JPH0694321A - Device for controlling absorption heat pump - Google Patents

Device for controlling absorption heat pump

Info

Publication number
JPH0694321A
JPH0694321A JP3216597A JP21659791A JPH0694321A JP H0694321 A JPH0694321 A JP H0694321A JP 3216597 A JP3216597 A JP 3216597A JP 21659791 A JP21659791 A JP 21659791A JP H0694321 A JPH0694321 A JP H0694321A
Authority
JP
Japan
Prior art keywords
temperature
heat pump
absorption heat
hot water
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3216597A
Other languages
Japanese (ja)
Other versions
JP3158518B2 (en
Inventor
Giichi Nagaoka
義一 永岡
Osamu Shima
修 島
Takao Okuma
孝夫 大熊
Toshiyuki Kaneko
敏之 金子
Yukioku Yamazaki
志奥 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Tokyo Gas Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21659791A priority Critical patent/JP3158518B2/en
Publication of JPH0694321A publication Critical patent/JPH0694321A/en
Application granted granted Critical
Publication of JP3158518B2 publication Critical patent/JP3158518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/006Sorption machines, plants or systems, operating continuously, e.g. absorption type with cascade operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide hot water efficiently through the year by improving the coefficient of performance of the whole system by a method wherein the temperature of a hot water circulation path which thermally connect two absorption heat pumps, is cascade- controlled by the temperature of a low-temperature heat source for one of the absorption heat pumps. CONSTITUTION:An absorber 5 and condenser 3 for a first absorption heat pump A and an evaporator 13 for a second absorption heat pump B are thermally connected by a hot water circulation path 21. Also, to an evaporator 4 for the first pump A, a low-temperature heat source water circulation path 8 is connected, and river water, etc., flows in as a low-temperature heat source 9. In addition, a high-temperature water circulation path 16 is connected to the second pump B, and high temperature water is fed to a hot water supply/heating load 17. In this case, the temperature of the hot water circulation path 21 is cascade-controlled by the temperature of the low-temperature heat source 9. That is, the set temperature is corrected by a controller 46 which is connected to a water temperature sensor 45 of the low-temperature heat source 9, and at the same time, the heating quantity of a high-temperature regenerator 1 is controlled by a controller 42 which is connected to a water temperature sensor 41 of the hot water circulation path 21.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はヒートポンプ装置に関す
るものであり、特に詳しくは2台の吸収ヒートポンプを
組み合わせ、第1の吸収ヒートポンプの低温熱源として
河川水などを用い、第2の吸収ヒートポンプから高温水
を効率良く取り出す装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump device, and more particularly to a combination of two absorption heat pumps, using river water or the like as a low temperature heat source of the first absorption heat pump, and increasing the temperature from the second absorption heat pump. The present invention relates to a device for efficiently extracting water.

【0002】[0002]

【従来の技術】従来、この種のヒートポンプ装置として
は、例えば特開昭58−60172号公報に提案された
装置が知られている。ここに提案されたヒートポンプ装
置は、第1の吸収ヒートポンプが冷水出口温度によって
加熱量を制御しているため、温水系への放熱量はなりゆ
きとなって放熱装置が必要であった。すなわち、第1の
吸収ヒートポンプの放熱量が第2の吸収ヒートポンプの
蒸発器の所定入熱量より大きい場合には、過剰になった
熱量を系外に放熱する必要があり、逆に第1の吸収ヒー
トポンプの放熱量が第2の吸収ヒートポンプの蒸発器入
熱量より小さいときには、第2の吸収ヒートポンプから
充分な高温水を得ることができないと云う問題点があっ
た。
2. Description of the Related Art Conventionally, as this type of heat pump device, for example, a device proposed in Japanese Patent Laid-Open No. 58-60172 is known. In the heat pump device proposed here, since the first absorption heat pump controls the heating amount according to the cold water outlet temperature, the amount of heat radiation to the hot water system becomes volatile and a heat radiation device is required. That is, when the heat radiation amount of the first absorption heat pump is larger than the predetermined heat input amount of the evaporator of the second absorption heat pump, it is necessary to radiate the excess heat amount to the outside of the system, and conversely, the first absorption heat pump. When the heat radiation amount of the heat pump is smaller than the evaporator heat input amount of the second absorption heat pump, there is a problem that sufficient high temperature water cannot be obtained from the second absorption heat pump.

