JPH03196816A - Treatment of waste combustion gas - Google Patents

Treatment of waste combustion gas

Info

Publication number
JPH03196816A
JPH03196816A JP1337926A JP33792689A JPH03196816A JP H03196816 A JPH03196816 A JP H03196816A JP 1337926 A JP1337926 A JP 1337926A JP 33792689 A JP33792689 A JP 33792689A JP H03196816 A JPH03196816 A JP H03196816A
Authority
JP
Japan
Prior art keywords
exhaust gas
desulfurization
waste gas
combustion
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1337926A
Other languages
Japanese (ja)
Other versions
JPH0696090B2 (en
Inventor
Yoshimasa Miura
三浦 祥正
Etsuo Ogino
悦生 荻野
Michio Ishida
石田 美智男
Teruyuki Doi
土井 照之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1337926A priority Critical patent/JPH0696090B2/en
Publication of JPH03196816A publication Critical patent/JPH03196816A/en
Publication of JPH0696090B2 publication Critical patent/JPH0696090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To effectively remove sulfur oxides and nitrogen oxides by injecting a waste gas processing agent consisting of an alkaline earth metal-based desulfurizing agent, urea, etc., into the waste gas in a specified temp. range from a combustion furnace and injecting water into the waste gas on the downstream side of the furnace. CONSTITUTION:A waste gas processing agent A consisting of a mixture of an alkaline earth metal-based desulfurizing agent (e.g. CaCO3) and urea or its derivative is injected into the waste gas at 600-900 deg.C from a combustion furnace 1. The water B heated by the waste gas at 100-400 deg.C is then injected into a cooling tower 6 on the downstream side of the furnace 1. Consequently, the sulfur oxides and nitrogen oxides in the waste gas from the combustion furnace are simultaneously and effectively removed.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、各種のボイラ、各種加熱炉さらには、ごみ
焼成炉などの燃焼炉内に排ガス処理剤を投入して、燃焼
炉から出る排ガス中の硫黄酸化物(SOx)を効果的に
除去すると同時に、窒素酸化物(NOX)をも効果的に
除去する燃焼排ガス処理方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to various boilers, various heating furnaces, and even combustion furnaces such as garbage incineration furnaces by introducing an exhaust gas treatment agent into the combustion furnaces to treat the exhaust gases coming out of the combustion furnaces. The present invention relates to a combustion exhaust gas treatment method that effectively removes sulfur oxides (SOx) and also effectively removes nitrogen oxides (NOX).

し従来技術および発明の課題] 従来より、乾式脱硫法の代表例として、Ca系脱硫剤お
よび/またはMg系脱硫剤を燃焼装置の火炉内へ直接吹
き込んで脱硫を行なう、いわゆる「炉内脱硫法」が知ら
れている。
[Prior Art and Problems of the Invention] Conventionally, as a typical example of the dry desulfurization method, the so-called "in-furnace desulfurization method" is used, in which desulfurization is performed by directly injecting a Ca-based desulfurization agent and/or an Mg-based desulfurization agent into the furnace of a combustion device. "It has been known.

しかし、この方法は、脱硫剤を多量に使用する必要があ
る上に、低い脱硫性能しか得られないため、未だ実用化
されるに至っていない。
However, this method requires the use of a large amount of desulfurization agent and only provides low desulfurization performance, so it has not yet been put into practical use.

この発明の目的は、上記の如き実情に鑑み、燃焼炉排ガ
ス中の硫黄酸化物と窒素酸化物とを同時にかつ効果的に
除去することができる燃焼排ガス処理方法を提供するこ
とにある。
In view of the above-mentioned circumstances, an object of the present invention is to provide a combustion exhaust gas treatment method that can simultaneously and effectively remove sulfur oxides and nitrogen oxides from combustion furnace exhaust gas.

