JPH0696090B2 - Combustion exhaust gas treatment method - Google Patents

Combustion exhaust gas treatment method

Info

Publication number
JPH0696090B2
JPH0696090B2 JP1337926A JP33792689A JPH0696090B2 JP H0696090 B2 JPH0696090 B2 JP H0696090B2 JP 1337926 A JP1337926 A JP 1337926A JP 33792689 A JP33792689 A JP 33792689A JP H0696090 B2 JPH0696090 B2 JP H0696090B2
Authority
JP
Japan
Prior art keywords
exhaust gas
combustion
desulfurization
reaction chamber
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1337926A
Other languages
Japanese (ja)
Other versions
JPH03196816A (en
Inventor
祥正 三浦
悦生 荻野
美智男 石田
照之 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1337926A priority Critical patent/JPH0696090B2/en
Publication of JPH03196816A publication Critical patent/JPH03196816A/en
Publication of JPH0696090B2 publication Critical patent/JPH0696090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、各種のボイラ、各種加熱炉さらには、ごみ
焼成炉などの燃焼炉内に排ガス処理剤を投入して、燃焼
炉から出る排ガス中の硫黄酸化物(SOx)を効果的除去
すると同時に、窒素酸化物(NOx)をも効果的に除去す
る燃焼排ガス処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is directed to an exhaust gas discharged from a combustion furnace by introducing an exhaust gas treating agent into a combustion furnace such as various boilers, various heating furnaces, and a refuse firing furnace. The present invention relates to a combustion exhaust gas treatment method for effectively removing nitrogen oxides (NOx) at the same time as effectively removing sulfur oxides (SOx) therein.

[従来技術および発明の課題] 従来より、乾式脱硫法の代表例として、Ca系脱硫剤およ
び/またはMg系脱硫剤を燃焼装置の火炉内へ直接吹き込
んで脱硫を行なう、いわゆる「炉内脱硫法」が知られて
いる。
[Prior Art and Problems of the Invention] Conventionally, as a typical example of a dry desulfurization method, a so-called "in-furnace desulfurization method" in which a Ca-based desulfurizing agent and / or an Mg-based desulfurizing agent is directly blown into the furnace of a combustion apparatus to perform desulfurization "It has been known.

しかし、この方法は、脱硫剤を多量に使用する必要があ
る上に、低い脱硫性能しか得られないため、未だ実用化
されるに至っていない。
However, this method has not yet been put to practical use because it requires the use of a large amount of desulfurizing agent and can obtain only low desulfurization performance.

この発明の目的は、上記の如き実情に鑑み、燃焼炉排ガ
ス中の硫黄酸化物と窒素酸化物とを同時にかつ効果的に
除去することができる燃焼排ガス処理方法を提供するる
ことにある。
In view of the above situation, an object of the present invention is to provide a combustion exhaust gas treatment method capable of simultaneously and effectively removing sulfur oxides and nitrogen oxides in combustion furnace exhaust gas.

[課題の解決手段] この発明による燃焼排ガス処理方法は、燃焼炉の600〜9
00℃の温度領域の排ガスにアルカリ土類金属系脱硫剤と
尿素ないしその誘導体との混合物より成る排ガス処理剤
を噴射投入し、燃焼炉の後流で100〜400℃の温度領域の
排ガスに水を噴射することを特徴とするものである。
[Means for Solving the Problems] The method for treating combustion exhaust gas according to the present invention is 600 to 9
An exhaust gas treatment agent consisting of a mixture of an alkaline earth metal desulfurizing agent and urea or its derivative is injected into the exhaust gas in the temperature range of 00 ° C, and water is supplied to the exhaust gas in the temperature range of 100 to 400 ° C in the downstream of the combustion furnace. Is to be injected.