【0003】また、冷水出口温度が低下すると温水系へ
の放熱量が減少するため、温水系の温度レベルも低下
し、第2の吸収ヒートポンプの成績係数(以下COPと
記す)が低下すると云う問題点もあった。
Further, when the cold water outlet temperature decreases, the amount of heat released to the hot water system also decreases, so the temperature level of the hot water system also decreases, and the coefficient of performance (hereinafter referred to as COP) of the second absorption heat pump decreases. There were also points.

【0004】[0004]

【発明が解決しようとする課題】したがって、本発明は
従来提案されているシステムよりCOPを改善すると共
に、放熱装置を不要にして付帯設備費を削減しようとす
るものである。
SUMMARY OF THE INVENTION Therefore, the present invention is intended to improve the COP as compared with the conventionally proposed system and to reduce the cost of incidental equipment by eliminating the need for a heat dissipation device.

【0005】[0005]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するためになされたもので、高温再生器、低
温再生器、凝縮器、蒸発器、吸収器、高温熱交換器およ
び低温熱交換器からなる第1の吸収ヒートポンプと、再
生器、凝縮器、蒸発器、吸収器および熱交換器からなる
第2の吸収ヒートポンプとからなり、第1の吸収ヒート
ポンプの吸収器および凝縮器と第2の吸収ヒートポンプ
の蒸発器とを熱的に接続する温水循環路を設け、第1の
吸収ヒートポンプの蒸発器には低温熱源として河川水な
どを導き、第2の吸収ヒートポンプから高温水を取り出
す吸収ヒートポンプ装置において、温水循環路の温度を
低温熱源の温度によりカスケード制御することを特徴と
する吸収ヒートポンプの制御装置であり、第1の吸収ヒ
ートポンプと第2の吸収ヒートポンプが共に再生器、凝
縮器、蒸発器、吸収器および熱交換器からなり、第1の
吸収ヒートポンプの吸収器および凝縮器と第2の吸収ヒ
ートポンプの蒸発器とを熱的に接続する温水循環路を設
け、第1の吸収ヒートポンプの蒸発器には低温熱源とし
て河川水などを導き、第2の吸収ヒートポンプから高温
水を取り出す吸収ヒートポンプ装置において、温水循環
路の温度を低温熱源の温度によりカスケード制御するこ
とを特徴とする吸収ヒートポンプの制御装置を提供する
ものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and includes a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, an absorber, a high temperature heat exchanger and a low temperature regenerator. A first absorption heat pump consisting of a heat exchanger, and a second absorption heat pump consisting of a regenerator, a condenser, an evaporator, an absorber and a heat exchanger, and an absorber and a condenser of the first absorption heat pump. A hot water circulation path that thermally connects to the evaporator of the second absorption heat pump is provided, and river water or the like is introduced to the evaporator of the first absorption heat pump as a low temperature heat source, and high temperature water is taken out from the second absorption heat pump. In the absorption heat pump device, the temperature of the hot water circulation path is cascade-controlled by the temperature of the low-temperature heat source, which is a control device of the absorption heat pump. Absorption heat pump is composed of a regenerator, a condenser, an evaporator, an absorber and a heat exchanger together, and hot water that thermally connects the absorber and condenser of the first absorption heat pump and the evaporator of the second absorption heat pump. In the absorption heat pump device in which a circulation path is provided, river water or the like is introduced into the evaporator of the first absorption heat pump as a low temperature heat source, and high temperature water is taken out from the second absorption heat pump, the temperature of the hot water circulation path is changed by the temperature of the low temperature heat source. The present invention provides a control device for an absorption heat pump, which is characterized by performing cascade control.