[課題の解決手段〕 この発明による燃焼排ガス処理方法は、燃焼炉の600
〜900℃の温度領域の排ガスにアルカリ土類金属系脱
硫剤と尿素ないしその誘導体との混合物より成る排ガス
処理剤を噴射投入し、燃焼炉の後流で100〜400℃
の温度領域の排ガスに水を噴射することを特徴とするも
のである。
[Means for solving the problem] The combustion exhaust gas treatment method according to the present invention
An exhaust gas treatment agent consisting of a mixture of an alkaline earth metal desulfurization agent and urea or its derivatives is injected into the exhaust gas in the temperature range of ~900℃, and the temperature is raised to 100~400℃ downstream of the combustion furnace.
This system is characterized by injecting water into exhaust gas in a temperature range of .

上記において、アルカリ土類金属系脱硫剤としては、た
とえばCa CO) 、Ca (OH)2、CaOなど
のCa系脱硫剤や、ドロマイト(Mg CO3・Ca 
C03)などが用いられる。排ガス処理剤の形態は、特
に限定されないが、好ましくは粉体状、スラリー状など
である。
In the above, examples of alkaline earth metal desulfurization agents include Ca-based desulfurization agents such as CaCO), Ca(OH)2, and CaO, and dolomite (MgCO3・Ca
C03) etc. are used. The form of the exhaust gas treatment agent is not particularly limited, but is preferably in the form of powder, slurry, or the like.

噴射される水は、好ましくは加熱された状態にあり、噴
射の結果Wr、!iFJ化水滴となされる。
The water to be injected is preferably in a heated state and the result of the injection is Wr,! It is made into iFJ water droplets.

拮ガス処理剤の投入を行なう領域は600〜900℃の
温度領域であり、水噴射を行なう領域は100〜400
℃蒸気の温度領域である。
The area where the antagonistic gas treatment agent is introduced is a temperature range of 600 to 900°C, and the area where water is sprayed is a temperature range of 100 to 400°C.
°C is the temperature range of steam.

[作 用] この発明の方法によれば、まず、燃焼炉の600〜90
0℃の温度領域の排ガスにアルカリ土類金属系脱硫剤と
尿素ないしその誘導体との混合物より成る排ガス処理剤
を噴射投入することによって、炉内において排ガスの脱
硫および脱硝が同時に行なわれる。
[Function] According to the method of the present invention, first, the combustion furnace has 600 to 90
By injecting an exhaust gas treating agent consisting of a mixture of an alkaline earth metal desulfurizing agent and urea or its derivatives into the exhaust gas at a temperature of 0° C., the exhaust gas is simultaneously desulfurized and denitrated in the furnace.

ついで、燃焼炉の後流で100〜400℃の温度領域の
排ガスに水を噴射することによって、排ガス中の湿分を
増加せしめると共に排ガス温度を降ドせしめる。この結
果、低温領域で2段目の脱硫が行なわれる。
Next, by injecting water into the exhaust gas in the temperature range of 100 to 400° C. downstream of the combustion furnace, the moisture content in the exhaust gas is increased and the temperature of the exhaust gas is lowered. As a result, the second stage of desulfurization is performed in the low temperature region.

こうして、燃焼プロセス全体を一種の反応器と考えて、
その高温領域で炉内脱硫および脱硝反応を行なわしめる
と共に、その後流の低温領域において2段目の脱硫作用
を生起せしめることによって、少量の薬剤使用量で脱硫
率90%以上および脱硝率85%以上という高い反応効
率が得られる。
Thus, considering the entire combustion process as a kind of reactor,
By performing in-furnace desulfurization and denitrification reactions in the high-temperature region, and generating a second stage of desulfurization in the downstream low-temperature region, the desulfurization rate is 90% or more and the denitrification rate is 85% or more with a small amount of chemicals used. A high reaction efficiency can be obtained.

[夫 施 例] a)プロセスの説明 以下、この発明の実施例を、図面を参照して説明する。[Example of husband giving] a) Process description Embodiments of the invention will be described below with reference to the drawings.

