JPH0696626A - Ac superconductive wire and manufacture thereof - Google Patents

Ac superconductive wire and manufacture thereof

Info

Publication number
JPH0696626A
JPH0696626A JP4038161A JP3816192A JPH0696626A JP H0696626 A JPH0696626 A JP H0696626A JP 4038161 A JP4038161 A JP 4038161A JP 3816192 A JP3816192 A JP 3816192A JP H0696626 A JPH0696626 A JP H0696626A
Authority
JP
Japan
Prior art keywords
alloy
magnetic element
superconducting
wire
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4038161A
Other languages
Japanese (ja)
Other versions
JP3272017B2 (en
Inventor
Masayoshi Tange
雅善 丹下
Norihei Murakami
徳平 村上
Takashi Saito
隆 斎藤
Tsukasa Kono
宰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP03816192A priority Critical patent/JP3272017B2/en
Publication of JPH0696626A publication Critical patent/JPH0696626A/en
Application granted granted Critical
Publication of JP3272017B2 publication Critical patent/JP3272017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide an AC superconductive wire having a high current density and a low loss by forming a magnetic element containing coating layer of high concentration around superconductive filaments inside a metal base, and coating it with metal having a high electric resistance. CONSTITUTION:A Cu alloy layer 11 made of a Cu-Ni alloy foil including 10% or more of a magnetic element such as Mn, Fe, and Co is formed around a rod-like core material 10 made of an Nb-Ti alloy, and is covered with a high electric resistant alloy tube 12 made of a Cu-Ni alloy or the like, not including a magnetic element, followed by reducing a diameter as a whole, thus obtaining a composite wire 13. In this case, the total magnetic element content of the alloy layer 11 and the alloy tube 12 is set to 3% or less. A plurality of composite wires 13 are contained together in a Cu-Ni alloy tube 14 having a high electric resistance, followed by repeatedly reducing a diameter. Consequently, it is possible to manufacture an AC superconductive wire A provided with such structure that numerous fine superconductive filaments are dispersed and arranged in a metal base made of a Cu-Ni alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は高電流密度かつ低損失の交流用超
電導線およびその製造方法に関するものである。
The present invention relates to an AC superconducting wire having a high current density and a low loss, and a method for manufacturing the same.

【産業上の利用分野】[Industrial applications]

【0002】[0002]

【従来の技術】従来、核融合炉用トロイダルマグネッ
ト、粒子加速機用マグネット、超電導発電機用マグネッ
ト等に利用される交流用超電導線が知られている。ま
た、この種の交流用超電導線として、Cu合金からなる
金属基地の内部に無数の極細の超電導フィラメントを分
散配列させた構造のものが知られている。
2. Description of the Related Art Conventionally, AC superconducting wires used for toroidal magnets for nuclear fusion reactors, magnets for particle accelerators, magnets for superconducting generators, etc. have been known. Further, as this type of AC superconducting wire, one having a structure in which a myriad of ultrafine superconducting filaments are dispersed and arranged inside a metal base made of a Cu alloy is known.

【0003】この超電導フィラメントを有する交流用超
電導線を製造するには、図3(a)に示すようなNb−
Tiロッドからなる芯材1にCuあるいはCu合金から
なる管体2を被せて形成した複合体を複数本集合し、こ
れらをCu合金の管体3に挿入して縮径し、図3(b)
に示す1次素線4を作成する。次にこの1次素線4を複
数本集合して図3(c)に示すCu合金の管体5に挿入
して縮径し、図3(d)に示す2次素線6を作成し、こ
の2次素線6に、必要に応じて歪取りの熱処理や電気絶
縁処理を施して図3(e)に示す交流用超電導線7を得
ることができる。なお、前記2次素線6を必要に応じて
撚り線加工することもある。前記の如く製造された交流
用超電導線7にあっては、Cu合金の金属基地の内部に
直径0.1〜1μm程度の極細フィラメントが分散配列
された構造になっている。
In order to manufacture an AC superconducting wire having this superconducting filament, Nb- as shown in FIG.
A plurality of composite bodies formed by covering a core material 1 made of a Ti rod with a tube body 2 made of Cu or a Cu alloy are inserted into a tube body 3 made of a Cu alloy to reduce the diameter. )
The primary strand 4 shown in is created. Next, a plurality of the primary strands 4 are assembled and inserted into a Cu alloy tube body 5 shown in FIG. 3C to reduce the diameter, and a secondary strand 6 shown in FIG. 3D is created. The secondary strands 6 can be subjected to heat treatment for strain relief or electrical insulation treatment, if necessary, to obtain the superconducting wire 7 for AC shown in FIG. 3 (e). The secondary wire 6 may be twisted if necessary. The alternating-current superconducting wire 7 manufactured as described above has a structure in which ultrafine filaments having a diameter of about 0.1 to 1 μm are dispersed and arranged inside a metal matrix of Cu alloy.

