JPH035616A - Simultaneous decrease of nitrogen oxides, sulfur oxides and hydrogen chloride in waste combustion gas - Google Patents

Simultaneous decrease of nitrogen oxides, sulfur oxides and hydrogen chloride in waste combustion gas

Info

Publication number
JPH035616A
JPH035616A JP1140819A JP14081989A JPH035616A JP H035616 A JPH035616 A JP H035616A JP 1140819 A JP1140819 A JP 1140819A JP 14081989 A JP14081989 A JP 14081989A JP H035616 A JPH035616 A JP H035616A
Authority
JP
Japan
Prior art keywords
alkaline agent
combustion
hydrogen chloride
exhaust gas
combustion gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1140819A
Other languages
Japanese (ja)
Other versions
JP2788997B2 (en
Inventor
Masanori Konishi
正則 小西
Kenzo Kuwata
桑田 賢三
Tetsuo Minoda
蓑田 哲生
Ayumi Shimizu
歩 清水
Masaaki Takemoto
竹本 政昭
Teizo Tamura
田村 禎三
Akihiko Mitani
明彦 三谷
Iwao Mogi
茂木 岩夫
Koichiro Doi
土井 晃一郎
Hidehiro Kito
木藤 栄寛
Akira Tamaoki
玉置 彰
Arihiro Nakazato
中里 有宏
Izo Nakagawa
中川 伊造
Kenji Takahashi
賢次 高橋
Yoshito Fukuma
義人 福間
Hidekazu Fujii
秀和 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP1140819A priority Critical patent/JP2788997B2/en
Publication of JPH035616A publication Critical patent/JPH035616A/en
Application granted granted Critical
Publication of JP2788997B2 publication Critical patent/JP2788997B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chimneys And Flues (AREA)
  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To improve a removal rate by a simple construction by blowing an alkaline agent into a high temperature combustion gas zone above a given temperature in a combustion equipment for a boiler or the like. CONSTITUTION:The spray nozzles 12a-12d of an alkaline agent (NaOH or KOH) are provided above stokers 3-5 and an alkaline agent solution 13 is sprayed towards a high temperature combustion gas at above 800 deg.C. At this time, 0.6-1.5 times as much as the theoretical amount of the alkaline agent necessary for neutralizing the sum of the amount of hydrogen chlorides and sulfur oxides is sprayed into a waste combustion gas. This simple construction enables nitrogen oxides, sulfur oxides and hydrogen chlorides to be simultaneously removed at high rates.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は燃焼によって発生する窒素酸化物、硫黄酸化物
及び塩化水素の低減方法の改良に関するものであり、主
としてボイラや塵芥焼却炉、産業廃棄物焼却炉、汚泥焼
却炉等の燃焼設備に於いて利用され、湿式法ではなくし
て乾式法により、上記窒素酸化物、硫黄酸化物及び塩化
水素を同時に低減、除去するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to improvements in methods for reducing nitrogen oxides, sulfur oxides, and hydrogen chloride generated by combustion, and is mainly applied to boilers, garbage incinerators, and industrial waste. It is used in combustion equipment such as material incinerators and sludge incinerators, and uses a dry method instead of a wet method to simultaneously reduce and remove the nitrogen oxides, sulfur oxides, and hydrogen chloride.

(従来の技術) 所謂乾式法により、燃焼排ガス中から燃焼の際に発生す
る窒素酸化物(NOx)、硫黄酸化物(SOx)、塩化
水素(HCl2)の王者を同時に除去する方法として下
記の(A)の如き方法が、また、主としてSOxとHC
Qの王者を同時に除去する方法として下記の(B)の如
き方法が、これ迄に夫々実用に供されている。
(Prior art) As a method for simultaneously removing the kings of nitrogen oxides (NOx), sulfur oxides (SOx), and hydrogen chloride (HCl2) generated during combustion from combustion exhaust gas by a so-called dry method, the following ( Methods such as A) also mainly reduce SOx and HC.
As a method for simultaneously removing the king of Q, methods such as the following (B) have been put into practical use so far.