第1図はこの発明の方法を実施するための実験装置およ
びそのプロセスフローを示す。第1図において、この実
験装置は、排ガスの流れ方向に、微粉炭の燃焼炉(1)
と、脱硫脱硝反応用の反応室(3)と、排ガスの排熱に
よる空気加熱用のエアーヒータ(4)と、排ガス冷却用
の冷却塔(6)と、排ガス除塵用のバグフィルタ(7)
とを主たる構成要素として成る。
FIG. 1 shows an experimental apparatus for carrying out the method of the present invention and its process flow. In Fig. 1, this experimental device has a pulverized coal combustion furnace (1) in the direction of flow of exhaust gas.
, a reaction chamber (3) for desulfurization and denitrification reaction, an air heater (4) for heating air using the exhaust heat of exhaust gas, a cooling tower (6) for cooling exhaust gas, and a bag filter (7) for removing dust from exhaust gas.
The main components are:

まず、微粉炭は燃焼炉(1)の燃焼バーナで燃焼させら
れる。燃焼炉(1)における微粉炭の燃焼量は最大で1
0kg/時であるが、助燃用プロパンの燃焼による低負
荷の石炭燃焼すなわち混焼が可能であり、この混焼によ
って、反応室(3)における温度制御、NOx発生量の
抑制、さらにはSO2ガスの注入による排ガス中のS0
2ガス濃度の調整が可能なようになっている。
First, pulverized coal is burned in a combustion burner of a combustion furnace (1). The maximum amount of pulverized coal burned in the combustion furnace (1) is 1
0 kg/hour, but low-load coal combustion, i.e., co-combustion, is possible by combustion of propane for auxiliary combustion.This co-combustion allows temperature control in the reaction chamber (3), suppression of NOx generation, and even injection of SO2 gas. S0 in exhaust gas due to
The concentration of the two gases can be adjusted.

燃焼炉(1)で発生した排ガスは、燃焼炉(1)の後流
側に設けられている脱硫および脱硝のための反応室(3
)に入る。反応室(3)の内径は330mm、高さは4
mである。反応室(3)はその周面に設けられた電気ヒ
ータ(2)で所定温度に制御できるようになっている。
The exhaust gas generated in the combustion furnace (1) is sent to a reaction chamber (3) for desulfurization and denitration, which is provided on the downstream side of the combustion furnace (1).
)to go into. The inner diameter of the reaction chamber (3) is 330 mm, and the height is 4
It is m. The temperature of the reaction chamber (3) can be controlled to a predetermined temperature by an electric heater (2) provided on its circumferential surface.

排ガス処理剤、すなわち脱硫剤と尿素ないしその誘導体
との混合物は、粉体の形態にある場合には、反応室(3
)のトップの部分へ空気流にのせて注入される。排ガス
処理剤がスラリーの形態にある場合もやはり反応室(3
)のトップの部分へ注入される。この排ガス処理剤の注
入によって、反応室(3)内で排ガス中のSO□の吸収
反応とNOxの還元反応が起こる。特にN。
When the exhaust gas treatment agent, that is, the mixture of the desulfurization agent and urea or its derivatives, is in the form of a powder, it is placed in the reaction chamber (3).
) is injected into the top part of the air stream. When the exhaust gas treatment agent is in the form of a slurry, the reaction chamber (3
) is injected into the top part of the tube. By injecting this exhaust gas treatment agent, an absorption reaction of SO□ and a reduction reaction of NOx in the exhaust gas occur in the reaction chamber (3). Especially N.