【0004】[0004]

【発明が解決しようとする課題】前記の如く製造された
交流用超電導体7において、交流損失は、超電導フィラ
メントの大きさに関係しており、損失を低減するために
は、できる限り超電導フィラメントの径を小さくするこ
とが必要である。
In the superconductor 7 for alternating current manufactured as described above, the AC loss is related to the size of the superconducting filament, and in order to reduce the loss, the loss of the superconducting filament should be as small as possible. It is necessary to reduce the diameter.

【0005】ところが、超電導フィラメントの径を小さ
くすると、超電導フィラメントどうしの間隔も小さくな
るので、交流通電時に極細の超電導フィラメントどうし
が電磁気的な結合状態となり、超電導近接効果が生じ易
い傾向がある。即ち、超電導電子の電子ペアが周囲の金
属基地側にしみ出し、隣接する超電導フィラメントの間
で結合するために交流電通時の履歴損失が増大し、超電
導フィラメントを小さくした効果がなくなってしまう問
題がある。また、結合損失が生じないように極細の超電
導フィラメントの間隔を十分に大きくして交流用超電導
線を製造すると、超電導線1本の断面あたりに流し得る
電流が小さくなってしまう問題がある。
However, when the diameter of the superconducting filaments is reduced, the interval between the superconducting filaments is also reduced. Therefore, when alternating current is applied, the superfine superconducting filaments are electromagnetically coupled to each other, and the superconducting proximity effect tends to occur. That is, the electron pair of the superconducting conductor seeps out to the surrounding metal base side, the hysteresis loss at the time of alternating current conduction increases due to the coupling between the adjacent superconducting filaments, and there is a problem that the effect of reducing the superconducting filament disappears. is there. Further, when the superconducting wire for alternating current is manufactured by sufficiently widening the interval between the superfine superconducting filaments so as not to cause the coupling loss, there is a problem that the electric current that can flow per section of one superconducting wire becomes small.

【0006】そこで従来から、超電導フィラメントの周
囲の金属基地をCu−Ni合金などの高電気抵抗合金か
ら形成したり、金属基地にMnなどの磁性元素を添加
し、超電導フィラメント間に生じようとする近接効果を
抑制しようとする試みがなされている。しかしながら、
Mnなどの磁性元素を金属基地に含有された場合、磁性
元素そのものを含有させることが交流用超電導線の損失
を増大させることになるために、磁性元素の添加量を5
%程度以下に止めておく傾向がある。ところが、磁性元
素の添加量をこの程度の値とするのでは、超電導線の使
用時に大きな電流密度が得られにくい問題があった。
Therefore, conventionally, the metal matrix around the superconducting filaments is formed of a high electrical resistance alloy such as a Cu-Ni alloy, or a magnetic element such as Mn is added to the metal matrix so that the metal matrix tends to be generated between the superconducting filaments. Attempts have been made to suppress the proximity effect. However,
When a magnetic element such as Mn is contained in the metal matrix, the addition of the magnetic element itself increases the loss of the AC superconducting wire, so the addition amount of the magnetic element should be 5
There is a tendency to keep it below about%. However, if the amount of addition of the magnetic element is set to this value, there is a problem that it is difficult to obtain a large current density when the superconducting wire is used.

【0007】本発明は前記課題を解決するためになされ
たもので、磁性元素の添加することで交流通電時の結合
損失を少なくし、しかも、磁性元素の添加による損失を
も少なくすることで、交流用として優れた特性を備えた
超電導線およびその製造方法を提供することを目的とす
る。
The present invention has been made in order to solve the above-mentioned problems. By adding a magnetic element, the coupling loss at the time of alternating current is reduced, and the loss due to the addition of the magnetic element is also reduced. It is an object of the present invention to provide a superconducting wire having excellent characteristics for alternating current and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、導電性の金属基地の内部に極
細の超電導フィラメントが多数分散されてなる交流用超
電導線において、金属基地内の各超電導フィラメントの
周囲に高濃度の磁性元素を含有する被覆層を形成し、こ
の被覆層の周囲を高電気抵抗の金属基地が覆ってなるも
のである。
In order to solve the above-mentioned problems, the present invention provides an AC superconducting wire in which a large number of superfine superconducting filaments are dispersed in a conductive metal base. A coating layer containing a high concentration of a magnetic element is formed around each of the superconducting filaments, and a metal base having high electrical resistance covers the coating layer.