Ωす方塾 ■ 温度が約350℃以下の燃焼排ガス内へ粉体状又は
スラリー状の消石灰(Ca (OH)z)(若しくは水
酸化ナトリウム(NaOH)、炭酸カルシウム(Ca 
CO3)等を噴霧し、■ 排ガス内のSOxやHCQ、
No2と反応させて硫酸カルシウムや亜硫酸カルシウム
、塩化カルシウム、硝酸塩(亜硝酸塩)等を生成させ ■ 前記反応生成物をバグフィルタ−や電気集塵機で捕
集する。
Ω Shoujuku ■ Powdered or slurry slaked lime (Ca (OH)) (or sodium hydroxide (NaOH), calcium carbonate (Ca
CO3), etc., and ■ SOx and HCQ in the exhaust gas,
React with No. 2 to produce calcium sulfate, calcium sulfite, calcium chloride, nitrate (nitrite), etc. (2) Collect the reaction products using a bag filter or an electrostatic precipitator.

01九流 ■ 温度が約800℃〜950℃の燃焼室内の燃焼ガス
内へ炭酸カルシウム(Ca COs )やドロマイト(
MgCO3・CaC03)の薬剤を噴霧し、 ■ 排ガス中のSOxやHCQと反応せしめてカルシウ
ム塩を生成させ、 ■ 反応生成物であるカルシウム塩を集塵装置等で捕集
する。
019 ■ Calcium carbonate (Ca COs ) and dolomite (
A chemical agent (MgCO3/CaC03) is sprayed, (1) it reacts with SOx and HCQ in the exhaust gas to produce calcium salt, and (2) the reaction product calcium salt is collected by a dust collector or the like.

而して、前記従前の(A)方法は、SOxとH(1につ
いては比較的高い除去率(約70〜80%)を容易に得
ることが出来、優れた実用的効用を奏するものである。
Therefore, the conventional method (A) can easily obtain a relatively high removal rate (approximately 70 to 80%) for SOx and H (1), and has excellent practical utility. .

しかし、N Oxに関してはその除去率が極めて低く(
約2〜5%)、実用的な除去効果が得られないという問
題がある。
However, the removal rate for NOx is extremely low (
(approximately 2 to 5%), there is a problem that a practical removal effect cannot be obtained.

尚、NOxに対する除去率が極めて低いのは、噴霧され
たC a (OH)zやNaOH,CaCO3等のアル
カリ剤がNO2とだけしか反応せず、NOx内の大部分
(約95%)を占めるNoがそのまま除去されずに排出
されるからである。
The removal rate for NOx is extremely low because the sprayed alkali agents such as Ca(OH)z, NaOH, and CaCO3 react only with NO2, which accounts for most of the NOx (approximately 95%). This is because No. is discharged without being removed as it is.

又、前記従前の(B)方法にあっても同様であり、NO
xに関しては殆んど除去効果が無いという欠点がある。
Also, the same applies to the previous method (B), and NO
Regarding x, there is a drawback that there is almost no removal effect.

一方、NOを何等かの方法により酸化してNO□にする
ことが出来れば、前述の通りNO□がアルカリ剤と反応
して硝酸塩(亜硝酸塩)となるため、アルカリ剤を用い
た乾式法により、SOxとHcQとNOxの王者を同時
に高い除去率で除くことが可能となる。
On the other hand, if NO can be oxidized to NO□ by some method, NO□ reacts with an alkaline agent to become nitrate (nitrite) as mentioned above, so a dry method using an alkaline agent can be used. , it becomes possible to simultaneously remove the champions of SOx, HcQ, and NOx with a high removal rate.

そのため、現在各種のNoの酸化方法、例えばコロナ放
電法やプラズマ放電法、電子線照射法、オゾン(03)
注入法等の開発が進められているが。
Therefore, there are currently various methods of oxidizing No, such as corona discharge method, plasma discharge method, electron beam irradiation method, ozone (03)
Development of injection methods, etc. is progressing.

何れも設備費が高価になるうえ、酸化に要するエネルギ
ー費も高価となり、設備費並びに運転費の両面から実用
化が困難な状態にある。
In both cases, equipment costs are high, and the energy required for oxidation is also expensive, making it difficult to put them into practical use from both equipment and operating costs.

