JPH0694962B2 - Absorption air conditioner - Google Patents

Absorption air conditioner

Info

Publication number
JPH0694962B2
JPH0694962B2 JP14098488A JP14098488A JPH0694962B2 JP H0694962 B2 JPH0694962 B2 JP H0694962B2 JP 14098488 A JP14098488 A JP 14098488A JP 14098488 A JP14098488 A JP 14098488A JP H0694962 B2 JPH0694962 B2 JP H0694962B2
Authority
JP
Japan
Prior art keywords
water
transfer pipe
absorbent
water transfer
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14098488A
Other languages
Japanese (ja)
Other versions
JPH01310272A (en
Inventor
哲郎 古川
謙介 吉川
充 水内
雅晴 古寺
伸治 坂端
襄介 河内
辰彦 梅田
英明 岡本
猛 矢野
光史 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP14098488A priority Critical patent/JPH0694962B2/en
Publication of JPH01310272A publication Critical patent/JPH01310272A/en
Publication of JPH0694962B2 publication Critical patent/JPH0694962B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は吸収式空調装置に関するものである。Description: FIELD OF THE INVENTION The present invention relates to an absorption type air conditioner.

従来の技術 最近、室内の空調装置として吸収式冷凍機を用いたもの
がある。従来、この種の吸収式空調装置は、吸収式冷凍
作用を行なう室外機と、熱交換作用だけを行なう室内機
とから構成されるとともに、室外機と室内機との間で循
環される熱輸送媒体(以下、熱媒体という)として水が
使用されていた。なお、この熱媒体は、室外機における
熱媒体(冷媒)とは分離されており、例えば冷房時にお
いては、室内機からの熱媒体は蒸発器に導かれて間接的
に冷却され、また暖房時においては、再生器に導かれて
間接的に加熱されていた。
2. Description of the Related Art Recently, there is an indoor air conditioner that uses an absorption refrigerator. Conventionally, an absorption air conditioner of this type is composed of an outdoor unit that performs an absorption refrigeration operation and an indoor unit that performs only a heat exchange operation, and heat transfer circulated between the outdoor unit and the indoor unit. Water was used as a medium (hereinafter referred to as a heat medium). This heat medium is separated from the heat medium (refrigerant) in the outdoor unit. For example, during cooling, the heat medium from the indoor unit is guided to the evaporator and indirectly cooled, and also during heating. In the case, it was guided to the regenerator and indirectly heated.

発明が解決しようとする課題 上記従来の構成によると、室外機と室内機との間で循環
される熱媒体として、水が使用されているため、冬期に
なると凍ってしまうという問題があり、また室内機側の
熱媒体である水と室外機側の熱媒体とは間接的に熱交換
が行なわれているため、熱交換効率が悪いという問題が
あった。
Problems to be Solved by the Invention According to the above conventional configuration, since water is used as the heat medium circulated between the outdoor unit and the indoor unit, there is a problem that it freezes in the winter, and There is a problem that the heat exchange efficiency is poor because water, which is the heat medium on the indoor unit side, is indirectly exchanged with the heat medium on the outdoor unit side.

そこで、本発明は上記問題点を解消し得る吸収式空調装
置を提供することを目的とする。
Therefore, it is an object of the present invention to provide an absorption air conditioner capable of solving the above problems.