Xの還元反応は、反応室後流でのNOx低減効果が認め
られなかったことから、反応室(3)において完結する
ようである。他方、S02の吸収反応は、反応室(3)
から冷却塔(B)の出口まで(冷却塔内で水噴射を行な
わない場合はさらに後流まで)、やはり認められなかっ
た。この現象は、反応室(3)の出口とバグフィルタ(
7)の出口に設置した排ガス中の02、SO2、NOx
の各濃度を測定するガス分析計(8)による分析の結果
、確認された。なお、各部所の温度はそれぞれ温度計(
9)によって測定し、また排ガス流量はバグフィルタ(
7)の出口に設置した流量計(lO)によって測定した
The reduction reaction of X appears to be completed in the reaction chamber (3) since no NOx reduction effect was observed downstream of the reaction chamber. On the other hand, the absorption reaction of S02 is carried out in the reaction chamber (3).
It was also not observed from the cooling tower (B) to the outlet (if water injection is not performed in the cooling tower, further to the downstream). This phenomenon occurs between the outlet of the reaction chamber (3) and the bag filter (
7) 02, SO2, NOx in exhaust gas installed at the outlet of
This was confirmed as a result of analysis using a gas analyzer (8) that measures each concentration of . In addition, the temperature of each part can be measured using a thermometer (
9), and the exhaust gas flow rate is measured using a bag filter (
7) was measured with a flow meter (lO) installed at the outlet.

以上の事象から、排ガス中の802の吸収反応およびN
Oxの還元反応は、いずれも600〜900℃の温度領
域で生起するものと推定される。
From the above phenomena, the absorption reaction of 802 in exhaust gas and N
It is estimated that all Ox reduction reactions occur in a temperature range of 600 to 900°C.

反応室(3)を出た排ガスはエアヒータ(4)を通過し
、冷却空気により排熱が回収されて冷却された後、熱交
換器(5)で冷却水によってさらに冷却される。
The exhaust gas leaving the reaction chamber (3) passes through the air heater (4), and after being cooled by recovering exhaust heat with cooling air, it is further cooled by cooling water in the heat exchanger (5).

この発明では、燃焼炉の後流でさらに付加的脱硫を行な
うために、っぎの操作を行なう。すなわち、熱交換器(
5)において、排ガスを冷却するのに用いられた冷却水
は、熱交換器(5)を通過する間に排ガスの排熱によっ
て加熱されている。この加熱状態の水は冷却塔(6)の
上部から噴射ノズルで塔内へ吹き込まれる。その結果、
冷却塔(6)内において、冷却水は加熱状態にあるため
その噴射によってフラッシュ蒸発作用を起こして、微細
化水滴となされる。こうして生じた微細化水滴は、粗大
水滴が冷却塔(6)内で壁面に付着し、この付着水によ
って脱硫剤含有灰分が同壁面に付着して固化し、さらに
この固化物が成長して塔の閉塞を招くことを防止すると
共に、排ガスと水滴の良好な混合を促進する働きをする
。この微細化水滴は、排ガスとの混合の結果、排ガス中
の湿分を増加せしめると共に、排ガス温度を降下せしめ
る。
In this invention, the following operation is performed in order to further perform additional desulfurization downstream of the combustion furnace. That is, the heat exchanger (
In 5), the cooling water used to cool the exhaust gas is heated by the exhaust heat of the exhaust gas while passing through the heat exchanger (5). This heated water is blown from the top of the cooling tower (6) into the tower through an injection nozzle. the result,
In the cooling tower (6), since the cooling water is in a heated state, its injection causes a flash evaporation effect and is turned into fine water droplets. The fine water droplets generated in this way are coarse water droplets that adhere to the wall surface in the cooling tower (6), and the adhering water causes desulfurizing agent-containing ash to adhere to the wall surface and solidify, and this solidified material grows and grows into the tower. This function not only prevents clogging of water but also promotes good mixing of exhaust gas and water droplets. As a result of mixing with the exhaust gas, these fine water droplets increase the moisture content in the exhaust gas and lower the exhaust gas temperature.

冷却塔(6)内では、排ガス中の灰分に含まれる未反応
のCaOが噴射された水分と反応して、Ca (OH)
2となり、これがS02を吸収する作用が生起する。こ
うして、冷却塔(6)において2段目の脱硫反応が進行
する。
In the cooling tower (6), unreacted CaO contained in the ash in the exhaust gas reacts with the injected moisture to form Ca (OH).
2, which causes an effect of absorbing S02. In this way, the second stage desulfurization reaction proceeds in the cooling tower (6).