その結果、現時点に於いては、NOx−8Ox・HCQ
の三成分同時除去は実用化が図られておらず、HCQと
SOxをアルカリ剤の注入による乾式法により除去する
と共に、NOxの方は無触媒還元法や選択式触媒還元法
により除去するという二種の除去方法を併用する方式が
、広く実用化されている。
As a result, at present, NOx-8Ox・HCQ
Simultaneous removal of these three components has not been put into practical use, and there are two methods: HCQ and SOx are removed by a dry method by injecting an alkaline agent, and NOx is removed by a non-catalytic reduction method or a selective catalytic reduction method. A method that uses seed removal methods in combination is widely put into practical use.

(発明が解決しようとする課題) しかし、燃焼排ガス中の有害物の除去に二種の除去方法
を併用するシステムは、設備費や運転費が高騰するだけ
でなく、設備の保守管理にも多くの手数を要するという
問題がある。
(Problem to be solved by the invention) However, a system that uses two types of removal methods in combination to remove harmful substances from combustion exhaust gas not only increases equipment and operating costs, but also requires much maintenance and management of the equipment. There is a problem in that it requires a lot of effort.

本発明は、従前の燃焼排ガス内の有害物質の除去処理に
於ける上述の如き問題を解決せんとするものであり、特
別なNOの酸化設備を併用することなく、アルカリ剤を
用いた乾式法によってSOxとHCQとNOxの三成分
を同時に、しかも何れの成分に対しても高除去率で除く
ことが出来るようにした有害物除去方法を提供するもの
である。
The present invention aims to solve the above-mentioned problems in the conventional removal treatment of harmful substances from combustion exhaust gas. The present invention provides a method for removing harmful substances by which the three components of SOx, HCQ, and NOx can be removed simultaneously and at a high removal rate for each component.

(課題を解決するための手段) 本件請求項(1)に記載の発明は、従来のアルカリ剤を
用いた乾式法の如く、350℃以下の低温排ガス中へア
ルカリ剤を噴霧するのでは無く、燃焼室内の800℃以
上の高温の燃焼ガスゾーンへアルカリ剤を吹き込むこと
を発明の基本構成とするものである。
(Means for Solving the Problem) The invention described in claim (1) does not involve spraying an alkaline agent into low-temperature exhaust gas of 350° C. or lower, as in the conventional dry method using an alkaline agent. The basic structure of the invention is to inject an alkaline agent into the high temperature combustion gas zone of 800° C. or higher in the combustion chamber.

また、本件請求項(4)に記載の発明は、燃焼室内の8
00℃以上の高温の燃焼ガスゾーンヘアルカリ剤を吹き
込むと共に、排ガス内のHCQやSOxとアルカリ剤と
の反応生成物を集塵装置によって捕集することを発明の
基本構成とするものである。
In addition, the invention described in claim (4) is based on the
The basic structure of the invention is to inject an alkaline agent into the combustion gas zone at a high temperature of 00° C. or higher, and to collect reaction products of HCQ and SOx in the exhaust gas with the alkaline agent using a dust collector.

(作用) 800℃以上の高温の燃焼ガスゾーンへNaOH等のア
ルカリ剤を吹き込むことにより、■NOxの発生そのも
のが著しく低減すると同時に、■HCfiやSOxがア
ルカリ剤と反応して塩化ナトリウムや硫酸ナトリウム等
の塩類が形成される。
(Function) By injecting an alkaline agent such as NaOH into the combustion gas zone at a high temperature of 800°C or higher, ■NOx generation itself is significantly reduced, and at the same time, ■HCfi and SOx react with the alkaline agent to produce sodium chloride and sodium sulfate. Salts such as salts are formed.

また、前記中和反応により形成された塩類は、燃焼排ガ
スの下流側に設置された集塵装置により捕集除去される
Further, the salts formed by the neutralization reaction are collected and removed by a dust collector installed on the downstream side of the combustion exhaust gas.