課題を解決するための手段 上記問題点を解決するため、本発明の吸収式空調装置
は、熱輸送媒体である水を蒸発させる蒸発器と、この蒸
発器で発生した水蒸気を吸収液である臭化リチウム水溶
液に吸収させる吸収器と、水蒸気を吸収して濃度が薄く
なった希吸収液を加熱する再生器と、この再生器で加熱
された稀吸収液から水蒸気を分離する気液分離器と、水
蒸気を凝縮させる凝縮器と、室内に配置されて室内空気
との間で熱交換を行なう室内熱交換器と、上記吸収器内
の稀吸収液を再生器に移送する第1稀吸収液移送管と、
上記再生器で加熱された稀吸収液を気液分離器に移送す
る第2稀吸収液移送管と、上記凝縮器からの水を蒸発器
に移送する凝縮水移送管と、上記気液分離器で分離され
た濃吸収液を吸収器に移送する濃吸収液移送管と、上記
蒸発器でその気化熱により冷却された水を上記室内熱交
換器に供給する第1水移送管と、上記室内熱交換器から
出た水を上記蒸発器に戻す第2水移送管と、上記第1水
移送管内の水を第1稀吸収液移送管途中に移送する第3
水移送管と、第2稀吸収液移送管内の水を、第1水移送
管の第3水移送管との接続部より下流側位置で第1水移
送管内に移送する第4水移送管と、第2水移送管内の水
を、第1水移送管の第3水移送管との接続部より上流側
位置で第1水移送管内に移送する第5水移送管とから構
成したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the absorption air conditioner of the present invention has an evaporator that evaporates water as a heat transport medium, and an odor that is an absorption liquid for water vapor generated in the evaporator. An absorber that absorbs the lithium fluoride aqueous solution, a regenerator that absorbs water vapor and heats the diluted absorbent that has become thin, and a gas-liquid separator that separates water vapor from the diluted absorbent heated by this regenerator. A condenser for condensing water vapor, an indoor heat exchanger arranged in the room for exchanging heat with indoor air, and a first rare absorbent transfer for transferring the rare absorbent in the absorber to the regenerator With a tube,
A second rare absorbent transfer pipe for transferring the rare absorbent heated in the regenerator to the gas-liquid separator, a condensed water transfer pipe for transferring water from the condenser to the evaporator, and the gas-liquid separator. The concentrated absorbent transfer pipe for transferring the concentrated absorbent separated into the absorber to the absorber; the first water transfer pipe for supplying the water cooled by the heat of vaporization in the evaporator to the indoor heat exchanger; A second water transfer pipe for returning the water discharged from the heat exchanger to the evaporator, and a third water transfer pipe for transferring the water in the first water transfer pipe to the middle of the first diluted absorbent transfer pipe
A water transfer pipe and a fourth water transfer pipe for transferring the water in the second dilute absorption liquid transfer pipe into the first water transfer pipe at a position downstream of the connecting portion of the first water transfer pipe with the third water transfer pipe. And a fifth water transfer pipe for transferring the water in the second water transfer pipe into the first water transfer pipe at a position upstream of a connection portion of the first water transfer pipe with the third water transfer pipe. .

作用 (i)冷房時 蒸発器でフラッシュ蒸発により気化熱が奪われて冷却さ
れた水は、第1水移送管を介して室内熱交換器に入り、
室内空気を冷却する。室内空気の熱を奪って暖かくなっ
た水は第2水移送管を介して蒸発器に入り、ここで再び
冷却されて室内熱交換器に循環使用される。勿論、蒸発
器で発生した水蒸気は吸収サイクルにより水となり、凝
縮水移送管を介して冷媒用の水として再び蒸発器に戻さ
れる。
Action (i) During cooling The water, which has been deprived of the heat of vaporization by flash evaporation in the evaporator and cooled, enters the indoor heat exchanger through the first water transfer pipe,
Cool indoor air. The water that has taken the heat of the indoor air and has become warm enters the evaporator through the second water transfer pipe, is cooled again here, and is circulated and used in the indoor heat exchanger. Of course, the water vapor generated in the evaporator becomes water by the absorption cycle, and is returned to the evaporator again as water for the refrigerant through the condensed water transfer pipe.

(ii)暖房時 この場合、再生器だけが使用される。(Ii) During heating In this case, only the regenerator is used.

すなわち、熱媒体となる水は第3水移送管および第1稀
吸収液移送管を介して再生器に送られ、ここで所定の温
度に加熱される。そして第4水移送管および第1水移送
管を介して室内熱交換器に送られ、室内空気を暖める。
ここで温度が低下した水は第2水移送管および第5水移
送管を介して再び第3水移送管に送られて、循環使用さ
れる。
That is, the water serving as the heat medium is sent to the regenerator via the third water transfer pipe and the first diluted absorbent transfer pipe, and is heated to a predetermined temperature there. Then, it is sent to the indoor heat exchanger via the fourth water transfer pipe and the first water transfer pipe to warm the indoor air.
The water whose temperature has dropped here is sent again to the third water transfer pipe via the second water transfer pipe and the fifth water transfer pipe, and is circulated and used.