ここで、反応室(3)および冷却塔(6)で起こると考
えられるS02の吸収反応を纏めると、つぎのようにな
る。
Here, the absorption reactions of S02 that are thought to occur in the reaction chamber (3) and the cooling tower (6) are summarized as follows.

■ 反応室(3)内の600〜900℃の温度領域で生
起する反応: CaCO3→CaO+C02↑ Ca O+ S 02 + 1 / 202 →Ca 
S O4■ 冷却塔(6)内の100〜400℃の温度
領域で生起する反応: Ca O十H20−Ca (OH) 2Ca(OH)2
+SO2→CaSO3・H2Oすなわち、高温領域では
CaSO4が生じ、低温領域ではCa S O3が生じ
る。また、■の一連の反応は冷却塔(6)内だけで完結
するものではなく、さらに後流のバグフィルタ(7)の
フィルタ表面においても継続されているようである。な
お、上記■■の反応で生じたC a S 04、Ca 
S O3、および未反応のCaC0,、、CaOは、い
ずれも石炭燃焼灰との混合物として、バグフィルタ(7
)で捕集・回収された。
■ Reactions that occur in the temperature range of 600 to 900°C in the reaction chamber (3): CaCO3 → CaO + C02↑ Ca O+ S 02 + 1 / 202 → Ca
S O4 ■ Reaction that occurs in the temperature range of 100 to 400 °C in the cooling tower (6): Ca O + H20 - Ca (OH) 2Ca (OH)2
+SO2→CaSO3·H2O That is, CaSO4 is produced in the high temperature region, and CaSO3 is produced in the low temperature region. Furthermore, the series of reactions (2) are not completed only within the cooling tower (6), but also seem to continue on the filter surface of the downstream bag filter (7). In addition, Ca S 04, Ca
S O3 and unreacted CaC0, , CaO are both passed through a bag filter (7
) was collected and recovered.

こうして、浄化処理せられた排ガスは流量計(10)を
経て系外へ排出される。
The purified exhaust gas is discharged to the outside of the system through the flow meter (10).

b)脱硫脱硝試験 以下の比較例および実施例における主な実験条件は下記
のとおりであった。
b) Desulfurization and denitrification test The main experimental conditions in the following comparative examples and examples were as follows.

燃料供給速度:プロパン0.64Nm’ /時十石炭3
.42kg/時の混焼 空気比:1.81(排ガス中の酸素濃度9.4%) 排ガス量: 74Nm’ /時 SOx濃度:800ppm(純S02ガス添加による濃
度調整) NOx濃度:260ppm 反応温度ニア80℃ ガス滞留時間=4,5秒(反応室内) 比較例 排ガス中に、排ガス処理剤として粒径1.7μのCaC
O3微粉末と粉状の尿素との混合物(Ca CO39:
尿素1)を反応室(3)へ噴射供給した。そして、燃焼
炉(1)内で発生するSO□量(モル量)と反応室(3
)に投入したCaff1(モル量)の比、すなわちCa
 / Sモル当量比を変えつつ、反応室(3)の出口お
よびバグフィルタ(7)の出口での各ガス分析計(8)
を用いて、排ガス中のNOx濃度およびS02濃度をΔ
P1定し、Ca / Sモル当量比と脱硝率および脱硫
率との関係を調べた。これらの測定結果をそれぞれ第2
図中の曲線(A)および第3図中の曲線(B)に示す。
Fuel supply rate: Propane 0.64Nm' / hour 1 coal 3
.. 42kg/hour co-combustion air ratio: 1.81 (oxygen concentration in exhaust gas 9.4%) Exhaust gas amount: 74Nm'/hour SOx concentration: 800ppm (concentration adjustment by adding pure S02 gas) NOx concentration: 260ppm Reaction temperature near 80 °C Gas residence time = 4.5 seconds (in the reaction chamber) Comparative example CaC with a particle size of 1.7μ was added as an exhaust gas treatment agent in the exhaust gas.
A mixture of O3 fine powder and powdered urea (Ca CO39:
Urea 1) was injected into the reaction chamber (3). The SO□ amount (molar amount) generated in the combustion furnace (1) and the reaction chamber (3
), that is, the ratio of Caff1 (molar amount) added to Ca
/S molar equivalent ratio, each gas analyzer (8) at the outlet of the reaction chamber (3) and the outlet of the bag filter (7).
Using Δ
P1 was determined, and the relationship between the Ca/S molar equivalent ratio and the denitrification rate and desulfurization rate was investigated. Each of these measurement results is
This is shown in curve (A) in the figure and curve (B) in FIG.