前記「■NOxの発生そのものが低減する」という事象
の理由は未だ十分に解析されていないが、800℃以上
の高温の燃焼ガスゾーンへアルカリ剤を吹き込むことに
より、後述する如くCOの発生が著しく増加することか
らして、アルカリ剤が燃焼反応そのもにの何等かの影響
を与え、これによりNOxの発生そのものが抑えられた
ものと推定される。即ち、吹き込まれたアルカリ剤は、
■燃焼段階でNOxの発生を抑える役割をしているか、
又は■発生したN Oxを高温下でN2に還元する触媒
的な作用をしているか、或いは@前記■及び■の前作用
を並列的に果たしているかの何れかであると推定される
The reason for the above-mentioned phenomenon of "■ NOx generation itself is reduced" has not yet been fully analyzed, but by injecting an alkaline agent into the combustion gas zone at a high temperature of 800°C or higher, CO generation can be significantly reduced, as will be explained later. Judging from this increase, it is presumed that the alkali agent had some influence on the combustion reaction itself, thereby suppressing the generation of NOx itself. That is, the alkali agent blown into
■Does it play a role in suppressing the generation of NOx during the combustion stage?
It is presumed that either ① acts as a catalyst to reduce the generated NOx to N 2 at high temperatures, or ① plays the preceding functions of ① and ① in parallel.

(実施例) 以下、本発明の一実施例を具体的に説明する。(Example) Hereinafter, one embodiment of the present invention will be specifically described.

第1図は、本発明の実施に供した廃熱ボイラ付ごみ焼却
炉の概要を示すものであり、図に於いて1はごみ供給ホ
ッパー 2はプッシャー 3は乾燥ストーカ、4は燃焼
スト力、5は後燃焼スト力、6はコンベヤ、7は廃熱ボ
イラ、8は電気集塵装置、9は誘引ファン、1oは煙突
、11は燃焼室である。
FIG. 1 shows an outline of a waste incinerator equipped with a waste heat boiler used for implementing the present invention. In the figure, 1 is a waste supply hopper, 2 is a pusher, 3 is a drying stoker, 4 is a combustion force, 5 is a post-combustion force, 6 is a conveyor, 7 is a waste heat boiler, 8 is an electrostatic precipitator, 9 is an induction fan, 1o is a chimney, and 11 is a combustion chamber.

アルカリ剤の噴霧ノズル12a、12b、12c。Alkaline agent spray nozzles 12a, 12b, 12c.

12clはスト力3,4.5の上方に4個設けられてお
り、何れも燃焼が激しく行なわれている火炎中にある。
Four 12cl units are installed above the 3 and 4.5 strokes, and all of them are in the flame where combustion is occurring intensely.

又、当該噴霧ノズル12a、12b。Moreover, the said spray nozzle 12a, 12b.

12c、12dは、何れもストーカ上の高温の燃焼ガス
中へ向けられており、各ノズルから所定流量のアルカリ
剤水溶液13が噴出される。
Both nozzles 12c and 12d are directed into the hot combustion gas above the stoker, and a predetermined flow rate of the alkaline agent aqueous solution 13 is ejected from each nozzle.

前記ごみ焼却炉は300 Ton/241(rのごみ焼
却能力を有する平均的な都市ごみ焼却炉であり、その平
均排ガス量は80.000DryNrn”/Hrである
The waste incinerator is an average municipal waste incinerator with a waste incineration capacity of 300 Ton/241 (r), and its average exhaust gas amount is 80.000 DryNrn''/Hr.

また、当該ごみ焼却炉のアルカリ剤水溶液を噴霧する前
に定常運転時に於ける排ガス中の有害酸物濃度(平均)
は第1表の通りであった。
In addition, the concentration of harmful acids in the exhaust gas (average) during steady operation of the waste incinerator before spraying the alkaline aqueous solution.
were as shown in Table 1.

第1表 有害物の平均濃度(アルカリ剤噴霧前)本実施
例に於いては、アルカリ剤としてNaOHを使用し、先
ず最初に、前記第1表に記載の濃度のHCQとSOxの
合計量を中和するために必要なNaOHの理論計算量Q
(kg/Hr)を算定しておく、即ち、平均排ガス量8
0.0OONrrl’/Hrの下に於ける前記NaOH
の所要理論計算量Q(kg/Hr)は、 Q=(760+60X2)X80.0OOX1E臀X4
0=125.7kg/Hrとなる。尚、ここで当該Qを
1当量と呼称する。
Table 1 Average concentration of harmful substances (before alkali spraying) In this example, NaOH is used as the alkali agent, and first, the total amount of HCQ and SOx at the concentrations listed in Table 1 above is Theoretical calculation amount Q of NaOH required for neutralization
(kg/Hr), that is, the average exhaust gas amount 8
The above NaOH under 0.0OOONrrl'/Hr
The required theoretical calculation amount Q (kg/Hr) is: Q=(760+60X2)X80.0OOX1EbuttocksX4
0=125.7kg/Hr. In addition, the said Q is called 1 equivalent here.