実施例 以下、本発明の一実施例を図面に基づき説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

本実施例における吸収式空調装置は、熱輸送媒体(以
下、熱媒体という)である水を蒸発させる蒸発器1と、
この蒸発器1で発生した水蒸気を連通部2を介して導く
とともにこの水蒸気を吸収する臭化リチウム(LiBr)水
溶液(以下、吸収液という)を有する吸収器3と、水蒸
気を吸収して濃度が薄くなった稀吸収液を加熱する再生
器4と、この再生器4で加熱された稀吸収液から水蒸気
を分離する気液分離器5と、この気液分離器6内で分離
された水蒸気を連通部6を介して導くとともにこの水蒸
気を凝縮させる凝縮器7と、室内に配置されて室内空気
との間で熱交換を行なう室内熱交換器8と、途中に溶液
ポンプ9および第1三方切換弁10を有するとともに上記
吸収器3内の稀吸収液を再生器4に移送する第1稀吸収
液移送管11と、途中に第2三方切換弁12を有するととも
に上記再生器4で加熱された稀吸収液を気液分離器5に
移送する第2稀吸収液移送管13と、上記凝縮器7で凝縮
された凝縮水を蒸発器1に移送する凝縮水移送管14と、
上記気液分離器5で分離された濃吸収液を吸収器3に移
送する濃吸収液移送管15と、途中に水ポンプ16および開
閉弁17を有するとともに上記蒸発器1でその気化熱によ
り冷却された水を上記室内熱交換器8に供給する第1水
移送管18と、上記室内熱交換器8の出口と凝縮水移送管
14途中とに亘って接続されるとともに途中に第3三方切
換弁19を有して室内熱交換器8から出た水を上記蒸発器
1に戻す第2水移送管20と、上記第1水移送管18の水ポ
ンプ16と開閉弁17との間の箇所と第1稀吸収液移送管11
途中の第1三方切換弁10との間に亘って接続されて第1
水移送管18内の水を第1稀吸収液移送管11途中に移送す
る第3水移送管21と、上記第1水移送管18の開閉弁17よ
り下流側位置と第2稀吸収液移送管13途中の第2三方切
換弁12との間に亘って接続されて再生器4で加熱された
水を第1水移送管18内に移送する第4水移送管22と、第
1水移送管18の水ポンプ16より上流側位置と第2水移送
管20途中の第3三方切換弁19とに亘って接続されて室内
熱交換器8からの出た水を再生器4側に導くための第5
水移送管23と、上記第1稀吸収液移送管11と濃吸収液移
送管15との間に亘って配置された熱回収用熱交換器24
と、上記吸収器3および凝縮器7から熱を奪うためのフ
ァン25とから構成されている。なお、26は第2稀吸収液
移送管13内の液体の温度を検出する温度検出器で、再生
器4内のバーナへのガス供給弁27を制御して温度を一定
に保つようにしている。また、28は気液分離器5内の圧
力を検出する圧力検出器で、濃吸収液を直接吸収器3に
戻すバイパス管29途中の開閉制御弁30を制御して圧力が
上昇しすぎないようにしている。
The absorption type air conditioner in the present embodiment includes an evaporator 1 for evaporating water as a heat transport medium (hereinafter referred to as a heat medium),
An absorber 3 having an aqueous lithium bromide (LiBr) solution (hereinafter referred to as an absorbing liquid) that guides the water vapor generated in the evaporator 1 through the communication part 2 and absorbs the water vapor, The regenerator 4 for heating the diluted rare absorbent, the gas-liquid separator 5 for separating water vapor from the rare absorbent heated by the regenerator 4, and the steam separated in the gas-liquid separator 6 A condenser 7 for guiding the water vapor through the communication part 6 and condensing the water vapor, an indoor heat exchanger 8 arranged in the room for exchanging heat with the indoor air, a solution pump 9 and a first three-way switch on the way. It has a valve 10 and has a first rare absorbent transfer pipe 11 for transferring the rare absorbent in the absorber 3 to the regenerator 4, and a second three-way switching valve 12 in the middle, and is heated by the regenerator 4. Second rare absorbent that transfers the lean absorbent to the gas-liquid separator 5 A transfer pipe 13 and a condensed water transfer pipe 14 for transferring the condensed water condensed in the condenser 7 to the evaporator 1,