【0009】請求項2記載の発明は前記課題を解決する
ために、請求項1記載の交流用超電導線を製造する方法
において、Nb−Ti合金からなるロッド状の芯材に1
0%以上の高濃度の磁性元素を含有する高電気抵抗のC
u合金層を被覆して複合線を形成し、この複合線を複数
本集合した後に磁性元素を含有しない高電気抵抗のCu
合金管に挿入し縮径加工するものである。
In order to solve the above-mentioned problems, a second aspect of the present invention provides a method for producing an alternating-current superconducting wire according to the first aspect, in which a rod-shaped core material made of an Nb-Ti alloy is used.
High electrical resistance C containing high concentration of magnetic element of 0% or more
After forming a composite wire by covering the u alloy layer and assembling a plurality of the composite wires, Cu having a high electric resistance containing no magnetic element is formed.
It is inserted into an alloy pipe and reduced in diameter.

【0010】[0010]

【作用】極細の超電導フィラメントが分散配列された金
属基地内に、磁性元素を含有する被覆層が含まれている
ので、クーパー電子ペアが超電導フィラメントから常電
導金属基地側にしみ出した場合に、磁性元素のもつ磁性
モーメントによってペアがこわされ、交流通電時に超電
導フィラメントの間の金属基地に流れようとする近接効
果が抑制され、交流損失が減少する。また、高濃度の磁
性元素の被覆層が各超電導フィラメントの周囲を覆って
いるので、前記電子ペアをこわす作用が強い。更に、被
覆層を除く金属基地の部分は磁性元素を含んでいないの
で、超電導線の全体からみれば磁性元素の含有量は少な
く、磁性元素添加による損失増加にはならない。
[Function] Since the coating layer containing the magnetic element is contained in the metal matrix in which the superfine superconducting filaments are dispersed and arranged, when the Cooper electron pair exudes from the superconducting filament to the normal metal matrix side, The magnetic moment of the magnetic element breaks the pair, and the proximity effect that tends to flow to the metal matrix between the superconducting filaments when alternating current is applied is suppressed, and the alternating current loss is reduced. Further, since the coating layer of high-concentration magnetic element covers the periphery of each superconducting filament, the action of breaking the electron pair is strong. Furthermore, since the portion of the metal matrix excluding the coating layer does not contain a magnetic element, the content of the magnetic element is small when viewed from the whole of the superconducting wire, and the loss does not increase due to the addition of the magnetic element.

【0011】一方、本発明方法によれば、超電導フィラ
メントの周囲に高濃度の磁性元素を含有させた被覆層を
備え、その周囲を高電気抵抗の金属基地で覆った構造の
交流用超電導線を製造することができる。また、芯材の
周囲に形成するCu合金層における磁性元素の含有量を
調節することで、超電導フィラメントの周囲に含有させ
る磁性元素の濃度が調節される。
On the other hand, according to the method of the present invention, an AC superconducting wire having a structure in which a coating layer containing a high concentration of a magnetic element is provided around the superconducting filament, and the periphery thereof is covered with a metal base having a high electric resistance. It can be manufactured. Further, by adjusting the content of the magnetic element in the Cu alloy layer formed around the core material, the concentration of the magnetic element contained around the superconducting filament is adjusted.

【0012】[0012]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。第1図(a)〜(d)は、本発明に係る方
法をNb−Ti系の交流用超電導線に適用した一実施例
を示すもので、この例の方法を実施して図1(d)に示
す交流用超電導線Aを製造するには、図1(a)に示す
Nb−Ti合金からなるロッド状の芯材10の外周に、
Mnなどの磁性元素を添加したCu−Ni合金からなる
箔を被せてCu-Ni合金からなるCu合金層11を形
成し、更にその外側に磁性元素を含まないCu−Ni合
金などの高電気抵抗合金からなるCu合金管12を被
せ、全体を縮径して図3に示す複合線13を作成する。
Embodiments of the present invention will be described below with reference to the drawings. FIGS. 1 (a) to 1 (d) show an embodiment in which the method according to the present invention is applied to an Nb-Ti-based superconducting wire for alternating current. In order to manufacture the superconducting wire A for AC shown in FIG. 1), the outer periphery of the rod-shaped core material 10 made of the Nb-Ti alloy shown in FIG.
A Cu alloy layer 11 made of a Cu-Ni alloy is formed by covering a foil made of a Cu-Ni alloy to which a magnetic element such as Mn is added, and a high electric resistance of a Cu-Ni alloy or the like which does not contain a magnetic element outside the Cu alloy layer 11. A Cu alloy tube 12 made of an alloy is covered and the entire diameter is reduced to form a composite wire 13 shown in FIG.

