.01
~ 3.0%, Ti: 0.005-0.6%, Nb: 0.005-0.9%, N: 0.001
~ 0.05%, Al: 0.001-0.05%, further Nb,
A low Cr heat-resistant steel for chromizing which has excellent toughness and whose contents of Ti, N and C satisfy the following formula (a) and whose balance is Fe and unavoidable impurities. However, the element symbol in the formula (a) means the content (% by weight) of the element.
【請求項2】更に、V:0.01〜0.3重量%を含有する請求
項(1)に記載の低Cr系耐熱鋼。
2. The low Cr heat-resistant steel according to claim 1, further comprising V: 0.01 to 0.3% by weight.
【請求項3】更に、B:0.0001〜0.02重量%を含有する請
求項(1)または(2)に記載の低Cr系耐熱鋼。
3. The low Cr heat-resistant steel according to claim 1, further comprising B: 0.0001 to 0.02% by weight.
【請求項4】更に、それぞれ0.01〜0.2重量%のCu、L
a、Ce、Y、Ca、Zr、およびTaのうちの1種以上を含有
する請求項(1)、(2)または(3)に記載の低Cr系
耐熱鋼。
4. Further, 0.01 to 0.2% by weight of Cu and L, respectively.
The low Cr heat-resisting steel according to claim (1), (2) or (3), containing at least one of a, Ce, Y, Ca, Zr and Ta.
JP762690A 1990-01-17 1990-01-17 Low Cr heat resistant steel with excellent toughness for chromizing Expired - Lifetime JPH0696752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP762690A JPH0696752B2 (en) 1990-01-17 1990-01-17 Low Cr heat resistant steel with excellent toughness for chromizing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP762690A JPH0696752B2 (en) 1990-01-17 1990-01-17 Low Cr heat resistant steel with excellent toughness for chromizing

Publications (2)

Publication Number Publication Date
JPH03211254A JPH03211254A (en) 1991-09-17
JPH0696752B2 true JPH0696752B2 (en) 1994-11-30

Family

ID=11671032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP762690A Expired - Lifetime JPH0696752B2 (en) 1990-01-17 1990-01-17 Low Cr heat resistant steel with excellent toughness for chromizing

Country Status (1)

Country Link
JP (1) JPH0696752B2 (en)

Also Published As

Publication number Publication date
JPH03211254A (en) 1991-09-17

Similar Documents

Publication Publication Date Title
Gunn Duplex stainless steels: microstructure, properties and applications
EP2246454B1 (en) Carburization-resistant metal material
JP4803174B2 (en) Austenitic stainless steel
JP3315702B2 (en) Method for producing ferritic iron-based alloy and heat-resistant ferritic steel
CA2830155C (en) Carburization resistant metal material
JP3334217B2 (en) Low Cr ferritic heat resistant steel with excellent toughness and creep strength
US20080279716A1 (en) Metal material having excellent metal dusting resistance
JPH0621323B2 (en) High strength and high chrome steel with excellent corrosion resistance and oxidation resistance
WO2003004714A1 (en) Ferritic stainless steel for member of exhaust gas flow passage
JP5838933B2 (en) Austenitic heat resistant steel
US5591391A (en) High chromium ferritic heat-resistant steel
JP6753136B2 (en) Austenitic heat-resistant steel weld metal and welded joints with it
JP5846076B2 (en) Austenitic heat-resistant alloy
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP2000248337A (en) Method for improving water vapor oxidation resistance of high chromium ferritic heat resistant steel for boiler and high chromium ferritic heat resistant steel for boiler excellent in water vapor oxidation resistance
JPH062927B2 (en) High strength low alloy steel with excellent corrosion resistance and oxidation resistance
JPH0517850A (en) High chromium ferrite-based heat resistant steel excellent in copper checking resistance
WO1994026947A1 (en) High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance
JPH07278759A (en) Austenitic heat resistant cast steel, excellent in strength at high temperature and machinability, and exhaust system parts made thereof
JP3531228B2 (en) High Cr ferritic heat resistant steel
JP3355711B2 (en) High Cr ferritic heat resistant steel with excellent high temperature strength and toughness
JP5417764B2 (en) Ferritic stainless steel with excellent thermal fatigue properties and oxidation resistance
JP3387145B2 (en) High Cr ferritic steel with excellent high temperature ductility and high temperature strength
JPH0696752B2 (en) Low Cr heat resistant steel with excellent toughness for chromizing
JPH06228713A (en) Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same