上記において、アルカリ土類金属系脱硫剤としては、た
とえばCaCO3、Ca(OH)、CaCOなどのCa系脱硫剤や、
ドロマイト(MgCO3・CaCO3)なが用いられる。排ガス処
理剤の形態は、特に限定されないが、好ましくは粉体
状、スラリー状などである。
In the above, examples of the alkaline earth metal-based desulfurizing agent include Ca-based desulfurizing agents such as CaCO 3 , Ca (OH) 2 and CaCO,
Dolomite (MgCO 3 · CaCO 3 ) is used. The form of the exhaust gas treating agent is not particularly limited, but is preferably a powder form, a slurry form, or the like.

噴射される水は、好ましくは加熱された状態にあり、噴
射の結果微細化水滴となされる。
The water to be jetted is preferably in a heated state and as a result of the jetting it is made into atomized water droplets.

排ガス処理剤の投入を行なう領域は600〜900℃の温度領
域であり、水噴射を行なう領域は100〜400℃蒸気の温度
領域である。
The region where the exhaust gas treating agent is charged is a temperature region of 600 to 900 ° C, and the region where water is injected is a temperature region of 100 to 400 ° C steam.

[作 用] この発明の方法によれば、まず、燃焼炉の600〜900℃の
温度領域の排ガスにアルカリ土類金属系脱硫剤と尿素な
いしその誘導体との混合物より成る排ガス処理剤を噴射
投入することによって、炉内において排ガスの脱硫およ
び脱硝が同時に行なわれる。
[Operation] According to the method of the present invention, first, the exhaust gas treating agent composed of a mixture of the alkaline earth metal desulfurizing agent and urea or its derivative is injected into the exhaust gas in the temperature range of 600 to 900 ° C. in the combustion furnace. By doing so, desulfurization and denitration of the exhaust gas are simultaneously performed in the furnace.

つい、燃焼炉の後流で100〜400℃の温度領域の排ガスに
水を噴射することによって、排ガス中の湿分を増加せし
めると共に排ガス温度を降下せしめる。この結果、低温
領域2段目の脱硫が行なわれる。
Then, by injecting water into the exhaust gas in the temperature range of 100 to 400 ° C. in the wake of the combustion furnace, the moisture content in the exhaust gas is increased and the exhaust gas temperature is lowered. As a result, the second stage desulfurization in the low temperature region is performed.

こうして、燃焼プロセス全体を一種の反応器と考えて、
その高温領域で炉内脱硫および脱硝反応を行なわしめる
と共に、その後流の低温領域において2段目の脱硫作用
を生起せしめることによって、少量の薬剤使用量で脱硫
率90%以上および脱硝率85%以上という高い反応効率が
得られる。
Thus, thinking of the entire combustion process as a kind of reactor,
By performing the desulfurization and denitration reaction in the furnace in the high temperature region and by causing the second stage desulfurization action in the low temperature region of the subsequent flow, the desulfurization rate is 90% or more and the denitrification rate is 85% or more with a small amount of chemicals used. That is, high reaction efficiency can be obtained.

[実 施 例] a)プロセスの説明 以下、この発明の実施例を、図面を参照して説明する。
第1図はこの発明の方法を実施するための実験装置およ
びそのプロセスフローを示す。第1図において、この実
験装置は、排ガスの流れ方向に、微粉炭の燃焼炉(1)
と、脱硫脱硝反応用の反応室(3)と、排ガスの排熱に
よる空気加熱用のエアーヒータ(4)と排ガス冷却用の
冷却塔6)と、排ガス除塵用のバグフィルタ(7)とを
主たる構成要素として成る。
[Examples] a) Description of Process Examples of the present invention will be described below with reference to the drawings.
FIG. 1 shows an experimental apparatus and its process flow for carrying out the method of the present invention. In Fig. 1, this experimental apparatus is equipped with a pulverized coal combustion furnace (1) in the flow direction of exhaust gas.
A reaction chamber (3) for desulfurization and denitration reaction, an air heater (4) for heating air by exhaust heat of exhaust gas, a cooling tower 6) for cooling exhaust gas, and a bag filter (7) for exhaust gas dust removal. It is the main component.