【0013】ここで前記のCu合金層11は、Mn,F
e,Co,Ni,Rh,Pd,Ce,Pr,Nd,Sm,Eu,G
d,Tb,Dy,Ho,Er,Tmなどの磁性元素の1種また
は2種以上を高電気抵抗合金のCu−Ni合金に所定量
添加してなるものである。また、Cu合金層11を形成
するには、前述のように箔を巻き付けても良いし、管体
を芯材10に被せても良いし、芯材10にメッキ層を被
覆しても良い。前記Cu合金層11における磁性元素の
含有量は、10%以上であることが好ましく、10%以
下であると近接効果抑制作用が低くなる。また、Mnの
場合はCuとの固溶限界の関係で任意の添加量で良い
が、他の元素はCuとの固溶限界によってそれぞれ異な
る含有量とする。ただし、Cu合金層11とCu合金管
12を含めて考えた場合、それら全体に含まれる磁性元
素量を3%以下にすることが好ましい。これらの磁性元
素の含有量が3%を越えるようであると、超電導線全体
の損失が増大して超電導特性に悪影響を与える。
Here, the Cu alloy layer 11 is formed of Mn, F
e, Co, Ni, Rh, Pd, Ce, Pr, Nd, Sm, Eu, G
One or more magnetic elements such as d, Tb, Dy, Ho, Er and Tm are added in a predetermined amount to a Cu-Ni alloy which is a high electric resistance alloy. Further, in order to form the Cu alloy layer 11, the foil may be wound as described above, the tubular body may be covered with the core material 10, or the core material 10 may be coated with a plating layer. The content of the magnetic element in the Cu alloy layer 11 is preferably 10% or more, and when the content is 10% or less, the proximity effect suppressing action becomes low. Further, in the case of Mn, the addition amount may be arbitrary depending on the solid solution limit with Cu, but other elements have different contents depending on the solid solution limit with Cu. However, when considering the Cu alloy layer 11 and the Cu alloy tube 12, it is preferable that the amount of magnetic elements contained in the whole is 3% or less. If the content of these magnetic elements exceeds 3%, the loss of the entire superconducting wire is increased and the superconducting characteristics are adversely affected.

【0014】次に前記複合線13を複数本、図1(c)
に示すように集合した後に、Cu−Ni合金などからな
る高電気抵抗の合金からなるCu合金管14に収納して
縮径する加工を1回または複数回行って図1(d)に示
すように、Cu−Ni合金からなる金属基地内に極細の
多数の超電導フィラメントが分散配列された構成の交流
用超電導線Aを得ることができる。なお、前記超電導線
Aには、歪除去などの目的のために必要に応じて熱処理
を施した後、電気絶縁層を形成して使用に供する。な
お、電気絶縁処理の前に必要に応じて撚り線加工を施し
ても良い。
Next, a plurality of the composite wires 13 shown in FIG.
As shown in FIG. 1D, after being assembled as shown in FIG. 1, the Cu alloy tube 14 made of a Cu-Ni alloy or the like having a high electrical resistance is housed in the Cu alloy tube 14 and the diameter is reduced once or plural times. In addition, it is possible to obtain an AC superconducting wire A having a structure in which a large number of ultrafine superconducting filaments are dispersed and arranged in a metal matrix made of a Cu-Ni alloy. The superconducting wire A is subjected to heat treatment as necessary for the purpose of strain removal and the like, and then an electric insulating layer is formed for use. If necessary, twisted wire processing may be performed before the electrical insulation treatment.