【0006】[0006]

【作用】第1の吸収ヒートポンプの加熱量を温水循環路
を流れる温水の凝縮器出口温度で制御すると、第2の吸
収ヒートポンプの蒸発器には常に一定温度の温水が流入
する。したがって、高温水出口温度が一定に制御し易
く、制御性が向上する。運転中、仮に高温水系の負荷が
減少して第2の吸収ヒートポンプの再生器の加熱量が絞
られると、第2の吸収ヒートポンプの蒸発器での交換熱
量が減少し、その出口温度が上昇して第1の吸収ヒート
ポンプの吸収器に所定温度より高温の温水が還流する。
このため、凝縮器出口の温水温度が上昇するので、(高
温)再生器の加熱量が減少するように第1の吸収ヒート
ポンプを運転し、常に負荷に見合ったバランスの取れた
運転を行うことにより放熱装置が不要となる。
When the heating amount of the first absorption heat pump is controlled by the condenser outlet temperature of the hot water flowing through the hot water circulation path, the constant temperature hot water always flows into the evaporator of the second absorption heat pump. Therefore, the hot water outlet temperature is easily controlled to be constant, and the controllability is improved. During operation, if the load of the high temperature water system is reduced and the heating amount of the regenerator of the second absorption heat pump is reduced, the amount of heat exchanged in the evaporator of the second absorption heat pump decreases and its outlet temperature rises. As a result, hot water having a temperature higher than a predetermined temperature is returned to the absorber of the first absorption heat pump.
Therefore, the hot water temperature at the outlet of the condenser rises, so by operating the first absorption heat pump so as to reduce the heating amount of the (high temperature) regenerator, and always performing a balanced operation that matches the load. No heat dissipation device is required.

【0007】そして、第1の吸収ヒートポンプの蒸発器
に流入する河川水の温度は、都市排熱によるヒートアイ
ランド現象により近年は冬期でも12℃以上あるため、
液状冷媒を蒸発させる熱源としては充分な温度であり、
しかも使用後は廃水とするためその出口温度を制御する
必要がない。
Since the temperature of the river water flowing into the evaporator of the first absorption heat pump is 12 ° C. or more in winter even in winter due to the heat island phenomenon due to urban exhaust heat,
It has a sufficient temperature as a heat source to evaporate the liquid refrigerant,
Moreover, it is not necessary to control the outlet temperature because the waste water is used after use.

【0008】また、夏期には河川水の温度は25℃位ま
で上昇するが、その温度を検出して第1の吸収ヒートポ
ンプの凝縮器出口の温水温度設定値を河川水の温度にカ
スケードして変更し、設定値を上方修正することにより
第2の吸収ヒートポンプの蒸発器に流入する温水温度が
高くなり、COPが上昇するので第2の吸収ヒートポン
プから高温水を効率良く取り出すことができる。
Further, in summer, the temperature of the river water rises to about 25 ° C., and the temperature is detected and the hot water temperature set value at the condenser outlet of the first absorption heat pump is cascaded to the temperature of the river water. The temperature of the hot water flowing into the evaporator of the second absorption heat pump becomes higher and the COP increases by changing the value and correcting the set value upward, so that the high temperature water can be efficiently taken out from the second absorption heat pump.

【0009】[0009]

【実施例】図1に例示した吸収ヒートポンプ装置は、第
1の吸収ヒートポンプAと第2の吸収ヒートポンプBと
を組合せた構成であって、吸収ヒートポンプAは高温再
生器1、低温再生器2、凝縮器3、蒸発器4、吸収器
5、高温熱交換器6および低温熱交換器7とから構成さ
れた二重効用の吸収ヒートポンプであり、吸収ヒートポ
ンプBは再生器11、凝縮器12、蒸発器13、吸収器
14および熱交換器15とから構成された一重効用の吸
収ヒートポンプであり、温水循環路21によって第1の
吸収ヒートポンプAの吸収器5および凝縮器3と第2の
吸収ヒートポンプBの蒸発器13とが熱的に接続配管さ
れている。31は温水を循環させるために吸収器5と蒸
発器13との間に設置したポンプである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The absorption heat pump device illustrated in FIG. 1 has a structure in which a first absorption heat pump A and a second absorption heat pump B are combined, and the absorption heat pump A is a high temperature regenerator 1, a low temperature regenerator 2, It is a double-effect absorption heat pump composed of a condenser 3, an evaporator 4, an absorber 5, a high-temperature heat exchanger 6 and a low-temperature heat exchanger 7, and an absorption heat pump B is a regenerator 11, a condenser 12, and an evaporator. It is a single-effect absorption heat pump composed of a vessel 13, an absorber 14, and a heat exchanger 15, and an absorber 5 of the first absorption heat pump A and a condenser 3 and a second absorption heat pump B by a hot water circulation path 21. The evaporator 13 is thermally connected and connected. Reference numeral 31 is a pump installed between the absorber 5 and the evaporator 13 for circulating hot water.