次に、前記125.7kg/HrのNaOHを水溶液と
し、このアルカリ水溶液を前記4個のノズル12から8
00℃以上の高温の燃焼ガス中へ噴霧した。
Next, the 125.7 kg/Hr NaOH is made into an aqueous solution, and this alkaline aqueous solution is applied to the four nozzles 12 to 8.
It was sprayed into combustion gas at a high temperature of 00°C or higher.

高温燃焼ガス中へ噴霧されたN a OHの水溶液は、
急速にその水分が蒸発され、NaOHの方はヒユーム状
となって燃焼ガス内へ混合されて行くことが観測されて
いる。
The aqueous solution of N a OH sprayed into the high temperature combustion gas is
It has been observed that the moisture evaporates rapidly and NaOH becomes a fume and is mixed into the combustion gas.

前記NaOHの噴霧により生成した反応物は。The reactants generated by the above NaOH spraying are:

集塵装置8で捕集され、その結果SOx、HCQ及びN
Oxの除去率は夫々90%、85%及び40%となった
The dust collector 8 collects SOx, HCQ and N.
The removal rates of Ox were 90%, 85% and 40%, respectively.

下記の第2表は、同じごみ焼却炉に於いて、NaOHの
噴霧量を変えた場合の有害成分の除去率を示すものであ
り、NaOHの1当量は前述の通りQ=125.7kg
/Hrである。
Table 2 below shows the removal rate of harmful components when the amount of NaOH sprayed is changed in the same garbage incinerator, and as mentioned above, 1 equivalent of NaOH is Q = 125.7 kg.
/Hr.

第2表 有害物質の除去率(%) 前記NaOH水溶液をストーカ上方の燃焼炎中へ噴霧す
ると、高温燃焼ゾーンに於けるCO量が著しく増大する
ことが観測されている。第2図は、NaOH水溶液(1
当量)を噴霧する前(曲線A)と噴霧した後(曲線B)
の燃焼排ガス中のCO量を示すものであり、N a O
Hの噴霧によりCO量が急増する。このことは、前述の
如くアルカリ剤が燃焼反応に大きな影響を与えているこ
とを示すものであり、これによってNOxの低減が誘起
されているものと推定される。
Table 2 Removal rate of harmful substances (%) It has been observed that when the NaOH aqueous solution is sprayed into the combustion flame above the stoker, the amount of CO in the high temperature combustion zone increases significantly. Figure 2 shows the NaOH aqueous solution (1
Before (curve A) and after (curve B) spraying (equivalent amount)
It shows the amount of CO in the combustion exhaust gas of N a O
The amount of CO increases rapidly due to H spraying. This indicates that the alkaline agent has a large influence on the combustion reaction as described above, and it is presumed that this induces a reduction in NOx.

一方噴霧されたNaOHと有害物質(SOx。On the other hand, sprayed NaOH and harmful substances (SOx).

HO2)との中和反応によって発生した塩類は、排ガス
と共に集塵装置8へ導出され、ここで排ガス内から捕集
除去される。
The salts generated by the neutralization reaction with HO2) are led to the dust collector 8 together with the exhaust gas, where they are collected and removed from the exhaust gas.

前記第2表の結果からも明らかな様に、噴霧するNaO
H量は0.6〜1.4当量位が適量である。
As is clear from the results in Table 2 above, the sprayed NaO
A suitable amount of H is 0.6 to 1.4 equivalents.

1.4当量以上のNaOHを噴霧しても、有害成分の除
去率があまり向上しないうえ、燃焼の安定性等に悪影響
が出るからであり、また、0.6当量以下の場合には、
有害ガス除去率が十分でないからである。
This is because even if 1.4 equivalents or more of NaOH is sprayed, the removal rate of harmful components will not improve much and the stability of combustion will be adversely affected.In addition, if the amount is 0.6 equivalents or less,
This is because the harmful gas removal rate is not sufficient.