まず、微粉炭は燃焼炉(1)の燃焼バーナで燃焼させら
れる。燃焼炉(1)における微粉炭の燃焼量は最大で10
kg/時であるが、助燃用プロパンの燃焼による低負荷の
石炭燃焼すなわち混焼が可能であり、この混焼によっ
て、反応室(3)における温度制御、NOx発生量の抑
制、さらにはSO2ガスの注入による排ガス中のSO2ガス濃
度の調整が可能なようになっている。
First, pulverized coal is burned in the combustion burner of the combustion furnace (1). The maximum combustion amount of pulverized coal in the combustion furnace (1) is 10
Although it is kg / hour, low-load coal combustion, that is, co-combustion is possible by combustion of propane for auxiliary combustion. By this co-combustion, temperature control in the reaction chamber (3), suppression of NOx generation amount, and further SO 2 gas The concentration of SO 2 gas in the exhaust gas can be adjusted by injection.

燃焼炉(1)発生した排ガス、燃焼炉(1)の後流側に
設けられている脱硫および脱硝のための反応室(3)に
入る。反応室(3)の径は330mm、高さは4mである。反
応室(3)はその周面に設けられた電気ヒータ(2)で
所定温度に制御きるよううになっている。
Exhaust gas generated in the combustion furnace (1) enters the reaction chamber (3) for desulfurization and denitration provided on the downstream side of the combustion furnace (1). The reaction chamber (3) has a diameter of 330 mm and a height of 4 m. The reaction chamber (3) can be controlled at a predetermined temperature by an electric heater (2) provided on its peripheral surface.

排ガス処理剤、すなわち脱硫剤と尿素ないしその誘導体
との混合物は、粉体の形態にある場合には、反応室
(3)のトップの部分へ空気流にのせて注入される。排
ガス処理剤がスラリーの形態にある場合もやはり反応室
(3)のトップの部分へ注入される。この排ガス処理剤
の注入によって、反応室(3)内で排ガス中のSO2の吸
収反応とNOxの還元反応が起こる。特ににNOxの還元反
応、反応室後流でNOx低減効果認められなかったことか
ら、反応室(3)において完結すようである。他方、SO
2の吸収反応室(3)から冷却塔(6)の出口まで(冷
却塔内で水噴射を行なわなない場合はさらに後流ま
で)、やはり認められなかった。この現象は反応室
(3)の出口とバグフィルタ(7)の出口に設置した排
ガス中のO2、SO2、NOxの各濃度を測定するガス分析計
(8)による分析の結果、確認された。なお、各部所の
温度はそれぞれ温度計(9)によって測定し、また排ガ
ス流量はバグフィルタ(7)の出口に設置した流流量計
(10)によって測定した。
The exhaust gas treating agent, that is, the mixture of the desulfurizing agent and urea or its derivative, in the case of powder, is injected into the top portion of the reaction chamber (3) by air flow. Even when the exhaust gas treating agent is in the form of a slurry, it is injected into the top portion of the reaction chamber (3). This injection of the exhaust gas treating agent causes an absorption reaction of SO 2 and a reduction reaction of NOx in the exhaust gas in the reaction chamber (3). In particular, the NOx reduction reaction and the NOx reduction effect in the downstream of the reaction chamber were not observed, so it seems to be completed in the reaction chamber (3). On the other hand, SO
From the absorption reaction chamber (3) of No. 2 to the outlet of the cooling tower (6) (further downstream if no water injection was carried out in the cooling tower) was also not observed. This phenomenon was confirmed as a result of analysis by a gas analyzer (8) that measures the concentrations of O 2 , SO 2 , and NOx in the exhaust gas installed at the outlet of the reaction chamber (3) and the outlet of the bag filter (7). It was The temperature of each part was measured by a thermometer (9), and the exhaust gas flow rate was measured by a flow meter (10) installed at the outlet of the bag filter (7).