【0015】前記交流用超電導線Aの内部構造は図2に
示す構造となっている。即ち、直径0.1μm〜1μm
程度に極細化されたNb−Ti合金から無数の超電導フ
ィラメント15と、各超電導フィラメント15の周囲を
覆う被覆層16と、各被覆層16の周囲を覆うCu−N
i合金の高電気抵抗の金属基地17から超電導線Aが構
成されている。前記超電導フィラメント15は芯材10
を加工して形成されたものであり、被覆層16は合金層
11を加工して形成されたものであり、金属基地17は
Cu合金管12、14を加工して形成されたものであ
る。
The internal structure of the AC superconducting wire A is as shown in FIG. That is, the diameter is 0.1 μm to 1 μm
Innumerable superconducting filaments 15 made of Nb-Ti alloy extremely finely divided, a coating layer 16 covering the periphery of each superconducting filament 15, and Cu-N covering the periphery of each coating layer 16.
The superconducting wire A is composed of a metal base 17 having a high electric resistance of an i alloy. The superconducting filament 15 is a core material 10.
The coating layer 16 is formed by processing the alloy layer 11, and the metal matrix 17 is formed by processing the Cu alloy tubes 12 and 14.

【0016】前記超電導線Aは液体ヘリウムなどの冷媒
によって極低温に冷却して使用する。そして、交流通電
を行った場合、金属基地17内の超電導フィラメント1
5に近い部分に高濃度の磁性元素を含有する被覆層16
が配置されているので、超電導フィラメント15…間に
生じる履歴損失を低減させることができる。ここで超電
導線Aにおいて、交流通電時に超電導複フィラメント1
5…の間に履歴損失が生じるのは、交流用の超電導線A
にあっては、超電導フィラメント15を直径1〜0.1
μm程度まで極細化されており、このような極細径の超
電導フィラメント15からは、その周囲の金属基地17
側に超電導電子の電子ペアがしみ出し、隣接する超電導
フィラメント15、15の間で電子ペアの結合がなされ
ようとするためである。
The superconducting wire A is cooled to a cryogenic temperature with a coolant such as liquid helium before use. When alternating current is applied, the superconducting filament 1 in the metal matrix 17
Coating layer 16 containing a high concentration of a magnetic element in a portion close to 5
Are disposed, it is possible to reduce the hysteresis loss generated between the superconducting filaments 15 ... Here, in the superconducting wire A, the superconducting multifilament 1 when alternating current is applied
The hysteresis loss occurs between 5 ... The superconducting wire A for AC
Then, the superconducting filament 15 has a diameter of 1 to 0.1.
The superconducting filament 15 having such an ultra-fine diameter is extremely thinned down to about μm, and the metal matrix 17 around it is formed.
This is because the electron pair of the superconducting conductor oozes out to the side, and an attempt is made to couple the electron pair between the adjacent superconducting filaments 15, 15.

【0017】この点において前記構造の超電導線Aにあ
っては、超電導フィラメント15…の周囲の金属基地1
7内に、磁性を有する元素が含有されているとクーパー
電子のペアが磁性元素の磁性モーメントによりくずされ
て結合が生じにくくなり、交流損失が減少する。
In this respect, in the superconducting wire A having the above structure, the metal base 1 around the superconducting filaments 15 ...
If element 7 having magnetism is contained in 7, the Cooper electron pair is destroyed by the magnetic moment of the magnetic element, making it difficult for the coupling to occur and reducing the AC loss.

【0018】また、高濃度の磁性元素を含有する被複層
16が各超電導フィラメント15の周囲を直に覆ってい
るので、前記電子ペアのをこわす作用が強くなり、近接
効果を抑制する効果は十分に高くなる。また、金属基地
17の部分は、磁性元素を含んでいないので、超電導線
Aの全体からみれば磁性元素の量は少なく、磁性元素添
加による近接効果にはならない。従って、超電導線Aの
損失の増加を抑えつつ効率良く近接効果を抑制すること
ができる。なお、この近接効果の抑制効率は、芯材10
の周囲に形成する合金層11に含有させる磁性元素の濃
度を調整することにより自在に調整することができる。
Further, since the layer to be coated 16 containing a high concentration of magnetic element directly covers the periphery of each superconducting filament 15, the action of breaking the electron pair becomes strong and the effect of suppressing the proximity effect is exerted. High enough. Further, since the portion of the metal matrix 17 does not contain a magnetic element, the amount of the magnetic element is small when viewed from the entire superconducting wire A, and the proximity effect due to the addition of the magnetic element does not occur. Therefore, the proximity effect can be efficiently suppressed while suppressing an increase in the loss of the superconducting wire A. It should be noted that the efficiency of suppressing the proximity effect depends on the core material 10.
It can be freely adjusted by adjusting the concentration of the magnetic element contained in the alloy layer 11 formed around the.