【0010】第1の吸収ヒートポンプAにおいては低温
熱源水循環路8が、温度の安定した低温熱源として河川
水9などを蒸発器4に流入し、そして排水可能に接続配
管され、第2の吸収ヒートポンプBにおいては高温水循
環路16が、給湯・暖房負荷17に高温水を供給可能に
接続配管されている。32および33はそれぞれの循環
路に設置した循環用ポンプである。なお、河川水9とし
ては、湖水、井戸水、下水などであっても構わないが、
水量が多くて温度変化の少ないものであることが望まし
い。
In the first absorption heat pump A, the low-temperature heat source water circulation path 8 flows the river water 9 or the like into the evaporator 4 as a low-temperature heat source having a stable temperature, and is connected to the second absorption heat pump so as to be drainable. In B, the hot water circulation path 16 is connected to the hot water supply / heating load 17 so that hot water can be supplied. 32 and 33 are circulation pumps installed in the respective circulation paths. The river water 9 may be lake water, well water, sewage, etc.
It is desirable that the water content is large and the temperature change is small.

【0011】ところで、前記第1の吸収ヒートポンプA
および第2の吸収ヒートポンプBを構成する機器自体
は、従来周知のものと特に変わるものではなく、特に記
載しない限りそれぞれの機器が順調に機能するように従
来同様に接続配管されている。
By the way, the first absorption heat pump A
The devices themselves that constitute the second absorption heat pump B are not particularly different from those conventionally known, and unless otherwise stated, the respective devices are connected and piped in the same manner as in the prior art so that they function smoothly.

【0012】そして、第1の吸収ヒートポンプAの高温
再生器1の加熱量制御は、温水循環路21の凝縮器3出
口側に設けた水温測定用センサー41のデータとコント
ローラ42と、河川水9の水温測定用センサー45のデ
ータと、コントローラ46とによってカスケード制御さ
れる。すなわち、水温測定用センサー45のデータに基
づいてコントローラ46が動作し、設定温度の修正信号
をコントローラ42へ出力し、コントローラ42の設定
温度が変更され、この変更された設定温度に凝縮器3出
口側の温度がなるようにコントローラ42は水温測定用
センサー41のデータに基づいて高温再生器1の加熱量
を制御する。そして、河川水9の温度が例えば12℃と
低い冬期などでは、温水循環路21の設定温度を例えば
30℃とし、河川水9の温度が例えば25℃にもなる夏
期などでは設定温度を例えば38℃に自動的に上昇して
高温再生器1の加熱量を制御する。このように河川水9
の温度でコントローラー42の設定温度をカスケード制
御によって変更する様子を図2に示す。図2の場合は直
線的なカスケード制御であるが、任意の曲線でカスケー
ド制御することももちろん可能である。第2の吸収ヒー
トポンプBの再生器11の加熱量の制御は、高温水循環
路16の凝縮器12出口側に設けた水温測定用センサー
43のデータに基づいてコントローラー44が行う機構
となっている。34、35、36および37は、それぞ
れの循環路に設けたポンプである。
The heating amount of the high temperature regenerator 1 of the first absorption heat pump A is controlled by the data of the water temperature measuring sensor 41 provided on the outlet side of the condenser 3 of the hot water circulation path 21, the controller 42, and the river water 9. The data of the water temperature measuring sensor 45 and the controller 46 are cascade-controlled. That is, the controller 46 operates based on the data of the water temperature measuring sensor 45, outputs a correction signal of the set temperature to the controller 42, the set temperature of the controller 42 is changed, and the condenser 3 outlet is set to the changed set temperature. The controller 42 controls the heating amount of the high temperature regenerator 1 based on the data of the water temperature measuring sensor 41 so that the temperature on the side becomes equal. Then, in the winter when the temperature of the river water 9 is low, for example, 12 ° C., the set temperature of the hot water circulation passage 21 is set to 30 ° C., and in the summer when the temperature of the river water 9 reaches 25 ° C., the set temperature is set to 38 ° C., for example. The temperature is automatically raised to ℃ to control the heating amount of the high temperature regenerator 1. In this way river water 9
FIG. 2 shows how the preset temperature of the controller 42 is changed by the cascade control at the above temperature. The case of FIG. 2 is linear cascade control, but it is of course possible to perform cascade control with an arbitrary curve. The controller 44 controls the heating amount of the regenerator 11 of the second absorption heat pump B based on the data of the water temperature measuring sensor 43 provided on the outlet side of the condenser 12 of the high temperature water circulation path 16. 34, 35, 36 and 37 are pumps provided in the respective circulation paths.