以上の事象から、排ガス中のSO2の吸収反応およびNOxの
還元反応は、いずれも600〜900℃の温度領域で生起する
ものと推定される。
From the above events, it is presumed that the SO 2 absorption reaction and NOx reduction reaction in the exhaust gas both occur in the temperature range of 600 to 900 ° C.

反応室(3)を出た排ガスはエアヒータ(4)を通過
し、冷却空気によりり排熱が回収されて冷却された後、
熱交換器(5)冷却水によってさらに冷却される。
The exhaust gas leaving the reaction chamber (3) passes through the air heater (4), and after exhaust heat is recovered by the cooling air and cooled,
The heat exchanger (5) is further cooled by cooling water.

この発明では、燃焼炉の後流でさらに付加的脱硫を行な
うために、つぎの操作を行なう。すなわち、熱交換器
(5)において、排ガスを冷却するのに用いられた冷却
水は、熱交換器(5)を通過する間に排ガスの排熱によ
って加熱されている。この加熱状態の水は冷却塔(6)
の上部から噴射ノズルで塔内へ吹き込まれる。その結
果、冷却塔(6)において、冷却水は加熱状態にあるた
めその噴射によってフラッシュ蒸発作用を起こして、微
細化水滴となされる。こうして生じた微細化水滴、粗大
水滴がが冷却塔(6)内で壁面に付着し、この付着水に
よって脱硫剤含有灰分が同壁面に付着して固化し、さら
にこの固化物が成長して塔の閉塞を招くことを防止する
と共に、排ガスと水滴の良好な混合を促進する働きをす
る。この微細化水滴は、排ガスとの混合の結果、排ガス
中の湿分を増加せしめると共に、排ガス温度を降下せし
める。
In the present invention, the following operation is performed in order to carry out additional desulfurization in the downstream of the combustion furnace. That is, in the heat exchanger (5), the cooling water used for cooling the exhaust gas is heated by the exhaust heat of the exhaust gas while passing through the heat exchanger (5). The water in this heated state is cooled by the cooling tower (6).
It is blown into the tower from the upper part of the tower by an injection nozzle. As a result, in the cooling tower (6), since the cooling water is in a heated state, the jetting of the cooling water causes a flash evaporation action to form fine water droplets. The fine water droplets and the coarse water droplets thus generated adhere to the wall surface in the cooling tower (6), and due to the adhered water, the desulfurizing agent-containing ash content adheres to the wall surface and solidifies, and further the solidified product grows and the tower solidifies. It prevents clogging of the exhaust gas and promotes good mixing of the exhaust gas and water droplets. As a result of mixing with the exhaust gas, the atomized water droplets increase the moisture content in the exhaust gas and lower the exhaust gas temperature.

冷却塔(6)内では、排ガス中の灰分に含まれる未反応
のCaOが噴射された水分と反応して、Ca(OH)とな
り、これがSO2を吸する作用が生起する。こうして、冷
却塔(6)において2段目の脱硫反応が進行する。
In the cooling tower (6), unreacted CaO contained in the ash content of the exhaust gas reacts with the injected water to become Ca (OH) 2 , which causes an action of absorbing SO 2 . In this way, the second-stage desulfurization reaction proceeds in the cooling tower (6).

ここで、反応室(3)および冷却塔(6)起こると考え
られるSO2の吸収反応を纏めると、つぎのようになる。
Here, the SO 2 absorption reactions that are considered to occur in the reaction chamber (3) and the cooling tower (6) are summarized as follows.