【0019】[0019]

【製造例】直径15mmのNb−Tiロッドに厚さ40
μmのマンガニン箔(Cu-12%Mn-2%Ni)を巻
き付け、更に10重量%のNiを含む外径18mm、内
径16mmの管体に挿入して縮径加工を施し、直径0.
7mmの1次素線を得た。次にこの1次素線を283本
集合し、10重量%のNiを含む外径15mm、内径1
4mmの管体に挿入して縮径加工を行ない、直径0.1
mmの交流用超電導線を得た。
[Production Example] Nb-Ti rod with a diameter of 15 mm and a thickness of 40
A manganin foil (Cu-12% Mn-2% Ni) of μm was wrapped around it, and then it was inserted into a tube containing 10% by weight of Ni and having an outer diameter of 18 mm and an inner diameter of 16 mm to reduce the diameter.
A 7 mm primary strand was obtained. Next, 283 of these primary strands were assembled and contained 10% by weight of Ni and had an outer diameter of 15 mm and an inner diameter of 1
Inserted into a 4 mm tube and reduced in diameter to a diameter of 0.1
A mm superconducting wire for alternating current was obtained.

【0020】以上説明した如く製造されたNb−Ti系
交流用超電導線に交流通電を行なってその臨界温度(T
c)を測定したところ、Tc=8.5Kを示し、臨界電
流密度(Jc)を0.5Tの磁場中において測定したと
ころ、Jc=120000A/cm2の優秀な値を示し
た。
The Nb-Ti system superconducting wire for alternating current manufactured as described above is subjected to alternating current and its critical temperature (T
When c) was measured, Tc was 8.5 K, and when the critical current density (Jc) was measured in a magnetic field of 0.5 T, Jc was 120,000 A / cm 2, which was an excellent value.

【0021】これに対し、前記Mn箔の巻き付けを行な
わないで製造した交流用の超電導線の交流通電時の臨界
温度は、Tc=8.5Kを示し、臨界電流密度(Jc)
を0.5Tの磁場中に測定したところ、Jc=9600
0A/cm2の値を示した。この結果から、Mn箔を巻
き付けて製造された超電導線の特性が優秀であることが
明かになった。
On the other hand, the critical temperature of the superconducting wire for alternating current manufactured without winding the Mn foil is Tc = 8.5K and the critical current density (Jc).
Was measured in a magnetic field of 0.5T, Jc = 9600
The value was 0 A / cm 2 . From this result, it became clear that the characteristics of the superconducting wire produced by winding the Mn foil were excellent.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、超
電導フィラメントの周囲部分に磁性元素を含有させてい
るので、交流通電時に超電導フィラメントの周囲の金属
基地に超電導電子のペアのしみ出しが生じた場合であっ
ても、磁性元素の磁性によつて電子のペアをこわすこと
ができるので、交流通電時の近接効果を抑制することが
できる。従って交流電通時の損失が少ない、臨界電流密
度の高い交流用超電導線を得ることができる。
As described above, according to the present invention, since the magnetic element is contained in the peripheral portion of the superconducting filament, the exudation of the pair of superconducting conductors in the metal base around the superconducting filament during AC current application. Even if it occurs, since the pair of electrons can be broken by the magnetism of the magnetic element, it is possible to suppress the proximity effect during AC energization. Therefore, it is possible to obtain an AC superconducting wire having a high critical current density with a small loss during AC conduction.

【0023】更に、高濃度の磁性元素を含有する被覆層
で各超電導フィラメントの周囲を覆っているので、前記
電子ペアのをこわす作用が強くなり、近接効果を抑制す
る効果は十分に高くなる。また、被覆層を除く金属基地
の部分は磁性元素を含んでいないので、超電導線の全体
からみれば磁性元素の含有量は少なくなるので、磁性元
素の添加に起因する損失増加にはならない。従って、超
電導線の損失の増加を抑えつつ効率良く近接効果を抑制
することができ、優れた特性の交流用超電導線を提供す
ることができる。
Further, since the periphery of each superconducting filament is covered with the coating layer containing a high concentration of the magnetic element, the action of breaking the electron pair becomes strong, and the effect of suppressing the proximity effect becomes sufficiently high. In addition, since the portion of the metal matrix excluding the coating layer does not contain a magnetic element, the content of the magnetic element is small when viewed from the entire superconducting wire, so that the loss due to the addition of the magnetic element does not increase. Therefore, it is possible to efficiently suppress the proximity effect while suppressing an increase in loss of the superconducting wire, and to provide an AC superconducting wire having excellent characteristics.