A concentrated absorbent transfer pipe 15 for transferring the concentrated absorbent separated by the gas-liquid separator 5 to the absorber 3, a water pump 16 and an opening / closing valve 17 in the middle, and cooling by the heat of vaporization in the evaporator 1 A first water transfer pipe 18 for supplying the generated water to the indoor heat exchanger 8, an outlet of the indoor heat exchanger 8 and a condensed water transfer pipe
14 A second water transfer pipe 20 which is connected to the middle of the water and has a third three-way switching valve 19 on the way to return the water discharged from the indoor heat exchanger 8 to the evaporator 1, and the first water. A portion of the transfer pipe 18 between the water pump 16 and the opening / closing valve 17 and the first dilute absorbent transfer pipe 11
The first three-way switching valve 10 on the way is connected across the first
A third water transfer pipe 21 for transferring the water in the water transfer pipe 18 to the middle of the first diluted absorbent transfer pipe 11, a position downstream of the opening / closing valve 17 of the first water transfer pipe 18 and a second rare absorbent transfer. A fourth water transfer pipe 22 connected to the second three-way switching valve 12 in the middle of the pipe 13 to transfer the water heated by the regenerator 4 into the first water transfer pipe 18, and the first water transfer In order to guide the water discharged from the indoor heat exchanger 8 to the regenerator 4 side by being connected to the upstream side of the water pump 16 of the pipe 18 and the third three-way switching valve 19 in the middle of the second water transfer pipe 20. The fifth
A water transfer pipe 23 and a heat recovery heat exchanger 24 arranged between the first rare absorbent transfer pipe 11 and the concentrated absorbent transfer pipe 15.
And a fan 25 for removing heat from the absorber 3 and the condenser 7. Reference numeral 26 is a temperature detector for detecting the temperature of the liquid in the second dilute absorption liquid transfer pipe 13, and controls the gas supply valve 27 to the burner in the regenerator 4 to keep the temperature constant. . Further, 28 is a pressure detector for detecting the pressure in the gas-liquid separator 5, which controls the opening / closing control valve 30 in the middle of the bypass pipe 29 for returning the concentrated absorbing liquid directly to the absorber 3 so that the pressure does not rise too much. I have to.