反応室(3)内の600〜900℃の温度領域で生起する
反応: CaCO3→CaO+CO2↑ CaO+SO2+1/2O2→CaSO4 冷却塔(6)内の100〜400℃の温度領域で生起する
反応: CaO+H2O→Ca(OH) Ca(OH)+SO2→CaSO3・H2O すなわち、高温領域ではCaSO4が生じ、低温域はCaSO3
生じる。また、の一連の反応は冷却塔(6)だけ完結
するるものではなく、さらに後流のバグフィルタ(7)
のフィルタ表面においても継続されているようである。
なお、上記の反応で生じたCaSO4、CaSO3、および未
反応のCaCO3、CaOは、いずれも石炭燃焼灰との混合物と
して、バグフィルタ(7)で捕集・回収された。
Reaction that occurs in the temperature range of 600 to 900 ° C in the reaction chamber (3): CaCO 3 → CaO + CO 2 ↑ CaO + SO 2 + 1 / 2O 2 → CaSO 4 occurs in the temperature range of 100 to 400 ° C in the cooling tower (6) reacting: CaO + H 2 O → Ca (OH) 2 Ca (OH) 2 + SO 2 → CaSO 3 · H 2 O that is, CaSO 4 is produced in the high temperature region, the low temperature zone is produced CaSO 3. In addition, the series of reactions in (1) is not completed only in the cooling tower (6), but in the downstream bag filter (7).
It seems that it continues on the filter surface.
The CaSO 4 , CaSO 3 , and unreacted CaCO 3 , CaO generated in the above reaction were all collected and collected by the bag filter (7) as a mixture with coal combustion ash.

こうして、浄化処理せられた排ガスは流量計(10)を経
て系外へ排出される。
In this way, the purified exhaust gas is discharged to the outside of the system through the flow meter (10).

b)脱硫脱硝試験 以下の比較例および実施例における主な実験条件は下記
のとおりであった。
b) Desulfurization denitration test The main experimental conditions in the following comparative examples and examples were as follows.

燃料供給速度:プロパン0.64Nm3/時 +石炭3.42kg/時の混焼 空気比:1.81(排ガス中の酸素濃度9.4%) 排ガス量:74Nm3/時 SOx濃度:800ppm(純SO2ガス添加による濃度調整) NOx濃度:260ppm 反応温度:780℃ ガス滞留時間:4.5秒(反応室内) 比較例 排ガス中に、排ガス処理剤として粒径1.7μのCaCO3微粉
末と粉状の尿素との混合物(CaCO39:尿素1)反応室
(3)へ噴射供給した。そして、燃焼炉(1)内で発生
するSO2量(モル量)と反応室(3)に投入したCa量
(モル量)の比、すなわちCa/Sモル当量比を変えつつ、
反応室(3)の出口およびバグフィルタ(7)の出口で
の各ガス分析計(8)を用いて、排ガス中のNOx濃度お
よびSO2濃度を測定し、Ca/Sモル当量比と脱硝率および
脱硫率との関係を調べた。これらの測定結果をそれぞれ
第2図中の曲線(A)および第3図中の曲線(B)に示
す。
Fuel feed rate: Propane 0.64 Nm 3 / hr + Coal 3.42 kg / hr mixed combustion Air ratio: 1.81 (oxygen concentration in exhaust gas 9.4%) Exhaust gas amount: 74 Nm 3 / hr SOx concentration: 800 ppm (concentration by adding pure SO 2 gas) Adjustment) NOx concentration: 260 ppm Reaction temperature: 780 ° C Gas retention time: 4.5 seconds (in the reaction chamber) Comparative example A mixture of CaCO 3 fine powder with a particle size of 1.7 µ and powdery urea (CaCO 3 9: urea 1) was injected and supplied to the reaction chamber (3). Then, while changing the ratio of the SO 2 amount (molar amount) generated in the combustion furnace (1) and the Ca amount (molar amount) charged into the reaction chamber (3), that is, the Ca / S molar equivalent ratio,
The NOx concentration and SO 2 concentration in the exhaust gas were measured using each gas analyzer (8) at the outlet of the reaction chamber (3) and the outlet of the bag filter (7), and the Ca / S molar equivalent ratio and the denitrification rate were measured. And the relationship with the desulfurization rate was investigated. These measurement results are shown in the curve (A) in FIG. 2 and the curve (B) in FIG. 3, respectively.