【0013】次に、上記構成の吸収ヒートポンプ装置を
用いて給湯および暖房運転する具体例を説明する。
Next, a specific example of hot water supply and heating operation using the absorption heat pump device having the above configuration will be described.

【0014】温水循環路21を流れる温水は、上記した
ように第1の吸収ヒートポンプAの凝縮器3出口側温度
を一定、例えば河川水9が12℃の場合には30℃に保
つように制御される。すなわち、凝縮器3の出口側水温
をセンサー41が測定し、例えば所定の30℃より低い
ときにはコントローラー42の指示に基づいて高温再生
器1の加熱量を増加し、多量の冷媒蒸気(例えば水蒸
気)を低温再生器2に送ると共に、中間濃度に濃縮され
た多量の吸収液(例えばLiBr)を高温熱交換器6の側に
吐出して、吸収器5においては蒸発器4側で蒸発した冷
媒蒸気を吸収液が吸収する際の吸収熱によって加熱し、
凝縮器3においても低温再生器2側で発生した冷媒蒸気
によって加熱されるため、温水は所定の30℃になって
第2の吸収ヒートポンプBの蒸発器13の側に吐出す
る。
The hot water flowing through the hot water circulation passage 21 is controlled so that the temperature of the outlet side of the condenser 3 of the first absorption heat pump A is constant, for example, 30 ° C. when the river water 9 is 12 ° C. To be done. That is, the sensor 41 measures the outlet side water temperature of the condenser 3, and when the temperature is lower than a predetermined 30 ° C., for example, the heating amount of the high temperature regenerator 1 is increased based on the instruction of the controller 42, and a large amount of refrigerant vapor (for example, steam). Is sent to the low temperature regenerator 2, and a large amount of the absorbing liquid (for example, LiBr) concentrated to an intermediate concentration is discharged to the high temperature heat exchanger 6 side, and in the absorber 5, the refrigerant vapor evaporated on the evaporator 4 side. Is heated by the absorption heat when the absorption liquid absorbs,
Since the condenser 3 is also heated by the refrigerant vapor generated on the low temperature regenerator 2 side, the warm water reaches a predetermined temperature of 30 ° C. and is discharged to the evaporator 13 side of the second absorption heat pump B.