次に、作用について説明する。Next, the operation will be described.

なお、この説明においては、吸収式冷凍機としての作用
は公知であるため、本考案の特徴を示す部分の作用だけ
について説明する。
In this description, since the operation as the absorption refrigerator is known, only the operation of the part showing the features of the present invention will be described.

(i)冷房時 この場合、各三方切換弁10,12,19の切換えおよび開閉弁
17の開閉状態は第1図の矢印Aで示すように設定され
る。
(I) During cooling In this case, switching and opening / closing of each three-way switching valve 10, 12, 19
The open / closed state of 17 is set as shown by arrow A in FIG.

したがって、蒸発器1でフラッシュ蒸発により気化熱が
奪われて7℃程度に冷却された水は、第1水移送管18を
介して室内熱交換器8に入り、室内空気を冷却する。室
内空気の熱を奪って12℃程度になった水は第2水移送管
20を介して蒸発器1に戻り、ここで再び7℃程度に冷却
されて室内熱交換器8に循環使用される。勿論、蒸発器
1で発生した水蒸気は吸収サイクルにより水となり、凝
縮水移送管14を介して冷媒用の水として再び蒸発器1に
戻される。
Therefore, the water whose vaporization heat is removed by flash evaporation in the evaporator 1 and is cooled to about 7 ° C. enters the indoor heat exchanger 8 through the first water transfer pipe 18 and cools the indoor air. The water that took away the heat of the room air to about 12 ℃ is the second water transfer pipe.
It returns to the evaporator 1 via 20 and is again cooled here to about 7 ° C. and circulated to the indoor heat exchanger 8. Of course, the water vapor generated in the evaporator 1 becomes water by the absorption cycle and is returned to the evaporator 1 again as water for the refrigerant through the condensed water transfer pipe 14.

このように、熱媒体である水を直接蒸発器1でフラッシ
ュ蒸発させるようにしたので、従来の間接式の場合に比
べて蒸発温度を4℃から7℃に上昇させることができ
る。なお、通常、冷却水の供給側温度は7℃、戻り側の
温度は12℃にされている。この場合、隣接する吸収器3
では、濃度が60%程度の吸収液に水蒸気を吸収させてお
り、そのときの吸収液の温度は、第3図のグラフのa点
およびb点にて示すように、44℃(4℃のとき)から4
7.5℃(7℃のとき)程度となる。したがって、吸収器
3での空気との熱交換のための温度差は、空気入口条件
で9℃から12.5℃と1.39倍になり、同一冷房負荷を冷却
するのに、大幅に伝熱面積を減らすことができる。
As described above, since the heat medium, water, is directly flash-evaporated by the evaporator 1, the evaporation temperature can be increased from 4 ° C. to 7 ° C. as compared with the conventional indirect type. The temperature of the cooling water on the supply side is normally set to 7 ° C and the temperature on the return side is set to 12 ° C. In this case, the adjacent absorber 3
In this case, the absorption liquid with a concentration of about 60% is made to absorb water vapor, and the temperature of the absorption liquid at that time is 44 ° C (4 ° C of 4 ° C, as indicated by points a and b in the graph of FIG. From) 4
It will be about 7.5 ℃ (at 7 ℃). Therefore, the temperature difference for heat exchange with the air in the absorber 3 is 1.39 times from 9 ° C to 12.5 ° C under the air inlet condition, and the heat transfer area is greatly reduced to cool the same cooling load. be able to.

(ii)暖房時 この場合、開閉弁17が閉じられるとともに各三方切換弁
10,12,19の切換え状態は第2図の矢印Bで示すように設
定され、かつ再生器4だけが使用される。
(Ii) During heating In this case, the on-off valve 17 is closed and each three-way switching valve
The switching states 10, 12, 19 are set as indicated by the arrow B in FIG. 2 and only the regenerator 4 is used.

すなわち、熱媒体となる水は第3水移送管21および第1
稀吸収液移送管11を介して再生器4に送られ、ここで例
えば60℃〜80℃に加熱される。そして第4水移送管22お
よび第1水移送管18を介して室内熱交換器8に送られ、
室内空気を暖める。ここで温度が55℃程度に低下した水
は第2水移送管20および第5水移送管23を介して再び第
3水移送管21に送られて、循環使用される。
That is, the water serving as the heat medium is supplied to the third water transfer pipe 21 and the first water transfer pipe 21.
It is sent to the regenerator 4 via the dilute absorption liquid transfer pipe 11 and heated there to, for example, 60 ° C. to 80 ° C. Then, it is sent to the indoor heat exchanger 8 via the fourth water transfer pipe 22 and the first water transfer pipe 18,
Warm the room air. Here, the water whose temperature has dropped to about 55 ° C. is sent again to the third water transfer pipe 21 via the second water transfer pipe 20 and the fifth water transfer pipe 23, and is circulated and used.