脱硝性能を示す第2図の曲線(A)から明らかなように
、Ca/Sモル当量比−3の時に脱硝率85%が得られ
、反応室(3)の出口およびバグフィルタ(7)の出口
での各NOx濃度はいずれも40’ppm程度まで低下
した。なお、尿素の供給量を増大して、Ca/Sモル当
量比を3以上に上げても、脱硝効果はそれ以上には向上
しなかった。
As is clear from the curve (A) in Figure 2 showing the denitrification performance, a denitrification rate of 85% was obtained when the Ca/S molar equivalent ratio was -3, and the denitrification rate at the outlet of the reaction chamber (3) and the bag filter (7) Each NOx concentration at the outlet decreased to about 40'ppm. Note that even if the supply amount of urea was increased to raise the Ca/S molar equivalent ratio to 3 or more, the denitrification effect did not improve any further.

脱硫性能を示す第3図の曲線(B)から明らかなように
、Ca / Sモル当量比−3の時に脱硫率は85%で
あり、反応室(3)の出口およびバグフィルタ(7)の
出口での各502a度はそれぞれ120ppmであった
As is clear from the curve (B) in Figure 3 showing the desulfurization performance, the desulfurization rate is 85% when the Ca/S molar equivalent ratio is -3, and the desulfurization rate is 85% at the outlet of the reaction chamber (3) and the bag filter (7). Each 502a degree at the outlet was 120 ppm.

実施例 比較例の上記条件と同じ条件で、比較例の上記操作に加
えて、熱交換器(5)を出た加熱状態の冷却水12g/
時を冷却塔(6)内に頂部のノズルから吹き込んだ。こ
の時、エアーヒータ(4)の出口の排ガス温度は430
℃、水噴射の後流すなわち冷却塔(6)の出口の温度は
160℃、バグフィルタ(7)の出口の温度は120℃
であった。
Under the same conditions as the above-mentioned conditions of the embodiment and comparative example, in addition to the above-mentioned operations of the comparative example, 12g/12g of the heated cooling water exiting the heat exchanger (5) was added.
Time was blown into the cooling tower (6) through a nozzle at the top. At this time, the exhaust gas temperature at the outlet of the air heater (4) is 430
℃, the temperature at the wake of the water injection, i.e. the outlet of the cooling tower (6), is 160℃, and the temperature at the outlet of the bag filter (7) is 120℃.
Met.

比較例と同様にして、排ガス中のSO2濃度をM1定し
、Ca / Sモル当量比と脱硫率との関係を調べた。
In the same manner as in the comparative example, the SO2 concentration in the exhaust gas was determined as M1, and the relationship between the Ca/S molar equivalent ratio and the desulfurization rate was investigated.

これらの測定結果をそれぞれ第3図中の曲線(C)に示
す。
The results of these measurements are shown in curves (C) in FIG. 3, respectively.