【0024】一方、本発明方法によれば、超電導フィラ
メントの周囲に高濃度の磁性元素を含有させた被覆層を
備え、その周囲を高電気抵抗の金属基地で覆った構造の
交流用超電導線を製造することができる。また、芯材の
周囲に形成するCu合金層における磁性元素の含有量を
調節することで、超電導フィラメントの周囲に含有させ
る磁性元素の濃度を容易に調節することができる。そし
て、これにより近接効果の抑制効果を調節することがで
きる。
On the other hand, according to the method of the present invention, an alternating-current superconducting wire having a structure in which a coating layer containing a high concentration of a magnetic element is provided around the superconducting filament, and the periphery of the coating layer is covered with a metal base having a high electric resistance is provided. It can be manufactured. Further, by adjusting the content of the magnetic element in the Cu alloy layer formed around the core material, the concentration of the magnetic element contained around the superconducting filament can be easily adjusted. And thereby, the effect of suppressing the proximity effect can be adjusted.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は、芯材を合金層と合金管で覆った
状態を示す断面図、図1(b)は、1次複合線の断面
図、図1(c)は、1次複合線の集合状態を示す断面
図、図1(d)は、本発明に係る交流用超電導線の拡大
断面図である。
1A is a cross-sectional view showing a state in which a core material is covered with an alloy layer and an alloy pipe, FIG. 1B is a cross-sectional view of a primary composite wire, and FIG. FIG. 1D is an enlarged cross-sectional view of the alternating-current superconducting wire according to the present invention, showing a cross-sectional view showing the assembled state of the primary composite wire.

【図2】図2は図1(d)に示す交流用超電導線の拡大
断面図、
FIG. 2 is an enlarged cross-sectional view of the AC superconducting wire shown in FIG.

【図3】図3(a)は、従来の複合線の集合状態を示す
断面図、図3(b)は、1次複合線の断面図、図1
(c)は、従来の1次複合線の集合状態を示す断面図、
図1(d)は、従来の超電導線の拡大断面図である。
FIG. 3 (a) is a cross-sectional view showing a state in which a conventional composite wire is assembled, and FIG. 3 (b) is a cross-sectional view of a primary composite wire.
(C) is a cross-sectional view showing a state of aggregation of conventional primary composite wires,
FIG. 1D is an enlarged cross-sectional view of a conventional superconducting wire.

【符号の説明】[Explanation of symbols]

A 交流用超電導線 10 芯材 11 Cu合金層 12 Cu合金管 14 Cu合金管 15 超電導フィラメント 16 被覆層 17 金属基地 A superconducting wire for AC 10 core material 11 Cu alloy layer 12 Cu alloy tube 14 Cu alloy tube 15 superconducting filament 16 coating layer 17 metal base

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年10月12日[Submission date] October 12, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】a)は、芯材を合金層と合金管で覆った状態
を示す断面図、b)は、1次複合線の断面図、c)
は、1次複合線の集合状態を示す断面図、d)は、本
発明に係る交流用超電導線の拡大断面図である。
1 (a) is a sectional view showing a state in which the core material covered with the alloy layer and the alloy tube, (b) is a sectional view of the primary composite wire, (c)
Is a cross-sectional view showing the assembled state of the primary composite wire, and ( d) is an enlarged cross-sectional view of the AC superconducting wire according to the present invention.

【図2】1(d)に示す交流用超電導線の拡大断面
図、
Figure 2 is an enlarged sectional view of the AC superconducting wire shown in FIG. 1 (d),