【0015】低温熱源水循環路8を介して蒸発器4に送
り込まれる河川水9の温度は、都市部の場合には冬期で
もかなり高い。これは、近年顕著になってきたヒートア
イランド現象によるものであり、例えば12℃にもな
る。このため、凝縮器3から送られた液状冷媒を加熱し
て蒸発させることが出来る(蒸発器4は例えば6mmHgに
減圧されているため沸点が低い)。そして、汲み上げた
河川水9は冷媒が蒸発する際の気化熱によって冷却さ
れ、例えば7℃になって河川などに排水される。
The temperature of the river water 9 sent to the evaporator 4 via the low-temperature heat source water circulation path 8 is considerably high even in winter in the case of urban areas. This is due to the heat island phenomenon, which has become remarkable in recent years, and reaches as high as 12 ° C., for example. Therefore, the liquid refrigerant sent from the condenser 3 can be heated to evaporate (the evaporator 4 has a low boiling point because the pressure is reduced to, for example, 6 mmHg). Then, the pumped river water 9 is cooled by the heat of vaporization when the refrigerant evaporates, reaches, for example, 7 ° C., and is discharged to a river or the like.

【0016】温水循環路21を介して第2の吸収ヒート
ポンプBの蒸発器13に流入する温水の温度は、第1の
吸収ヒートポンプAによって上記したように30℃に制
御されているため、第2の吸収ヒートポンプBの蒸発器
13手前にクーリングタワーなどの放熱装置を設置する
必要がない。
Since the temperature of the hot water flowing into the evaporator 13 of the second absorption heat pump B via the hot water circulation passage 21 is controlled to 30 ° C. by the first absorption heat pump A as described above, It is not necessary to install a heat dissipation device such as a cooling tower in front of the evaporator 13 of the absorption heat pump B.

【0017】このようにして、第2の吸収ヒートポンプ
Bの蒸発器13には所定の30℃の温水が流入するた
め、凝縮器12から流入した冷媒が効果的に蒸発し、多
量の冷媒蒸気が隣接する吸収器14で吸収液に吸収され
る。したがって、このときの吸収熱によって吸収器14
の内部温度が上昇し、高温水循環路16を流れる温水の
温度が上昇する。この温水は凝縮器12においても再生
器11から送られた冷媒蒸気によって再加熱され、所定
の高温、例えば80℃に加熱されて給湯・暖房負荷17
に供給され、仕事(熱交換)をして吸収器14に還流す
る。
In this way, the warm water at a predetermined temperature of 30 ° C. flows into the evaporator 13 of the second absorption heat pump B, so that the refrigerant flowing from the condenser 12 is effectively evaporated and a large amount of refrigerant vapor is generated. The absorbing liquid is absorbed by the adjacent absorber 14. Therefore, the absorption heat at this time causes the absorber 14
The internal temperature of the hot water rises, and the temperature of the hot water flowing through the high temperature water circulation path 16 rises. The hot water is also reheated in the condenser 12 by the refrigerant vapor sent from the regenerator 11, and is heated to a predetermined high temperature, for example, 80 ° C. to supply hot water / heating load 17.
Is supplied to the absorber 14 to perform work (heat exchange) and then return to the absorber 14.

【0018】再生器11の加熱量は、既述したように高
温水循環路16を流れる温水の凝縮器12出口側温度を
所定温度、例えば80℃になるように制御されるため、
給湯・暖房負荷17が大きく、例えば所定の60℃より
低温になって吸収器14に温水が還流して来ると、所定
の80℃より低い温度で凝縮器12から吐出することに
なるため、コントローラー44の指示によって再生器1
1の加熱量を増加し、多量の冷媒蒸気を凝縮器12に送
ると共に、濃縮再生した吸収液を熱交換器15を経由し
て吸収器14に送る。このように再生器11の加熱量を
増加すると、吸収器14においては濃度が上昇した吸収
液が隣接する蒸発器13で蒸発した冷媒蒸気を盛んに吸
収し、吸収熱によって高温水循環路16を流れる温水を
加熱し、さらに凝縮器12においても多量の冷媒蒸気に
よって再加熱されるため、所定の80℃の高温水となっ
て給湯・暖房負荷17に供給される。
Since the heating amount of the regenerator 11 is controlled so that the outlet side temperature of the condenser 12 of the hot water flowing through the high temperature water circulation path 16 becomes a predetermined temperature, for example, 80 ° C., as described above.
When the hot water supply / heating load 17 is large, for example, when the temperature falls below a predetermined temperature of 60 ° C. and hot water flows back to the absorber 14, the hot water is discharged from the condenser 12 at a temperature lower than a predetermined temperature of 80 ° C. Playback device 1 according to instructions from 44
The heating amount of 1 is increased, a large amount of refrigerant vapor is sent to the condenser 12, and the concentrated and regenerated absorption liquid is sent to the absorber 14 via the heat exchanger 15. When the heating amount of the regenerator 11 is increased in this way, in the absorber 14, the absorption liquid having the increased concentration actively absorbs the refrigerant vapor evaporated in the adjacent evaporator 13, and the absorption heat flows through the high temperature water circulation path 16. Since the hot water is heated and further reheated in the condenser 12 by a large amount of refrigerant vapor, it becomes hot water of a predetermined temperature of 80 ° C. and is supplied to the hot water supply / heating load 17.