また、N a OH水溶液はストーカ上方の燃焼炎内へ
噴霧するのが最適であり、温度が800℃以下の燃焼ガ
ス内へN a OH水溶液を噴出しても、十分なNOx
の低減を図れないことが判明している。
Furthermore, it is best to spray the NaOH aqueous solution into the combustion flame above the stoker, and even if the NaOH aqueous solution is sprayed into the combustion gas at a temperature of 800°C or less, it will not produce enough NOx.
It has been found that it is not possible to reduce the

更に、本実施例ではアルカリ剤としてNaOHを使用し
ているが、KOHを使用した場合にもNaOHの場合と
ほぼ同じ有害物質の除去率を得ることか可能なことが確
認されており、NaOHやKOH以外のアルカリ性物質
であっても良いことは勿論である。
Furthermore, although NaOH is used as the alkaline agent in this example, it has been confirmed that it is possible to obtain almost the same removal rate of harmful substances when using KOH as with NaOH. Of course, alkaline substances other than KOH may be used.

(発明の効果) 本発明に於いては、800℃以上の高温の燃焼ガスゾー
ンへアルカリ剤を吹き込んでアルカリ剤とHCQ及びS
Oxを中和反応させ、反応生成物を集塵装置により捕集
除去すると共に、燃焼反応へのアルカリ剤の影響を利用
してNOxそのものの発生を抑制する構成としている。
(Effect of the invention) In the present invention, an alkali agent is blown into a combustion gas zone at a high temperature of 800°C or higher, and the alkali agent, HCQ, and S
The structure is such that the oxygen is subjected to a neutralization reaction, the reaction products are collected and removed by a dust collector, and the generation of NOx itself is suppressed by utilizing the influence of the alkaline agent on the combustion reaction.

その結果、アルカリ剤を用いた乾式法により。As a result, by a dry method using an alkaline agent.

SOx、HCQ及びNOxの王者を同時にしかも高除去
率で除くことが可能となり、従前のNoの酸化装置を用
いたり、或いは二種類の除去方法を併用してSOx及び
HCQとNOxとを夫々分けて除去する方法に比較して
、排ガス処理の設備費や運転費の大幅な引下げが可能と
なる。
It is now possible to remove the kings of SOx, HCQ, and NOx at the same time and with a high removal rate, and it is now possible to use a conventional NO oxidation device or to use two types of removal methods together to separate SOx, HCQ, and NOx, respectively. Compared to removal methods, equipment costs and operating costs for exhaust gas treatment can be significantly reduced.