上記水の吹き込みによって、排ガス中の湿分が増加せら
れると共に排ガス温度が降下さぜられ、上記■の反応が
進行し、2段目の脱硫が行なわれる。その結果、脱硫性
能を示す第3図の曲線(C)から明らかなように、Ca
 / Sモル当量比−2の時に脱硫率95%が得られ、
バグフィルタ(7)の出口でのSO2濃度は40ppm
であった。これに対し、水噴射の前流すなわち反応室(
3)の出口におけるSO□濃度は240ppmであった
By blowing water, the moisture content in the exhaust gas is increased and the temperature of the exhaust gas is lowered, so that the reaction (2) proceeds and the second stage of desulfurization is performed. As a result, as is clear from the curve (C) in Figure 3 showing the desulfurization performance, Ca
A desulfurization rate of 95% was obtained when the /S molar equivalent ratio was −2,
SO2 concentration at the outlet of bag filter (7) is 40 ppm
Met. In contrast, the upstream of the water jet, i.e., the reaction chamber (
The SO□ concentration at the outlet of 3) was 240 ppm.

また、NOx濃度は、反応室(3〉の出口およびバグフ
ィルタ(7)の出口とも1100ppであった。このこ
とは、脱硝に関しては第2図の曲線(A)の性能が支配
的であり、脱硝効率をさらに向上させるには尿素の含量
を増加させる必要があることを示している。
In addition, the NOx concentration was 1100 pp at both the outlet of the reaction chamber (3>) and the outlet of the bag filter (7).This means that the performance of curve (A) in Fig. 2 is dominant in terms of denitrification. This indicates that it is necessary to increase the urea content to further improve the denitrification efficiency.

[発明の効果] この発明の方法によれば、まず、燃焼炉の600〜90
0℃の温度領域の排ガスにアルカリ土類金属系脱硫剤と
尿素ないしその誘導体との混合物より成る排ガス処理剤
を噴射投入するので、炉内において排ガスの脱硫および
脱硝を同時に行なうことができる。
[Effect of the invention] According to the method of this invention, first, the combustion furnace
Since an exhaust gas treating agent consisting of a mixture of an alkaline earth metal desulfurizing agent and urea or its derivatives is injected into the exhaust gas in the temperature range of 0° C., the exhaust gas can be desulfurized and denitrated at the same time in the furnace.

ついで、燃焼炉の後流で100〜400℃の温度領域の
排ガスに水を噴射するので1、排ガス中の湿分を増加せ
しめると共に排ガス温度を降下せしめ、この結果低温領
域で2段目の脱硫を行なわしめることができる。
Next, water is injected into the exhaust gas in the temperature range of 100 to 400 degrees Celsius downstream of the combustion furnace, which increases the moisture content in the exhaust gas and lowers the exhaust gas temperature.As a result, the second stage of desulfurization occurs in the low temperature region. can be carried out.

こうして、この発明の方法では、燃焼プロセス全体を一
種の反応器と考えて、その高温領域で炉内脱硫および脱
硝反応を行なうと共に、その後流の低温領域において2
段目の脱硫作用を生起せしめることによって、少量の薬
剤使用量で脱硫率90%以上および脱硝率85%以上と
いう高い反応効率を得ることができる。
In this way, in the method of this invention, the entire combustion process is considered as a kind of reactor, and the in-furnace desulfurization and denitrification reactions are carried out in the high temperature region, and the 2
By causing the desulfurization action in the first stage, high reaction efficiency such as a desulfurization rate of 90% or more and a denitrification rate of 85% or more can be obtained with a small amount of chemicals used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示すフローシート、第2図
はCa / Sモル当量比と脱硝率との関係を示すグラ
フ、第3図はCa / Sモル当量比と脱硫率との関係
を示すグラフである。 (1)・・・燃焼炉、(2)・・・電気ヒータ、(3)
・・・反応室、(4)・・・エアーヒータ、(5)・・
・熱交換器、(6)・・・冷却塔、(ア)・・・バグフ
ィルタ、(8)・・ガス分析計、(9)・・・温度計、
(10)・・・流量計。 以  上
Figure 1 is a flow sheet showing an example of the present invention, Figure 2 is a graph showing the relationship between Ca/S molar equivalent ratio and denitrification rate, and Figure 3 is the relationship between Ca/S molar equivalent ratio and desulfurization rate. This is a graph showing. (1)... Combustion furnace, (2)... Electric heater, (3)
...Reaction chamber, (4)...Air heater, (5)...
・Heat exchanger, (6)...Cooling tower, (A)...Bag filter, (8)...Gas analyzer, (9)...Thermometer,
(10)...Flowmeter. that's all