【0019】逆に、給湯・暖房負荷17が小さい場合に
は、所定の60℃より温度の高い温水が吸収器14に還
流して来るので、再生器11の加熱量を従前同様にして
いたのでは所定の80℃より高温で凝縮器12から給湯
・暖房負荷17に送られるため、コントローラー44の
指示によって再生器11の加熱量を減じたり、加熱を一
時停止させて、冷媒蒸気の供給を減少または停止させる
と、吸収器14および凝縮器12における加熱効果が低
下して所定の80℃の高温水が供給される。
On the contrary, when the hot water supply / heating load 17 is small, warm water having a temperature higher than the predetermined 60 ° C. flows back to the absorber 14, so that the heating amount of the regenerator 11 is the same as before. Since it is sent from the condenser 12 to the hot water supply / heating load 17 at a temperature higher than the predetermined 80 ° C., the heating amount of the regenerator 11 is reduced or the heating is temporarily stopped according to the instruction of the controller 44, and the supply of the refrigerant vapor is reduced. Alternatively, when stopped, the heating effect in the absorber 14 and the condenser 12 is reduced, and high temperature water of a predetermined temperature of 80 ° C. is supplied.

【0020】そして、第1の吸収ヒートポンプAの低温
熱源である河川水9の温度が上昇すると、水温の上昇を
センサー45が検知し、コントローラー42の設定温度
がコントローラー46により自動的にカスケードされて
(図2に従って上昇)、高温再生器1の加熱量が制御さ
れる。例えば、河川水9の温度が12℃から25℃に1
3℃上昇した時には、温水循環路21を流れる温水の凝
縮器3の出口側温度が8℃上昇して38℃になるように
高温再生器1の加熱量を制御するので、河川水9の温度
が12℃の時より加熱量を絞ることが可能であり、第2
の吸収ヒートポンプBにおいても蒸発器13に流入する
温水循環路21の温水温度が8℃も上昇しているので、
再生器11の加熱量を絞ることができる。したがって、
夏期などで河川水9の温度が上昇した時には、第1の吸
収ヒートポンプAおよび第2の吸収ヒートポンプBのC
OPそれぞれが、図3および図4に示すように上昇する
ので、第2の吸収ヒートポンプBから所定温度の高温水
を効率良く取り出すことができる。
When the temperature of the river water 9 which is the low temperature heat source of the first absorption heat pump A rises, the sensor 45 detects the rise of the water temperature and the controller 46 automatically cascades the set temperature of the controller 42. (Increase according to FIG. 2), the heating amount of the high temperature regenerator 1 is controlled. For example, if the temperature of river water 9 changes from 12 ℃ to 25 ℃,
When the temperature rises by 3 ° C., the heating amount of the high temperature regenerator 1 is controlled so that the outlet temperature of the condenser 3 of the hot water flowing through the hot water circulation passage 21 rises by 8 ° C. to 38 ° C. It is possible to reduce the heating amount from when the temperature is 12 ° C.
Also in the absorption heat pump B, since the temperature of the hot water in the hot water circulation passage 21 flowing into the evaporator 13 has risen by 8 ° C.,
The heating amount of the regenerator 11 can be reduced. Therefore,
When the temperature of the river water 9 rises in summer or the like, C of the first absorption heat pump A and the second absorption heat pump B
Since each OP rises as shown in FIGS. 3 and 4, it is possible to efficiently take out high-temperature water having a predetermined temperature from the second absorption heat pump B.