脱硝性能を示す第2図中の曲線(A)から明らかなよう
に、Ca/Sモル当量比=3の時に脱硝率85%が得られ、反
応室(3)の出口およびバグフィルタ(7)の出口の各
NOx濃度はいずれも40ppm程度まま低下した。なお、尿素
の供給量を増大して、Ca/Sモル当量比を3以に上げて
も、脱硝効果はそれ以上には向上しなかった。
As is clear from the curve (A) in Fig. 2 showing the denitration performance, a denitration rate of 85% was obtained when the Ca / S molar equivalent ratio was 3, and the outlet of the reaction chamber (3) and the bag filter (7) Each of the exits
The NOx concentration decreased to around 40 ppm. Even if the supply amount of urea was increased and the Ca / S molar equivalent ratio was increased to 3 or more, the denitration effect was not further improved.

脱硝性能を示す第3図の曲線(B)から明らかなよう
に、Ca/Sモル当量比=3の時に脱硫率85%あり、反応室
(3)の出口およびバグフィルタ(7)の出口の各SO2
濃度はそれぞれ120ppmであった。
As is clear from the curve (B) in FIG. 3 showing the denitrification performance, the desulfurization rate was 85% when the Ca / S molar equivalent ratio was 3, and the outlet of the reaction chamber (3) and the outlet of the bag filter (7) were Each SO 2
The concentration was 120 ppm in each case.

実施例 比較例の上記条件と同じ条件で、比較例の上記操作に加
えて、熱交換器(5)を出た加熱状態の却水120/時
を冷却塔(6)に頂部のノズルから吹き込んだ。この
時、エアーヒータ(4)の出口の排ガス温度度430℃、
水噴射の後流すなわち却塔(6)の出口の温度は160
℃、バグフィルタ(7)の出口の温度は120℃であっ
た。
Example Under the same conditions as those of the comparative example, in addition to the above operation of the comparative example, 120 / hour of heated waste water discharged from the heat exchanger (5) was blown into the cooling tower (6) from the nozzle at the top. It is. At this time, the temperature of exhaust gas at the outlet of the air heater (4) is 430 ° C,
The temperature of the wake of the water jet, that is, the outlet of the tower (6) is 160
The temperature at the outlet of the bag filter (7) was 120 ° C.

比較例と同様にして、排ガス中のSO2濃度を測定し、Ca/
Sモル当量比と脱硫率との関係を調べた。これらの測定
結果をそれぞれ第3図中の曲線(C)に示す。
Similarly to the comparative example, the SO 2 concentration in the exhaust gas was measured, and Ca /
The relationship between the S molar equivalent ratio and the desulfurization rate was investigated. The results of these measurements are shown in the curve (C) in FIG. 3, respectively.

上記水の吹き込みによって、排ガス中の湿分が増加せら
れると共に排ガス温度が降下させられ、上記の反応が
進行し、2段目の脱硫が行なわれる。その結果、脱硫性
能を示す第3図の曲線(C)から明らかなように、Ca/S
モル当量比=2の時に脱硫率95%が得られ、バグフィル
タ(7)の出口のSO2濃度は40ppmであった。これに対
し、水噴射の前流すなわち反応室(3)の出口における
SO2濃度は240ppmであった。
By the water blowing, the moisture content in the exhaust gas is increased and the exhaust gas temperature is lowered, the above reaction proceeds, and the second-stage desulfurization is performed. As a result, as is clear from the curve (C) in FIG. 3 showing the desulfurization performance, Ca / S
When the molar equivalent ratio = 2, a desulfurization rate of 95% was obtained, and the SO 2 concentration at the outlet of the bag filter (7) was 40 ppm. On the other hand, in the upstream of the water injection, that is, at the outlet of the reaction chamber (3)
The SO 2 concentration was 240 ppm.