本発明は上述の通り、優れた実用的効用を有するもので
ある。
As mentioned above, the present invention has excellent practical utility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、−本発明を適用したごみ焼却炉の概要図であ
る。 第2図は、本発明を実施した場合の燃焼排ガス内のCO
量を示す線図である。 3.4.5  ストーカ 7     廃熱ボイラ 8、     集塵装置 11      燃焼室 12      噴霧ノズル 13      アルカリ土類金属 第 1 図 第2図 C○ 0 1 2 3 4 5 02°10 0発 0発 ■出願人 円相 ■出願人 三谷 @出願人 茂木 禎 明度 岩夫 大阪府大阪市北区堂島浜1丁目3番お号 株式会社タク
マ内 大阪府大阪市北区堂島浜1丁目3番n号 株式会社タク
マ内
FIG. 1 is a schematic diagram of a waste incinerator to which the present invention is applied. Figure 2 shows the CO in the combustion exhaust gas when the present invention is implemented.
It is a diagram showing quantities. 3.4.5 Stoker 7 Waste heat boiler 8, Dust collector 11 Combustion chamber 12 Spray nozzle 13 Alkaline earth metal 1 Figure 2 C○ 0 1 2 3 4 5 02°10 0 shots 0 shots ■Applicant Enso ■ Applicant Mitani @ Applicant Yoshiaki Mogi Iwao 1-3 Dojimahama, Kita-ku, Osaka, Osaka Prefecture Takuma Co., Ltd. 1-3-n Dojimahama, Kita-ku, Osaka, Osaka Prefecture Takuma Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] (1)燃焼装置内の800℃以上の高温の燃焼ガスゾー
ンへアルカリ剤を吹き込むことを特徴とする燃焼排ガス
内の窒素酸化物、硫黄酸化物及び塩化水素の同時低減方
法。
(1) A method for simultaneously reducing nitrogen oxides, sulfur oxides, and hydrogen chloride in combustion exhaust gas, which comprises blowing an alkaline agent into a high-temperature combustion gas zone of 800° C. or higher in a combustion device.
(2)水酸化ナトリウムや水酸化カリウム等のアルカリ
剤水溶液を高温の燃焼ガスゾーン内へ噴霧するようにし
た請求項(1)に記載の燃焼排ガス内の窒素酸化物、硫
黄酸化物及び塩化水素の同時低減方法。
(2) Nitrogen oxides, sulfur oxides, and hydrogen chloride in the combustion exhaust gas according to claim (1), wherein an aqueous solution of an alkaline agent such as sodium hydroxide or potassium hydroxide is sprayed into the high-temperature combustion gas zone. How to simultaneously reduce
(3)燃焼排ガス内の塩化水素と硫黄酸化物の合計量の
中和に必要とするアルカリ剤の理論計算量Q(kg/H
r)の0.6〜1.5倍のアルカリ剤を高温燃焼ガスゾ
ーンへ吹き込むようにした請求項(1)に記載の燃焼排
ガス内の窒素酸化物、硫黄酸化物及び塩化水素の同時低
減方法。
(3) Theoretically calculated amount of alkaline agent required to neutralize the total amount of hydrogen chloride and sulfur oxide in the combustion exhaust gas
The method for simultaneously reducing nitrogen oxides, sulfur oxides, and hydrogen chloride in combustion exhaust gas according to claim (1), wherein the alkaline agent in an amount of 0.6 to 1.5 times r) is blown into the high-temperature combustion gas zone. .
(4)燃焼装置内の800℃以上の高温の燃焼ガスゾー
ンへアルカリ剤の水溶液を噴霧すると共に、排ガス内の
硫黄酸化物及び塩化水素とアルカリ剤との中和反応生成
物を集塵装置により捕集することを特徴とする燃焼排ガ
ス内の窒素酸化物、硫黄酸化物及び塩化水素の同時低減
方法。
(4) In addition to spraying an aqueous solution of an alkaline agent into the high-temperature combustion gas zone of 800°C or higher in the combustion equipment, the product of the neutralization reaction between sulfur oxides and hydrogen chloride in the exhaust gas and the alkaline agent is removed by a dust collector. A method for simultaneously reducing nitrogen oxides, sulfur oxides, and hydrogen chloride in combustion exhaust gas, the method comprising collecting them.
JP1140819A 1989-06-01 1989-06-01 Method for simultaneous reduction of nitrogen oxides, sulfur oxides and hydrogen chloride in flue gas Expired - Lifetime JP2788997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1140819A JP2788997B2 (en) 1989-06-01 1989-06-01 Method for simultaneous reduction of nitrogen oxides, sulfur oxides and hydrogen chloride in flue gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1140819A JP2788997B2 (en) 1989-06-01 1989-06-01 Method for simultaneous reduction of nitrogen oxides, sulfur oxides and hydrogen chloride in flue gas

Publications (2)

Publication Number Publication Date
JPH035616A true JPH035616A (en) 1991-01-11
JP2788997B2 JP2788997B2 (en) 1998-08-20

Family

ID=15277462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1140819A Expired - Lifetime JP2788997B2 (en) 1989-06-01 1989-06-01 Method for simultaneous reduction of nitrogen oxides, sulfur oxides and hydrogen chloride in flue gas

Country Status (1)

Country Link
JP (1) JP2788997B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093988A1 (en) * 2000-06-08 2001-12-13 Clearstack Combustion Corporation Potassium hydroxide flue gas injection technique to reduce acid gas emissions and improve electrostatic precipitator performance
JP2002333124A (en) * 2001-03-09 2002-11-22 Nippon Steel Corp Method of inhibiting synthesis of dioxins and the like
JP2008200631A (en) * 2007-02-21 2008-09-04 Takuma Co Ltd Method and apparatus for treating combustion exhaust gas
CN104906936A (en) * 2015-06-06 2015-09-16 长春黄金研究院 High temperature and high pressure desorbing electrolysis waste gas integrated utilization method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6286517B1 (en) * 2016-12-07 2018-02-28 株式会社プランテック Incinerator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108365A (en) * 1976-03-09 1977-09-10 Ishikawajima Harima Heavy Ind Co Ltd Removal of noxious components in exhaust gas
JPS60156563A (en) * 1984-01-26 1985-08-16 Mitsubishi Heavy Ind Ltd Waste gas treating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52108365A (en) * 1976-03-09 1977-09-10 Ishikawajima Harima Heavy Ind Co Ltd Removal of noxious components in exhaust gas
JPS60156563A (en) * 1984-01-26 1985-08-16 Mitsubishi Heavy Ind Ltd Waste gas treating apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001093988A1 (en) * 2000-06-08 2001-12-13 Clearstack Combustion Corporation Potassium hydroxide flue gas injection technique to reduce acid gas emissions and improve electrostatic precipitator performance
JP2002333124A (en) * 2001-03-09 2002-11-22 Nippon Steel Corp Method of inhibiting synthesis of dioxins and the like
JP2008200631A (en) * 2007-02-21 2008-09-04 Takuma Co Ltd Method and apparatus for treating combustion exhaust gas
CN104906936A (en) * 2015-06-06 2015-09-16 长春黄金研究院 High temperature and high pressure desorbing electrolysis waste gas integrated utilization method

Also Published As

Publication number Publication date
JP2788997B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
CN100354022C (en) Ozone oxidation and denitration method of boiler flue gas
CN101485957B (en) Device and method of simultaneous desulfuration and denitration for flue gas using ozone oxygenation combined with double-tower washing
WO2018036417A1 (en) Flue gas clean up method using a multiple system approach
CN1923341A (en) Device and method for coal-burning boiler fume ozone oxidation and simultaneous desulfurization and denitrification
GB2234232A (en) Desulphurizing flue gas with calcium salts
WO2005028082A1 (en) A dry flue gas cleaning process and its system for simultaneously desulfurization and denitrating
CN1923337A (en) Boiler smoke gas multipollutant ozonization and simultaneous elimination device and method therefor
CN104759192A (en) Low-cost coal-fired flue gas various pollutant ultralow emission system and low-cost coal-fired flue gas various pollutant ultralow emission method
CN209490672U (en) A kind of flue gas system for the ultra-clean processing of cement kiln tail gas
CN112121614A (en) Stable ultralow emission device and method for solid waste incineration flue gas
CN107970769A (en) Flue gas dry desulfurizing method of denitration based on ozone and carbide slag
CN111282419A (en) Dry type purification process and device for multiple pollutants in flue gas of incinerator
CN108043210A (en) A kind of desulfurization of coke oven flue gas and dedusting denitrification integral system
CN110354663A (en) It is a kind of that dioxin is prevented to generate the method and apparatus with the ultra-clean discharge of flue gas
CN112915695A (en) High-temperature high-humidity flue gas desulfurization, dust removal and denitration flue gas purification process
CN108458351B (en) Solid waste incineration flue gas purification treatment method and system thereof
CN112138525B (en) Method for realizing simultaneous desulfurization and denitrification by combining ozone staged oxidation with wet absorption
JPH035616A (en) Simultaneous decrease of nitrogen oxides, sulfur oxides and hydrogen chloride in waste combustion gas
CN104437031A (en) Iron smelting flue gas treatment method
CN110841447A (en) Wet-method-SCR combined purification method and system for waste incineration flue gas
CN213725710U (en) Sintering flue gas coprocessing system
CN202387369U (en) High-efficiency denitration device for pulverized coal boiler
CN109012123A (en) A kind of flue gas purifying method
CN113464953A (en) Waste incineration system and method for efficiently reducing nitrogen oxides
CN207493486U (en) A kind of desulfurization of coke oven flue gas and de-dusting de-nitration integrated

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080612

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090612

Year of fee payment: 11

EXPY Cancellation because of completion of term