Claims (1)

【特許請求の範囲】[Claims]  燃焼炉の600〜900℃の温度領域の排ガスにアル
カリ土類金属系脱硫剤と尿素ないしその誘導体との混合
物より成る排ガス処理剤を噴射投入し、燃焼炉の後流で
100〜400℃の温度領域の排ガスに水を噴射するこ
とを特徴とする燃焼排ガス処理方法。
An exhaust gas treatment agent consisting of a mixture of an alkaline earth metal desulfurization agent and urea or its derivatives is injected into the exhaust gas in the temperature range of 600 to 900°C from the combustion furnace, and the temperature is increased to 100 to 400°C downstream of the combustion furnace. A combustion exhaust gas treatment method characterized by injecting water into the exhaust gas of a region.
JP1337926A 1989-12-25 1989-12-25 Combustion exhaust gas treatment method Expired - Lifetime JPH0696090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337926A JPH0696090B2 (en) 1989-12-25 1989-12-25 Combustion exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337926A JPH0696090B2 (en) 1989-12-25 1989-12-25 Combustion exhaust gas treatment method

Publications (2)

Publication Number Publication Date
JPH03196816A true JPH03196816A (en) 1991-08-28
JPH0696090B2 JPH0696090B2 (en) 1994-11-30

Family

ID=18313304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337926A Expired - Lifetime JPH0696090B2 (en) 1989-12-25 1989-12-25 Combustion exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JPH0696090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060160A (en) * 2019-10-08 2021-04-15 伊藤レーシングサービス株式会社 Incinerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021060160A (en) * 2019-10-08 2021-04-15 伊藤レーシングサービス株式会社 Incinerator

Also Published As

Publication number Publication date
JPH0696090B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
KR930003212B1 (en) Dry-type treating method for exhaust gas
CA1248735A (en) Method and apparatus for dry desulfurization of exhaust gas
CN105944564A (en) Coke oven flue gas waste heat recycling, desulfuration and denitration integrated system and method
BRPI0616030B1 (en) method of removing so3 from a flue gas stream
WO2009043108A1 (en) Removal of pollutants from a gas flow
CN108554145A (en) A kind of flue gas desulfurization denitration dust-removing takes off white device
EA002327B1 (en) Process for producing highly reactive lime in a furnace
CN103100294A (en) Method for removing oxynitride from flue gas through ozone oxidation method
KR101606257B1 (en) Apparatus and Method for Denitrifying and Desulfurizing Exhaust Gas using Fluidized Bed
KR920007857B1 (en) Exhaust gas treating method
JP2012213744A (en) Apparatus and method for treating exhaust gas and coal upgrading process facility
EP0933516B1 (en) Gasification power generation process and equipment
JPH0474513A (en) Simultaneous desulfurization and denitration in furnace
JPH03196816A (en) Treatment of waste combustion gas
JPH02303519A (en) Dry type exhaust gas desulfurization method
JP3032247B2 (en) Desulfurization method of spraying fine powder desulfurizing agent to combustion exhaust gas
JPH0557139A (en) Lime blowing desulfurization
JPS6251645B2 (en)
JP2004261718A (en) Dry type simultaneous desulfurization and denitrification apparatus
KR101792958B1 (en) Heat Resonance System for Exhaust Gas Purification of Facilities that using Cokes
JPH0352624A (en) Dry simultaneous desulfurization and denitrification
JPH10118446A (en) Apparatus for treatment highly concentrated so2 gas containing exhaust gas
KR100587490B1 (en) Treatment apparatus of incineration flue gas
JPH11147024A (en) Flue-gas treatment method
JPH03202125A (en) Simultaneous removal of sulfur oxide and nitrogen oxide