【図3】a)は、従来の複合線の集合状態を示す断面
図、b)は、1次複合線の断面図、c)は、従来の
1次複合線の集合状態を示す断面図、d)は、従来の
2次素線の拡大断面図 (e)は、従来の超電導線の拡
大断面図である。
3 (a) is a sectional view showing the set state of the art composite wire, (b) show cross-sectional views of the primary composite wire, the (c) is a set state of the art primary composite wire Cross-sectional view, ( d) shows conventional
An enlarged cross-sectional view of the secondary wire , (e) is an enlarged cross-section of a conventional superconducting wire.
FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 宰 東京都江東区木場一丁目5番1号 藤倉電 線株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Kono 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Electric Wire Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性の金属基地の内部に極細の超電導
フィラメントが多数分散されてなる交流用超電導線にお
いて、 金属基地内の各超電導フィラメントの周囲に高濃度の磁
性元素を含有する被覆層が形成され、この被覆層の周囲
を高電気抵抗の金属基地が覆っていることを特徴とする
交流用超電導線。
1. A superconducting wire for alternating current in which a large number of ultrafine superconducting filaments are dispersed inside a conductive metal matrix, wherein a coating layer containing a high concentration of a magnetic element is provided around each superconducting filament in the metal matrix. A superconducting wire for alternating current, which is formed and covers the periphery of the coating layer with a metal base having a high electric resistance.
【請求項2】 請求項1記載の交流用超電導線を製造す
る方法において、 Nb−Ti合金からなるロッド状の芯材に10%以上の
高濃度の磁性元素を含有する高電気抵抗のCu合金層を
被覆して複合線を形成し、この複合線を複数本集合した
後に磁性元素を含有しない高電気抵抗のCu合金管に挿
入し縮径加工することを特徴とする交流用超電導線の製
造方法。
2. The method for producing a superconducting wire for alternating current according to claim 1, wherein the rod-shaped core material made of an Nb-Ti alloy contains a high-concentration magnetic element of 10% or more and has a high electrical resistance. A superconducting wire for alternating current, which is characterized in that a composite wire is formed by coating layers, and a plurality of the composite wires are assembled and then inserted into a Cu alloy tube having high electrical resistance containing no magnetic element for diameter reduction processing. Method.
JP03816192A 1992-02-25 1992-02-25 AC superconducting wire and method of manufacturing the same Expired - Fee Related JP3272017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03816192A JP3272017B2 (en) 1992-02-25 1992-02-25 AC superconducting wire and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03816192A JP3272017B2 (en) 1992-02-25 1992-02-25 AC superconducting wire and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0696626A true JPH0696626A (en) 1994-04-08
JP3272017B2 JP3272017B2 (en) 2002-04-08

Family

ID=12517685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03816192A Expired - Fee Related JP3272017B2 (en) 1992-02-25 1992-02-25 AC superconducting wire and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3272017B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956219A (en) * 2014-04-21 2014-07-30 西部超导材料科技股份有限公司 Method for manufacturing NbTi-CuNi-Cu superconductive composite wire rod
CN111659749A (en) * 2020-05-20 2020-09-15 西部超导材料科技股份有限公司 Preparation method of NbTi/CuNi/Cu superconducting composite wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6403194B1 (en) 1998-09-03 2002-06-11 Hitachi, Ltd. Magnetic recording medium, process for producing same and magnetic disc apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103956219A (en) * 2014-04-21 2014-07-30 西部超导材料科技股份有限公司 Method for manufacturing NbTi-CuNi-Cu superconductive composite wire rod
CN103956219B (en) * 2014-04-21 2016-08-31 西部超导材料科技股份有限公司 A kind of preparation method of NbTi-CuNi-Cu super-conduct composite line material
CN111659749A (en) * 2020-05-20 2020-09-15 西部超导材料科技股份有限公司 Preparation method of NbTi/CuNi/Cu superconducting composite wire

Also Published As

Publication number Publication date
JP3272017B2 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
US4531982A (en) Superconductor manufacturing process
JPH0268820A (en) Electric conductor in the form of wire or cable
US4743713A (en) Aluminum-stabilized NB3SN superconductor
US5929385A (en) AC oxide superconductor wire and cable
JP2010015821A (en) Precursor for manufacturing nb3sn superconductive wire rod and method of manufacturing the same, and nb3sn superconductive wire rod
JPH0696626A (en) Ac superconductive wire and manufacture thereof
US4153986A (en) Method for producing composite superconductors
JPH1050153A (en) Oxide supreconductive wire for alternating current, and cable
JPH0377607B2 (en)
JP3158408B2 (en) Oxide superconducting wire and manufacturing method thereof
JPH0146963B2 (en)
JP2000036221A (en) Compression molded conductor of oxide superconductor and manufacture thereof
JP2845905B2 (en) Compound conducting wire for alternating current
Scanlan et al. Multifilamentary Nb 3 Sn for superconducting generator applications
JP2874132B2 (en) Method for manufacturing Nb (3) Sn superconducting wire for AC
GB1559462A (en) Strip-shaped electrical conductors
JP2746960B2 (en) Nb (3) Method for Manufacturing A1 Superconducting Wire
JPH04132108A (en) Nb3al superconductor
JP2004152677A (en) High-strength superconducting wire rod
JPH10116522A (en) Nb-ti superconductive wire rod
JP2742421B2 (en) Superconducting wire and its manufacturing method
JP2644854B2 (en) Method of manufacturing compound superconducting wire
JPH03257714A (en) Superconductive wire rod
JPS58119611A (en) Superconducting coil
JP2000348927A (en) Oxide superconducting compression molded conductor and manufacture thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees