JPH069644B2 - Gas separation method - Google Patents

Gas separation method

Info

Publication number
JPH069644B2
JPH069644B2 JP60259344A JP25934485A JPH069644B2 JP H069644 B2 JPH069644 B2 JP H069644B2 JP 60259344 A JP60259344 A JP 60259344A JP 25934485 A JP25934485 A JP 25934485A JP H069644 B2 JPH069644 B2 JP H069644B2
Authority
JP
Japan
Prior art keywords
gas
adsorption tower
adsorption
target component
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60259344A
Other languages
Japanese (ja)
Other versions
JPS62121615A (en
Inventor
克彦 野呂
英明 高野
靖夫 冨山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO SANSO
Original Assignee
KYODO SANSO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO SANSO filed Critical KYODO SANSO
Priority to JP60259344A priority Critical patent/JPH069644B2/en
Publication of JPS62121615A publication Critical patent/JPS62121615A/en
Publication of JPH069644B2 publication Critical patent/JPH069644B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/04Purification or separation of nitrogen
    • C01B21/0405Purification or separation processes
    • C01B21/0433Physical processing only
    • C01B21/045Physical processing only by adsorption in solids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、吸着法を用いて混合ガス中の着目成分を空
着剤に吸着させ、これを高純度の製品ガスとして系外に
取り出すためのガス分離方法に関する。
TECHNICAL FIELD The present invention relates to a gas for adsorbing a target component in a mixed gas to an air-adhesive using an adsorption method and taking this out as a high-purity product gas to the outside of the system. Regarding separation method.

従来技術 混合ガス中の着目成分を分離する方法としては、一般に
精留法、吸収法、吸着法、膜法等がある。このうち吸着
法を用いて混合ガス中の着目成分を吸着剤に吸着させて
非着目成分と分離し、これを脱着回収することにより製
品ガスを得る方法は、製鉄所副生ガスからのCOガス分
離等に応用されつつある。
2. Description of the Related Art As a method for separating a component of interest in a mixed gas, there are generally a rectification method, an absorption method, an adsorption method, a membrane method and the like. Of these, the adsorption method is used to adsorb the target component in the mixed gas to the adsorbent to separate it from the non-target component, and the product gas is obtained by desorbing and recovering this, which is the CO gas from the byproduct gas of the steelworks. It is being applied to separation, etc.

上記吸着法に使用される吸着剤としては、着目成分に対
して選択吸着性を有する吸着剤が使用される。
As the adsorbent used in the adsorption method, an adsorbent having a selective adsorption property with respect to the target component is used.

吸着剤の選択吸着性を大きくするため、公知の吸着剤、
例えば活性炭に金属塩を担持する等の種々の改善が行な
われている。
To increase the selective adsorption of the adsorbent, a known adsorbent,
For example, various improvements have been made such as supporting a metal salt on activated carbon.

しかし、上記吸着法においては、使用する吸着剤と圧
力、温度によつて定まる着目成分の吸着限界までは、回
収ガス中の着目成分の濃度は上昇するが、これを超える
と着目成分は一定となり、それ以上は上昇しない。
However, in the above adsorption method, the concentration of the target component in the recovered gas rises up to the adsorption limit of the target component determined by the adsorbent used, pressure, and temperature, but beyond that, the target component becomes constant. , No further rise.

このため、混合ガス中の着目成分を高純度で回収しなけ
れば利用価値が高い場合、例えば製鉄所副生ガスの一つ
である転炉ガスから合成化学原料としてCOガスを回収
するときには、COガスを単に吸着剤に吸着させて脱着
するだけでは、目的とする純度のCOガスを回収するこ
とはできない。
For this reason, if the component of interest in the mixed gas is not highly purified and its utility value is high, for example, when CO gas is recovered as a synthetic chemical raw material from the converter gas, which is one of the by-product gases at steel mills, CO The CO gas having the desired purity cannot be recovered by simply adsorbing the gas on the adsorbent and desorbing the gas.

この対策として、第3図に示すように、COガスを吸着
した吸着塔内に高純度のCOガスを供給し吸着塔内に残
存する非着目成分ガスをパージし、その後吸着塔内を減
圧することによつて吸着剤に吸着されていたCOガスを
高純度で回収する転炉ガス中の有用成分分離法(特開昭
59−26121)や、第4図に示すように、吸着塔出口にお
ける易吸着成分の濃度が吸着塔入口おける易吸着成分の
濃度に達するまで原料ガスを供給し、その後吸着塔と真
空脱着が終つた吸着塔とを連結し、前者の吸着塔からガ
スを後者の吸着塔に導入し、前者の吸着塔の圧力を大気
圧又は大気圧近くまで降下させるという減圧工程を設
け、次に減圧した吸着塔に製品ガスを導入して難吸着成
分をパージすると共に、吸着塔上部より流出してくるガ
スを前記減圧工程で発生したガスを導入した吸着塔に加
圧し、パージ工程が終了した吸着塔を大気圧以下に排気
して、吸着剤に吸着されている易吸着成分を脱着させ製
品ガスを回収するという吸着法を使用して一酸化炭素を
含む混合ガスより一酸化炭素を精製する方法(特開昭60
−5012)が提案されている。
As a countermeasure against this, as shown in FIG. 3, high-purity CO gas is supplied into the adsorption tower in which the CO gas is adsorbed, non-target component gas remaining in the adsorption tower is purged, and then the inside of the adsorption tower is depressurized. As a result, a method for separating useful components in a converter gas for recovering the CO gas adsorbed on the adsorbent with high purity (Japanese Patent Laid-Open No. Sho 60-96).
59-26121) or as shown in FIG. 4, the raw material gas is supplied until the concentration of the easily adsorbed component at the outlet of the adsorption tower reaches the concentration of the easily adsorbed component at the inlet of the adsorption tower, and then the vacuum desorption with the adsorption tower is completed. The gas is introduced from the former adsorption tower to the latter adsorption tower, and the former adsorption tower is reduced in pressure to atmospheric pressure or close to atmospheric pressure by a depressurizing step, and then depressurized adsorption is performed. While introducing the product gas into the tower to purge the hard-to-adsorb components, the gas flowing out from the upper part of the adsorption tower is pressurized to the adsorption tower into which the gas generated in the depressurization step is introduced, and the adsorption tower after the purging step is completed. A method for purifying carbon monoxide from a mixed gas containing carbon monoxide by using an adsorption method in which the easily adsorbed components adsorbed on the adsorbent are desorbed and the product gas is recovered by exhausting to below atmospheric pressure. Kaisho 60
-5012) has been proposed.

前者は、吸着終了後その内部に残存している不純COガ
スを含むガスを高純度のCOガスの吹き込みによつてパ
ージしておりCO収率が低い。
The former has a low CO yield because the gas containing impure CO gas remaining inside after the adsorption is purged by blowing in high-purity CO gas.

又、後者は原料ガス吸着工程において、吸着塔上部から
排ガスを放出しているが、この排ガス中には易吸着成分
が多く含まれる。なぜなら、真空引きをして製品を回収
した吸着塔に他の吸着塔の減圧工程とパージ工程で発生
するガスを吸着塔下部から導入しているため、吸着塔内
に回収工程終了後残留する高濃度の易吸着成分を吸着塔
上部に押し上げ、吸着塔内の上部は易吸着成分の濃度が
高くなるからである。したがつて、次に原料ガスを吸着
塔に供給したとき、易吸着成分を多く含むガスが排出さ
れる。そのため収率が低い。
In the latter case, the exhaust gas is discharged from the upper part of the adsorption tower in the raw material gas adsorption step, and the exhaust gas contains a large amount of easily adsorbed components. This is because the gas generated in the depressurization process and the purging process of the other adsorption towers is introduced into the adsorption tower where the product is recovered by vacuuming from the lower part of the adsorption tower, and therefore the high residual gas remaining in the adsorption tower after the completion of the recovery process. This is because the concentration of the easily adsorbed component is pushed up to the upper part of the adsorption tower, and the concentration of the easily adsorbed component becomes higher in the upper part in the adsorption tower. Therefore, when the raw material gas is next supplied to the adsorption tower, the gas containing a large amount of easily adsorbed components is discharged. Therefore, the yield is low.

発明の目的 この発明は、混合ガス中の着目成分を製品ガスとして回
収する際の着目成分の収率を向上させることを目的とす
る。
OBJECT OF THE INVENTION An object of the present invention is to improve the yield of a target component when recovering the target component in a mixed gas as a product gas.

着目成分に対する選択吸着生を有する吸着剤を充填した
吸着塔に原料ガスを供給して着目成分を分離する方法に
おいて、高純度の着目成分を製品ガスとして回収する収
率を向上させるには、系外に放出する排ガス中に含まれ
る着目成分の量をいかに低く押えるかにかかつている。
In a method for separating a target component by supplying a raw material gas to an adsorption column filled with an adsorbent having a selective adsorption product for the target component, in order to improve the yield of recovering a high-purity target component as a product gas, It depends on how low the amount of the component of interest contained in the exhaust gas released to the outside can be suppressed.

排ガス中に含まれる着目成分の量を低く押えるには、排
ガス放出時の着目塔気相の着目成分の濃度分布が必要で
あり、排ガス放出直前の吸着塔出口側での着目成分の濃
度を薄くすることが必要である。
In order to suppress the amount of the target component contained in the exhaust gas to a low level, the concentration distribution of the target component in the gas phase of the target tower at the time of exhaust gas emission is required, and the concentration of the target component at the outlet side of the adsorption tower immediately before the exhaust gas discharge is reduced. It is necessary to.

そこで原料ガス吸着工程のオフガス、パージ工程のオフ
ガス及び回収後吸着塔内に残存するガスの着目成分の濃
度について調査すると共に、上記3種類のオフガスを回
収工程終了後の吸着塔に充圧する方法について種々の研
究をおこなつた結果、この発明がもたらされたのであ
る。
Therefore, a method of investigating the concentrations of the target components of the offgas in the raw material gas adsorption step, the offgas in the purge step, and the gas remaining in the adsorption tower after recovery, and charging the above three kinds of offgas into the adsorption tower after the recovery step has been completed As a result of various studies, this invention was brought about.

すなわち、上記3種類のオフガスのうち着目成分が最も
低濃度であるところの原料ガス吸着工程時のオフガスを
回収工程終了後の吸着塔出口側より、原料ガス供給とは
向流して充圧することによつて上記吸着塔出口側の気相
の着目成分を低濃度にすることを可能とし、さらに上記
吸着塔への原料充圧前に系外へ放出する排ガス中の着目
成分を極めて低い状態にすることを可能にしたガス分離
方法を提案するものである。
That is, the off gas at the time of the raw material gas adsorption step where the target component has the lowest concentration among the above three kinds of off gases is charged from the outlet side of the adsorption tower after the completion of the recovery step in countercurrent to the raw material gas supply. Therefore, it is possible to reduce the concentration of the target component of the gas phase on the outlet side of the adsorption tower, and further to make the target component in the exhaust gas discharged outside the system before charging the adsorption tower extremely low. We propose a gas separation method that makes it possible.

発明の構成 この発明は、着目成分に対する選択吸着性を有する吸着
剤を充填した吸着塔に原料ガス供給して着目成分を濃縮
分離する方法において、 2つの吸着塔を一対として用い、一方の吸着塔1で
は原料ガスを吸着塔下部から供給した後、濃縮操作を行
ない、他方の吸着塔2では吸着塔1への原料供給時に発
生するオフガスの全量を吸着塔上部から供給した後、吸
着塔1での濃縮操作の際に発生するオフガスの全量を吸
着塔下部から供給し、オフガス中の着目成分を捕集し、
非着目成分を主とした排ガスを吸着塔1での濃縮操作の
終了直前に放出するガス分離方法。
Configuration of the Invention The present invention is a method for supplying a raw material gas to an adsorption column filled with an adsorbent having a selective adsorption property for a target component to concentrate and separate the target component, wherein two adsorption columns are used as a pair and one of the adsorption columns is used. In No. 1, the raw material gas is supplied from the lower part of the adsorption tower, and then the concentration operation is performed, and in the other adsorption tower 2, the total amount of off-gas generated at the time of supplying the raw material to the adsorption tower 1 is supplied from the upper part of the adsorption tower, and then the adsorption tower 1 The total amount of off-gas generated during the concentration operation of is supplied from the lower part of the adsorption tower to collect the target component in the off-gas,
A gas separation method in which exhaust gas mainly containing non-focused components is released immediately before the end of the concentration operation in the adsorption tower 1.

上記に記載した操作を1サイクルとして、サイク
ル毎に吸着塔1と吸着塔2の機能を切替えて交互に行な
うガス分離方法。
A gas separation method in which the operations described above are set as one cycle and the functions of the adsorption tower 1 and the adsorption tower 2 are switched alternately for each cycle.

2つの吸着塔と1つのガス貯留塔を用い、一方の吸着
塔1では原料ガスを吸着塔下部から供給した後、吸着塔
内のガスを一部放出して減圧し、さらにその状態の吸着
塔1内を高純度の着目成分でパージする濃縮操作を行な
い、吸着塔1への原料供給時に発生するオフガスの全量
をガス貯留塔に収容し、他方の吸着塔2では上記減圧時
に発生するオフガスの全量を吸着塔上部から供給し、さ
らに上記ガス貯留塔に収容したオフガスを吸着塔上部か
ら供給し、次いで上記パージする際に発生するオフガス
の全量を吸着塔下部から供給し、オフガス中の着目成分
を捕集し、非着目成分を主とした排ガスを吸着塔1にお
ける濃縮操作終了直前に放出するガス分離方法。
Two adsorption towers and one gas storage tower are used. In one adsorption tower 1, after the raw material gas is supplied from the lower part of the adsorption tower, a part of the gas in the adsorption tower is released to reduce the pressure. A concentration operation for purging the inside of 1 with a high-purity component of interest is performed, and the entire amount of off-gas generated when the raw material is supplied to the adsorption tower 1 is stored in the gas storage tower. The entire amount is supplied from the upper part of the adsorption tower, the off gas stored in the gas storage tower is further supplied from the upper part of the adsorption tower, and then the entire amount of the off gas generated during the purging is supplied from the lower part of the adsorption tower. The gas separation method in which the exhaust gas mainly containing non-focused components is discharged immediately before the end of the concentration operation in the adsorption tower 1.

上記に記載した操作を1サイクルとして、サイク
ル毎に吸着塔1と吸着塔2の機能を切替えて交互に行な
うガス分離方法。
A gas separation method in which the operations described above are set as one cycle and the functions of the adsorption tower 1 and the adsorption tower 2 are switched alternately for each cycle.

である。Is.

この発明において、原料供給時に発生するオフガスは、
他方の吸着塔上部に直接又はガス貯留塔に一旦収容して
供給され、濃縮操作時に発生するオフガスは吸着塔下部
に供給されるが、これは吸着塔上部は濃度が低いという
効果が得られ、濃縮操作の終了直前に排ガスを放出する
際、着目成分の流出を低く押えることができるためであ
る。
In the present invention, the off gas generated when the raw material is supplied is
It is supplied directly to the upper part of the other adsorption tower or once housed in the gas storage tower, and the off-gas generated during the concentration operation is supplied to the lower part of the adsorption tower, which has the effect that the upper part of the adsorption tower has a low concentration, This is because when the exhaust gas is released immediately before the end of the concentration operation, the outflow of the component of interest can be suppressed low.

次に、この発明の詳細を転炉ガスを原料ガスとしてCO
ガスを分離回収する場合について説明する。
Next, the details of the present invention will be described using CO as a raw material gas.
The case of separating and collecting gas will be described.

第1図の工程図は、前記に記載した発明を実施する場
合であつて、例えば合成ゼオライトを吸着剤として充填
し、塔内を最高圧3kg/cm3、最低圧0.2kg/cm3として吸
着塔1に原料ガス(CO74.2%、N25.8%)を送入
し、吸着工程時に発生するオフガスIは製品回収を終つ
た塔上部から吸着塔2に供給し、さらに減圧工程で発生
するオフガスII、及び製品COガスをパージガスとして
使用するパージ工程で発生するオフガスIIIは、共に塔
下部より吸着塔2に供給し、パージ工程が終了する直前
に吸着塔2の上部より排ガスを排出した。
Process diagram of FIG. 1 is shall apply in the case of carrying out the invention described above, for example, the synthetic zeolite was filled as an adsorbent, the adsorption in the column maximum pressure 3 kg / cm 3, as the lowest pressure 0.2 kg / cm 3 A raw material gas (CO 74.2%, N 3 25.8%) is fed into the tower 1, and off-gas I generated during the adsorption step is supplied to the adsorption tower 2 from the top of the tower where product recovery is completed, and further generated during the depressurization step. The offgas II and the offgas III generated in the purging step using the product CO gas as the purging gas were both supplied to the adsorption tower 2 from the lower part of the tower, and the exhaust gas was discharged from the upper part of the adsorption tower 2 immediately before the completion of the purging step.

以上の一連の工程を1サイクルとして、吸着塔1には高
純度のCOガスが分離され、又COを含むオフガスは全
て吸着塔2に供給される。
A high-purity CO gas is separated in the adsorption tower 1 and all the off gas containing CO is supplied to the adsorption tower 2 with the above series of steps as one cycle.

次いで、吸着塔1から製品COガスを回収する間、オフ
ガスを吸着している吸着塔2には原料ガスを充填し、前
記CO分離回収工程の全てを吸着塔2で行なつて製品C
Oガスを分離し、他方の吸着塔1は、その間オフガス吸
着工程に使用し、さらに最初のサイクルにもどつて吸着
塔2から製品COガスを回収する。
Next, while the product CO gas is being recovered from the adsorption tower 1, the adsorption tower 2 that is adsorbing the off gas is filled with the raw material gas, and the CO separation and recovery step is performed by the adsorption tower 2 to complete the product C.
The O gas is separated, and the other adsorption tower 1 is used for the off-gas adsorption step during that time, and the product CO gas is recovered from the adsorption tower 2 in the first cycle.

以上のCOガス分離回収サイクルを吸収塔1と吸着塔2
を交互に使用して実施することにより連続的に生産がで
きる。
The above CO gas separation and recovery cycle is performed by the absorption tower 1 and the adsorption tower 2.
Can be continuously produced by carrying out alternately.

上記COガス分離回収工程におけるオフガスの濃度は次
のとおりである。
The concentration of off gas in the CO gas separation and recovery process is as follows.

吸着塔1に原料ガスを塔下部から供給したときのオフガ
スIの平均CO濃度は20%であつた。又、原料ガス吸着
工程に引き続く減圧工程でのオフガスIIの平均CO濃度
は35%であり、次のパージ工程で発生するオフガスIII
の平均CO濃度は77%であつた。又、吸着塔2から放出
された排ガス中のCOは14%という低い濃度になつた。
The average CO concentration of the offgas I when the raw material gas was supplied to the adsorption tower 1 from the lower part of the tower was 20%. Further, the average CO concentration of the offgas II in the depressurization process subsequent to the raw material gas adsorption process is 35%, and the offgas III generated in the next purging process is
The average CO concentration was 77%. Further, CO in the exhaust gas discharged from the adsorption tower 2 reached a low concentration of 14%.

又、第2図の工程図は、前記の発明を実施する場合で
あつて、吸着剤として合成ゼオライトを充填し、塔内を
最高圧3kg/cm3、最低圧0.2kg/cm3として吸着塔1に原
料ガス(co74.2%、N25.8%)を送入し、吸着工程
時に発生するオフガスIはガス貯留塔に収容し、次いで
減圧工程で発生するオフガスIIは塔上部から吸着塔2に
供給し、引き続きガス貯留塔に収容したオフガスIを塔
上部から吸着塔2に供給し、さらにパージ工程で発生す
るオフガスIIIは吸着塔下部より吸着塔2に供給し、パ
ージ工程が終了する直前に吸着塔2の上部より排ガスを
放出する。
The step diagram of FIG. 2 is shall apply in the case of carrying out the invention, the synthetic zeolite was filled as an adsorbent, the adsorption tower in the column maximum pressure 3 kg / cm 3, as the lowest pressure 0.2 kg / cm 3 The raw material gas (co74.2%, N 3 25.8%) is fed into the column 1, the offgas I generated during the adsorption step is stored in the gas storage tower, and the offgas II generated during the depressurization step is adsorbed from the upper portion of the tower 2 To the adsorption tower 2 from the top of the tower, and offgas III generated in the purging step from the bottom of the adsorption tower to the adsorption tower 2 immediately before the purging step is completed. The exhaust gas is discharged from the upper part of the adsorption tower 2.

以上の一連の工程を1サイクルとして吸着塔1には高純
度のCOガスが分離され、又COを含むオフガスは全て
吸着塔2に供給される。そして、上記第1図の実施例と
同様にして製品COガス分離回収が繰返されるのであ
る。
A high-purity CO gas is separated in the adsorption tower 1 by using the above series of steps as one cycle, and the off gas containing CO is all supplied to the adsorption tower 2. Then, the product CO gas separation and recovery is repeated in the same manner as the embodiment of FIG.

上記実施例におけるオフガスの濃度は次のとおりであ
る。
The concentration of off-gas in the above embodiment is as follows.

吸着塔1に原料ガスを塔下部から供給したとき、ガス貯
留塔に収容したオフガスIの平均CO濃度は7.5%であ
つた。又、原料ガス吸着工程に引き続く減圧工程てのオ
フガスIIの平均CO濃度は9.4%であり、次のパージ工
程で発生するオフガスIIIの平均CO濃度は21.1%であ
つた。又、吸着塔2から放出された排ガス中のCOは1
0.8%含という低い濃度となつた。
When the raw material gas was supplied to the adsorption tower 1 from the lower part of the tower, the average CO concentration of the offgas I stored in the gas storage tower was 7.5%. Further, the average CO concentration of the offgas II in the depressurization process subsequent to the raw material gas adsorption process was 9.4%, and the average CO concentration of the offgas III generated in the next purging process was 21.1%. In addition, the CO in the exhaust gas discharged from the adsorption tower 2 is 1
The concentration was as low as 0.8%.

次に、上記実施例によるこの発明法と、発明法と同じ原
料ガスを使つて行なつた第3図に示す従来法I及び第4
図に示す従来法IIと比較して製品ガス中のCO純度、C
O収率を調べた。その結果を第1表に示す。
Next, this invention method according to the above-described embodiment and the conventional method I and the fourth method shown in FIG. 3 performed using the same source gas as the invention method.
Compared with the conventional method II shown in the figure, CO purity in product gas, C
The O yield was investigated. The results are shown in Table 1.

この結果、製品純度はいずれも同じ程度であるが、この
発明は収率が93.8%、95.7%と高いが、従来法は78.0%
以下でいずれも低いことがわかる。
As a result, although the product purities are almost the same, the yields of the present invention are high at 93.8% and 95.7%, but the conventional method is 78.0%.
It can be seen that both are low below.

発明の効果 この発明は、上記のごとく、2つの吸着塔を用いて、一
の吸着塔に原料ガスを供給して、原料ガス中の着目成分
の濃縮操作を行なうと共に、他の吸着塔に上記濃縮操作
中に発生するオフガスを塔上部が低濃度となるように供
給して吸着させ、系外へ放出する排ガス中の着目成分を
極力低い状態にすることにより、製品ガスの収率の向上
を図ることができる。
EFFECTS OF THE INVENTION As described above, the present invention uses two adsorption towers to supply a raw material gas to one adsorption tower to perform concentration operation of a component of interest in the raw material gas, and to another adsorption tower above. The off gas generated during the concentration operation is supplied and adsorbed so that the upper part of the tower has a low concentration, and the target component in the exhaust gas discharged to the outside of the system is made as low as possible to improve the product gas yield. Can be planned.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図はこの発明の実施おける工程図、第3
図及び第4図は従来法による工程図である。
FIG. 1 and FIG. 2 are process drawings in the practice of this invention, and FIG.
FIG. 4 and FIG. 4 are process diagrams according to the conventional method.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】着目成分に対する選択吸着性を有する吸着
剤を充填した吸着塔に原料ガスを供給して着目成分を濃
縮分離する方法において、2つの吸着塔を一対として用
い、一方の吸着塔1では原料ガスを吸着塔下部から供給
した後、濃縮操作を行ない、他方の吸着塔2では吸着塔
1への原料供給時に発生するオフガスの全量を吸着塔上
部から供給した後、吸着塔1での濃縮操作の際に発生す
るオフガスの全量を吸着塔下部から供給し、オフガス中
の着目成分を捕集し、非着目成分を主とした排ガスを吸
着塔1での濃縮操作の終了直前に放出することを特徴と
するガス分離方法。
1. In a method of supplying a raw material gas to an adsorption column filled with an adsorbent having a selective adsorption property for a target component to concentrate and separate the target component, two adsorption columns are used as a pair, and one adsorption column 1 is used. Then, after supplying the raw material gas from the lower part of the adsorption tower, the concentration operation is performed, and in the other adsorption tower 2, the total amount of off-gas generated at the time of supplying the raw material to the adsorption tower 1 is supplied from the upper part of the adsorption tower 1 and then in the adsorption tower 1. The entire amount of off-gas generated during the concentration operation is supplied from the lower part of the adsorption tower, the target component in the off-gas is collected, and the exhaust gas mainly containing the non-target component is released immediately before the end of the concentration operation in the adsorption tower 1. A gas separation method characterized by the above.
【請求項2】着目成分に対する選択吸着性を有する吸着
剤を充填した吸着塔に原料ガスを供給して着目成分を濃
縮分離する方法において、2つの吸着塔を一対として用
い、一方の吸着塔1で原料ガス供給、濃縮操作、回収操
作を行なうと共に、他方の吸着塔2で吸着塔1から発生
するオフガス中の着目成分の捕集操作を行ない、非着目
成分を主体とする排ガスを吸着塔1の濃縮操作の終了直
前に放出する操作をサイクル毎に吸着塔1と吸着塔2の
機能を切替えて交互に行なうことを特徴とするガス分離
方法。
2. In a method for supplying a raw material gas to an adsorption column filled with an adsorbent having a selective adsorption property for a target component to concentrate and separate the target component, two adsorption columns are used as a pair, and one adsorption column 1 is used. The raw material gas is supplied, the concentration operation and the recovery operation are performed at the same time, and the target component in the off-gas generated from the adsorption tower 1 is collected at the other adsorption tower 2 to collect the exhaust gas mainly containing the non-target component. The gas separation method characterized in that the operation of releasing just before the end of the concentration operation is alternately performed by switching the functions of the adsorption tower 1 and the adsorption tower 2 for each cycle.
【請求項3】着目成分に対する選択吸着性を有する吸着
剤を充填した吸着塔に原料ガスを供給して着目成分を濃
縮分離する方法において、2つの吸着塔と1つのガス貯
留塔を用い、1方の吸着塔1では原料ガスを吸着塔下部
から供給した後、吸着塔内のガスを一部放出して減圧
し、さらにその状態の吸着塔1内を高純度の着目成分で
パージする濃縮操作を行ない、吸着塔1への原料供給時
に発生するオフガスの全量をガス貯留塔に収容し、他方
の吸着塔2では上記減圧時に発生するオフガスの全量を
吸着塔上部から供給し、さらに上記ガス貯留塔に収容し
たオフガスを吸着塔上部から供給し、次いで上記パージ
する際に発生するオフガスの全量を吸着塔下部から供給
し、オフガス中の着目成分を捕集し、非着目成分を主と
した排ガスを吸着塔1の濃縮操作終了直前に放出するこ
とを特徴とするガス分離方法。
3. A method of supplying a raw material gas to an adsorption tower filled with an adsorbent having a selective adsorption property for a target component to concentrate and separate the target component, using two adsorption towers and one gas storage tower. In the other adsorption tower 1, after supplying the raw material gas from the lower part of the adsorption tower, a part of the gas in the adsorption tower is released to reduce the pressure, and the adsorption tower 1 in that state is further purged with a high-purity component of interest. Then, the entire amount of off-gas generated when the raw material is supplied to the adsorption tower 1 is stored in the gas storage tower, and in the other adsorption tower 2, the entire amount of off-gas generated during the depressurization is supplied from the upper part of the adsorption tower, and the gas storage is further performed. The off-gas contained in the tower is supplied from the upper part of the adsorption tower, and then the entire amount of the off-gas generated during the above-mentioned purging is supplied from the lower part of the adsorption tower to collect the target component in the off-gas and mainly the non-target component exhaust gas. The adsorption tower Gas separation method characterized by releasing immediately before and concentration termination.
【請求項4】着目成分に対する選択吸着性を有する吸着
剤を充填した吸着塔に原料ガスを供給して着目成分を濃
縮分離する方法において、2つの吸着塔と1つのガス貯
留塔を用い、一方の吸着塔1で原料ガス供給、濃縮操
作、回収操作を行なうと共に、他方の吸着塔2で吸着塔
1から発生するオフガス中の着目成分の捕集操作を行な
い、非着目成分を主体とする排ガスを吸着塔1の濃縮操
作の終了直前に放出する操作をサイクル毎に吸着塔1と
吸着塔2の機能を切替えて交互に行なうことを特徴とす
るガス分離方法。
4. In a method of supplying a raw material gas to an adsorption column filled with an adsorbent having a selective adsorption property for a target component to concentrate and separate the target component, two adsorption columns and one gas storage column are used. In the adsorption tower 1, raw material gas supply, concentration operation, and recovery operation are performed, and in the other adsorption tower 2, the target component in the offgas generated from the adsorption tower 1 is collected, and the non-target component is the main exhaust gas. The gas separation method, wherein the operation of releasing the adsorbent 1 just before the end of the concentration operation of the adsorption tower 1 is alternately performed by switching the functions of the adsorption tower 1 and the adsorption tower 2 for each cycle.
JP60259344A 1985-11-19 1985-11-19 Gas separation method Expired - Lifetime JPH069644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60259344A JPH069644B2 (en) 1985-11-19 1985-11-19 Gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60259344A JPH069644B2 (en) 1985-11-19 1985-11-19 Gas separation method