また、NOx濃度は、反応室(3)の出口およびバグフィ
ルタ(7)の出口とも100ppmであった。このことは、脱
硝に関しては第2図の曲線(A)の性能が支配的あり、
脱硝効率をさらに向上させるに尿素の含量を増加させる
必要があることを示している。
The NOx concentration was 100 ppm at both the outlet of the reaction chamber (3) and the outlet of the bag filter (7). This means that the performance of the curve (A) in FIG. 2 is dominant for denitration,
It shows that it is necessary to increase the urea content to further improve the denitration efficiency.

[発明の効果] この発明の方法によれば、まず、燃焼炉の600〜900℃の
温度領域の排ガスにアルカリ土類金属系脱硫剤と尿素な
いしその誘導体との混合物より成る排ガス処理剤を噴射
投入するので、炉内において排ガスの脱硫および脱硝を
同時に行なうことができる。
[Effects of the Invention] According to the method of the present invention, first, an exhaust gas treating agent composed of a mixture of an alkaline earth metal-based desulfurizing agent and urea or its derivative is injected into the exhaust gas in the temperature range of 600 to 900 ° C in the combustion furnace. Since it is charged, the exhaust gas can be desulfurized and denitrated at the same time in the furnace.

ついで、燃焼炉の後流で100〜400℃の温度領域の排ガス
に水を噴射するので、、排ガス中の湿分を増加せしめる
と共に排ガス温度を降下せしめ、この結果低温領域で2
段目の脱硫を行なわしめることがきる。
Then, since water is injected into the exhaust gas in the temperature range of 100 to 400 ° C in the downstream of the combustion furnace, the moisture content in the exhaust gas is increased and the exhaust gas temperature is lowered, resulting in 2
It is possible to carry out the desulfurization of the first stage.

こうして、この発明明の方法では、燃焼プロセス全体を
一種の反応器と考えて、その高温領域で炉内脱硫および
脱硝反応を行なうと共に、その後流の低温領域において
2段目の脱硫作用を生起せしめることによって、少量の
薬剤使用量で脱硫率90%以上および脱硝率85%以上とい
う高い反応効率を得ることがきる。
Thus, in the method of the present invention, the entire combustion process is considered as a kind of reactor, and the desulfurization and denitration reactions in the furnace are performed in the high temperature region thereof, and the second stage desulfurization action is caused in the low temperature region of the subsequent flow. As a result, a high reaction efficiency of desulfurization rate of 90% or more and denitration rate of 85% or more can be obtained with a small amount of chemicals used.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例を示すフローシート、第2図
はCa/Sモル当量比と脱硝率との関係を示すグラフ、第3
図はCa/Sモル当量比と脱硫率との関係を示すグラフであ
る。 (1)……燃焼炉、(2)……電気ヒータ、(3)……
反応室、(4)……エアーヒータ、(5)……熱交換
器、(6)…冷却塔、(7)……バグフィルタ、(8)
ガス分析計、(9)……温度計、(10)……流量計。
FIG. 1 is a flow sheet showing an embodiment of the present invention, FIG. 2 is a graph showing the relationship between the Ca / S molar equivalent ratio and the denitration rate, and FIG.
The figure is a graph showing the relationship between the Ca / S molar equivalent ratio and the desulfurization rate. (1) …… Combustion furnace, (2) …… Electric heater, (3) ……
Reaction chamber, (4) ... Air heater, (5) ... Heat exchanger, (6) ... Cooling tower, (7) ... Bag filter, (8)
Gas analyzer, (9) ... thermometer, (10) ... flow meter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 土井 照之 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (56)参考文献 特開 平3−154615(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Teruyuki Doi 1-6-14 Edobori, Nishi-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (56) Reference JP-A-3-154615 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃焼炉の600〜900℃の温度領域の排ガスに
アルカリ土類金属系脱硫剤と尿素ないしその誘導体との
混合物より成る排ガス処理剤を噴射投入し、燃焼炉の後
流で100〜400℃の温度領域の排ガスに水を噴射すること
を特徴とする燃焼排ガス処理方法。
1. An exhaust gas treating agent consisting of a mixture of an alkaline earth metal desulfurizing agent and urea or a derivative thereof is injected into exhaust gas in a temperature range of 600 to 900 ° C. in a combustion furnace, and the exhaust gas treating agent is injected at 100 in the downstream of the combustion furnace. A method for treating combustion exhaust gas, which comprises injecting water into exhaust gas in a temperature range of up to 400 ° C.
JP1337926A 1989-12-25 1989-12-25 Combustion exhaust gas treatment method Expired - Lifetime JPH0696090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337926A JPH0696090B2 (en) 1989-12-25 1989-12-25 Combustion exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337926A JPH0696090B2 (en) 1989-12-25 1989-12-25 Combustion exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH03196816A JPH03196816A (en) 1991-08-28
JPH0696090B2 true JPH0696090B2 (en) 1994-11-30