ところで、このように暖房時においては、熱媒体である
水は第1稀吸収液移送管11の一部を流れるため、冷房時
に流れていた濃度が55%程度の稀吸収液と混合されて、
濃度が15%〜35%の薄い臭化リチウム水溶液となる。こ
のように、臭化リチウム水溶液濃度を15%〜35%の範囲
内にすると、第4図に示すように、この濃度に対応する
臭化リチウムの析出温度すなわち凝固点は−8℃〜−55
℃となる。したがって、冬季における暖房運転停止時
に、熱媒体である水が凍りつくことはほとんどなくな
る。
By the way, in this way, during heating, since water as a heat medium flows through a part of the first rare absorbent transfer pipe 11, it is mixed with the rare absorbent having a concentration of about 55% flowing during cooling,
It becomes a thin lithium bromide aqueous solution with a concentration of 15% to 35%. Thus, when the concentration of the lithium bromide aqueous solution is set within the range of 15% to 35%, as shown in FIG. 4, the precipitation temperature of lithium bromide corresponding to this concentration, that is, the freezing point is -8 ° C to -55%.
℃. Therefore, when the heating operation is stopped in the winter, the heat medium, water, hardly freezes.

次に、他の実施例を第5図に基づき説明する。Next, another embodiment will be described with reference to FIG.

このものは、上述した実施例において、吸収器3を3段
にした場合を示しており、上述した実施例と同じ作用効
果を有するものである。なお、図中、上述した実施例と
同一の部品には同一番号を付してその説明を省略する。
また、図中、31は前段の吸収器3で生じた稀吸収液を次
段の吸収器3に移送するための稀吸収液段間移送管、32
は吸収器3および最終段側の稀吸収液段間移送管31に接
続された脱気タンクである。
This has shown the case where the absorber 3 was made into 3 steps | paragraphs in the above-mentioned Example, and has the same effect as the above-mentioned Example. In the drawing, the same parts as those in the above-described embodiment are designated by the same reference numerals and the description thereof will be omitted.
Further, in the figure, 31 is a dilute absorbent liquid interstage transfer pipe for transferring the dilute absorbent liquid generated in the absorber 3 in the previous stage to the absorber 3 in the next stage, 32
Is a degassing tank connected to the absorber 3 and the diluted absorbent interstage transfer pipe 31 on the final stage side.

発明の効果 上記本発明の構成によると、吸収サイクルにおいて、吸
収液に吸収される水を、直接熱交換器に移送して熱交換
を行なわせるようにしたので、従来の間接式の場合に比
べて熱交換効率を向上させることができ、したがって吸
収器などにおける伝熱面積を小さくすることができるた
め、装置の小型化につながる。また、冬期における暖房
時においては、熱媒体である水を稀吸収液移送管の一部
に流して稀吸収液を混入させるようにしたので、水の凝
固点が降下し、したがって運転停止時において水が凍り
つくようなことはない。
EFFECTS OF THE INVENTION According to the configuration of the present invention described above, in the absorption cycle, the water absorbed by the absorbing liquid is directly transferred to the heat exchanger for heat exchange, so that compared to the case of the conventional indirect type. As a result, the heat exchange efficiency can be improved, and therefore the heat transfer area in the absorber or the like can be reduced, which leads to downsizing of the device. Also, during heating in winter, the heat medium, water, is made to flow through a part of the rare absorbent transfer pipe to mix the rare absorbent, so the freezing point of the water drops, and therefore water is lost when operation is stopped. Is never frozen.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の吸収式空調装置の概略構成
を示すフロー図、第2図は同動作を説明するフロー図、
第3図は濃度をパラメータとした臭化リチウム水溶液の
温度と圧力の関係を示すグラフ図、第4図は臭化リチウ
ム水溶液の溶解度を示すグラフ図、第5図は他の実施例
の吸収式空調装置の概略構成を示すフロー図である。 1…蒸発器、3…吸収器、4…再生器、5…気液分離
器、7…凝縮器、8…室内熱交換器、10…第1三方切換
弁、11…第1稀吸収液移送管、12…第2三方切換弁、13
…第2稀吸収液移送管、14…凝縮水移送管、15…濃吸収
液移送管、17…開閉弁、18…第1水移送管、19…第3三
方切換弁、20…第2水移送管、21…第3水移送管、22…
第4水移送管、23…第5水移送管。
FIG. 1 is a flow diagram showing a schematic configuration of an absorption air conditioner according to an embodiment of the present invention, and FIG. 2 is a flow diagram illustrating the same operation.
FIG. 3 is a graph showing the relationship between temperature and pressure of the aqueous lithium bromide solution with concentration as a parameter, FIG. 4 is a graph showing the solubility of the aqueous lithium bromide solution, and FIG. 5 is an absorption formula of another embodiment. It is a flowchart which shows schematic structure of an air conditioner. DESCRIPTION OF SYMBOLS 1 ... Evaporator, 3 ... Absorber, 4 ... Regenerator, 5 ... Gas-liquid separator, 7 ... Condenser, 8 ... Indoor heat exchanger, 10 ... First three-way switching valve, 11 ... First rare absorbent transfer Pipe, 12 ... Second three-way switching valve, 13
... second rare absorbent transfer pipe, 14 ... condensed water transfer pipe, 15 ... concentrated absorbent transfer pipe, 17 ... open / close valve, 18 ... first water transfer pipe, 19 ... third three-way switching valve, 20 ... second water Transfer pipe, 21 ... Third water transfer pipe, 22 ...
Fourth water transfer pipe, 23 ... Fifth water transfer pipe.