Publications (2)

Publication Number Publication Date
JPS62121615A JPS62121615A (en) 1987-06-02
JPH069644B2 true JPH069644B2 (en) 1994-02-09

Family

ID=17332802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60259344A Expired - Lifetime JPH069644B2 (en) 1985-11-19 1985-11-19 Gas separation method

Country Status (1)

Country Link
JP (1) JPH069644B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397213A (en) * 1986-10-15 1988-04-27 Mitsui Eng & Shipbuild Co Ltd Pressure-swinging adsorption and separation method
US8956704B2 (en) * 2012-05-21 2015-02-17 Novellus Systems, Inc. Methods for modulating step coverage during conformal film deposition

Also Published As

Publication number Publication date
JPS62121615A (en) 1987-06-02

Similar Documents

Publication Publication Date Title
CN1083731C (en) Simulataneous step pressure swing adsorption process
JPS6261616A (en) Method for separating high purity gas from gaseous mixture
CN86102340A (en) Improved pressure-swing absorption process
JPS58104618A (en) Improved rpsa method
JPS61222905A (en) Manufacture of oxygen-rich air
CA1238868A (en) Method for obtaining high-purity carbon monoxide
US5518527A (en) Method for recovering ethylene from vent gas from ethylene oxide plant vent gas
JP2539443B2 (en) A method for separating and recovering CO 2 under 2 with high purity from exhaust gas from a steel mill
JPH069644B2 (en) Gas separation method
JPH0624603B2 (en) Method for separating and recovering nitrogen and oxygen in air
JP3294067B2 (en) Krypton manufacturing method
JP2551903B2 (en) Method and device for separating and recovering CO2 from combustion exhaust gas
US4834956A (en) Process for the production of high purity argon
JPS621768B2 (en)
JPS62117612A (en) Regenerating method for adsorption tower
JPH0489387A (en) Inert gas recovering device for single crystal pulling up device
JPS60155520A (en) Process for purifying carbon monoxide from mixed gas containing carbon monoxide gas by adsorption process
JP2581944B2 (en) Method for recovering specific gas components from mixed gas
JPH0112529B2 (en)
JP3025653B2 (en) Improved pressure swing adsorption method
JP3256811B2 (en) Method for purifying krypton and xenon
JPH02283608A (en) Method for separating and recovering carbon monoxide
JPS6135889B2 (en)
JP3031797B2 (en) Pressure fluctuation adsorption separation method
JP4008092B2 (en) Method for recovering carbon monoxide from acetic acid plant off-gas