Family

ID=18313304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337926A Expired - Lifetime JPH0696090B2 (en) 1989-12-25 1989-12-25 Combustion exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JPH0696090B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060160A (en) * 2019-10-08 2021-04-15 伊藤レーシングサービス株式会社 Incinerator

Also Published As

Publication number Publication date
JPH03196816A (en) 1991-08-28

Similar Documents

Publication Publication Date Title
KR930003212B1 (en) Dry-type treating method for exhaust gas
EP0716873B1 (en) Method and apparatus for treating waste gases by exposure to electron beams
US4783325A (en) Process and apparatus for removing oxides of nitrogen and sulfur from combustion gases
KR970010329B1 (en) IN FURANCE AMMONIA AND LIMESTONE INJECTION WITH DRY SCRUBBING FOR IMPROVED SIMULTANEOUS SOx AND NOx REMOVAL
US4590049A (en) Method for dry desulfurization of exhaust gas
US5165903A (en) Integrated process and apparatus for control of pollutants in coal-fired boilers
KR890000512B1 (en) Process for removal of nitrogen oxides and sulfur oxides from waste gases
CS67489A3 (en) Process for nitrogen oxides reducing with the aid of a two-stage spraying into a combustion apparatus and apparatus for making the same
KR920007857B1 (en) Exhaust gas treating method
EP0933516B1 (en) Gasification power generation process and equipment
GB2246121A (en) Desulphurization and denitration of furnace gases
KR20040026653A (en) Method for Treating Flue Gases Containing Ammonia
JP3032247B2 (en) Desulfurization method of spraying fine powder desulfurizing agent to combustion exhaust gas
JPH0696090B2 (en) Combustion exhaust gas treatment method
KR101508268B1 (en) Boiler System for Petro Coke with Dry Scrubber and Dust Collector Equipment
JPH0467085B2 (en)
JPH0557139A (en) Lime blowing desulfurization
EP0156784B1 (en) A method of reducing sulphur-oxide and nitrogen-oxide emission when burning solid fuel on travelling grates
JPH0352624A (en) Dry simultaneous desulfurization and denitrification
JPS6251645B2 (en)
JPH03202125A (en) Simultaneous removal of sulfur oxide and nitrogen oxide
JPH0741144B2 (en) Method for simultaneous dry removal of sulfur oxides and nitrogen oxides
JPH035616A (en) Simultaneous decrease of nitrogen oxides, sulfur oxides and hydrogen chloride in waste combustion gas
CN113251411B (en) Multi-pollutant cooperative control system and method for coal-fired industrial boiler
EP1076594B1 (en) A method of producing so2 sorbent that is suitable for use to desulfurize combustion gases