フロントページの続き (72)発明者 古寺 雅晴 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (72)発明者 坂端 伸治 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (72)発明者 河内 襄介 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (72)発明者 梅田 辰彦 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (72)発明者 岡本 英明 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (72)発明者 矢野 猛 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内 (72)発明者 松田 光史 大阪府大阪市西区江戸堀1丁目6番14号 日立造船株式会社内Front page continued (72) Inventor Masaharu Furuji 1-6-14 Edobori, Nishi-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (72) Shinji Sakabata 1-6-14 Edobori, Nishi-ku, Osaka City, Osaka Hitachi Zosen Incorporated (72) Inventor Yosuke Kawauchi 1-6-14 Edobori, Nishi-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (72) Inventor Tatsuhiko Umeda 1-6-14 Edobori, Nishi-ku, Osaka City, Hitachi, Ltd. In-house (72) Inventor Hideaki Okamoto 1-6-14 Edobori, Nishi-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (72) Inventor Takeshi Yano 1-6-14 Edobori, Nishi-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd. (72) Inventor Mitsufumi Matsuda 1-6-14 Edobori, Nishi-ku, Osaka City, Osaka Prefecture Hitachi Shipbuilding Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】熱輸送媒体である水を蒸発させる蒸発器
と、この蒸発器で発生した水蒸気を吸収液である臭化リ
チウム水溶液に吸収させる吸収器と、水蒸気を吸収して
濃度が薄くなった稀吸収液を加熱する再生器と、この再
生器で加熱された稀吸収液から水蒸気を分離する気液分
離器と、水蒸気を凝縮させる凝縮器と、室内に配置され
て室内空気との間で熱交換を行なう室内熱交換器と、上
記吸収器内の稀吸収液を再生器に移送する第1稀吸収液
移送管と、上記再生器で加熱された稀吸収液を気液分離
器に移送する第2稀吸収液移送管と、上記凝縮器からの
水を蒸発器に移送する凝縮水移送管と、上記気液分離器
で分離された濃吸収液を吸収器に移送する濃吸収液移送
管と、上記蒸発器でその気化熱により冷却された水を上
記室内熱交換器に供給する第1水移送管と、上記室内熱
交換器から出た水を上記蒸発器に戻す第2水移送管と、
上記第1水移送管内の水を第1稀吸収液移送管途中に移
送する第3水移送管と、第2稀吸収液移送管内の水を、
第1水移送管の第3水移送管との接続部より下流側位置
で第1水移送管内に移送する第4水移送管と、第2水移
送管内の水を、第1水移送管の第3水移送管との接続部
より上流側位置で第1水移送管内に移送する第5水移送
管とから構成した吸収式空調装置。
1. An evaporator for evaporating water, which is a heat transport medium, an absorber for absorbing water vapor generated in the evaporator into an aqueous solution of lithium bromide, which is an absorbing liquid, and a water vapor absorbing to reduce the concentration. Between the regenerator that heats the diluted absorbent, the gas-liquid separator that separates the steam from the diluted absorbent heated by the regenerator, the condenser that condenses the steam, and the indoor air that is placed in the room. Indoor heat exchanger for exchanging heat with the first absorber, the first rare absorbent transfer pipe for transferring the rare absorbent in the absorber to the regenerator, and the rare absorbent heated by the regenerator to the gas-liquid separator. A second dilute absorbent transfer pipe for transferring, a condensed water transfer pipe for transferring water from the condenser to the evaporator, and a concentrated absorbent for transferring the concentrated absorbent separated by the gas-liquid separator to the absorber. The transfer pipe and the water cooled by the heat of vaporization in the evaporator are supplied to the indoor heat exchanger. A first water transfer tube, a second water transfer pipe for returning the water leaving from the indoor heat exchanger to said evaporator,
The third water transfer pipe for transferring the water in the first water transfer pipe to the middle of the first diluted absorbent transfer pipe, and the water in the second diluted absorbent transfer pipe,
The fourth water transfer pipe which transfers into the first water transfer pipe at a position downstream of the connection portion of the first water transfer pipe with the third water transfer pipe, and the water in the second water transfer pipe, An absorption air conditioner comprising: a fifth water transfer pipe that transfers the water into the first water transfer pipe at a position upstream of a connection portion with the third water transfer pipe.
JP14098488A 1988-06-07 1988-06-07 Absorption air conditioner Expired - Lifetime JPH0694962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14098488A JPH0694962B2 (en) 1988-06-07 1988-06-07 Absorption air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14098488A JPH0694962B2 (en) 1988-06-07 1988-06-07 Absorption air conditioner

Publications (2)

Publication Number Publication Date
JPH01310272A JPH01310272A (en) 1989-12-14
JPH0694962B2 true JPH0694962B2 (en) 1994-11-24

Family

ID=15281427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14098488A Expired - Lifetime JPH0694962B2 (en) 1988-06-07 1988-06-07 Absorption air conditioner

Country Status (1)

Country Link
JP (1) JPH0694962B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2583579B2 (en) * 1988-07-07 1997-02-19 株式会社日立製作所 Absorption chiller with refrigerant circulation system for cooling and heating
JP7137968B2 (en) * 2018-06-05 2022-09-15 株式会社日立製作所 Cogeneration plant and its operation method

Also Published As

Publication number Publication date
JPH01310272A (en) 1989-12-14

Similar Documents

Publication Publication Date Title
KR100445616B1 (en) Absorbed refrigerator
JP2003130487A (en) Absorption refrigerating machine
JPH0886530A (en) Absorption type water cooling and heating machine
KR100337209B1 (en) Method of stopping an absorption refrigerator
JP4184197B2 (en) Hybrid absorption heat pump system
KR20040111171A (en) Single and double effect absorption refrigerating machine and control method of operation thereof
JP2000018762A (en) Absorption refrigerating machine
JPH0694962B2 (en) Absorption air conditioner
JP3883894B2 (en) Absorption refrigerator
JP2858908B2 (en) Absorption air conditioner
JPH079002Y2 (en) Absorption refrigerator
JP2554797B2 (en) Absorption heat pump device
JP2000088391A (en) Absorption refrigerating machine
JPH0643654Y2 (en) Absorption type water heater
JP2895974B2 (en) Absorption refrigerator
JP2004116800A (en) Hybrid air-conditioning machine
JPH0443264A (en) Absorption type heat source device
JP3744106B2 (en) Refrigeration equipment
JPH041267B2 (en)
JP2000146355A (en) Composite heat transfer system
JPS6148064B2 (en)
JP2003287315A (en) Absorption refrigerating machine
JP3811632B2 (en) Waste heat input type absorption refrigerator
JPH0820141B2 (en) Absorption refrigerator
JPH0754209B2 (en) Absorption cold / hot water device and its operating method