【0021】図5は、第1の吸収ヒートポンプAと第2
の吸収ヒートポンプBが共に再生器11、凝縮器12、
蒸発器13、吸収器14および熱交換器15とから構成
された一重効用の吸収ヒートポンプ同士からなる吸収ヒ
ートポンプ装置である。この装置の機能および運転制御
は、図1で既に説明した吸収ヒートポンプ装置と同じで
あるので説明は省略する。
FIG. 5 shows a first absorption heat pump A and a second absorption heat pump A.
Of the absorption heat pump B of the regenerator 11, the condenser 12,
It is an absorption heat pump device including absorption heat pumps for single effect, which are composed of an evaporator 13, an absorber 14, and a heat exchanger 15. The function and operation control of this device are the same as those of the absorption heat pump device described in FIG.

【0022】[0022]

【発明の効果】以上説明したように本発明になる吸収ヒ
ートポンプの制御装置は、第1の吸収ヒートポンプと第
2の吸収ヒートポンプとを熱的に接続した温水循環路の
温度が、第1の吸収ヒートポンプの低温熱源水の温度に
よってカスケード制御されるため、冬期でも水温が12
℃程度の都市廃水を低温熱源に利用して第2の吸収ヒー
トポンプから温水が取り出すことができるのはもちろ
ん、水温が25℃にもなる夏期にはこの高い廃水温度に
温水循環路の設定温度をカスケード制御して運転するこ
とで(システム全体の)COPが上昇する。したがっ
て、年間を通して効率的に温水を取り出すことが可能に
なった。
As described above, in the control apparatus for the absorption heat pump according to the present invention, the temperature of the hot water circulation path that thermally connects the first absorption heat pump and the second absorption heat pump is the first absorption heat pump. Cascade control is performed according to the temperature of the low-temperature heat source water of the heat pump, so the water temperature is 12 even in winter.
The hot water can be taken out from the second absorption heat pump by using the municipal wastewater of about ℃ as a low temperature heat source, and the set temperature of the hot water circulation path is set to this high wastewater temperature in the summer when the water temperature reaches 25 ℃. By operating in cascade control, COP (of the entire system) increases. Therefore, it became possible to take out hot water efficiently throughout the year.

【図面の簡単な説明】[Brief description of drawings]

【図1】一実施例を示す説明図である。FIG. 1 is an explanatory diagram showing an example.

【図2】一実施例におけるカスケード制御の説明図であ
る。
FIG. 2 is an explanatory diagram of cascade control in one embodiment.

【図3】一実施例における第1の吸収ヒートポンプのC
OPを示す説明図である。
FIG. 3 C of the first absorption heat pump in one embodiment
It is explanatory drawing which shows OP.

【図4】一実施例における第2の吸収ヒートポンプのC
OPを示す説明図である。
FIG. 4 C of the second absorption heat pump in one embodiment
It is explanatory drawing which shows OP.

【図5】他の実施例を示す説明図である。FIG. 5 is an explanatory diagram showing another embodiment.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 低温再生器 3 凝縮器 4 蒸発器 5 吸収器 6 高温熱交換器 7 低温熱交換器 8 低温熱源水循環路 9 河川水 11 再生器 12 凝縮器 13 蒸発器 14 吸収器 15 熱交換器 16 高温水循環路 17 給湯・暖房負荷 21 温水循環路 31 ポンプ 41 センサー 42 コントローラー 43 センサー 44 コントローラー 45 センサー 46 コントローラー A 第1の吸収ヒートポンプ B 第2の吸収ヒートポンプ 1 High Temperature Regenerator 2 Low Temperature Regenerator 3 Condenser 4 Evaporator 5 Absorber 6 High Temperature Heat Exchanger 7 Low Temperature Heat Exchanger 8 Low Temperature Heat Source Water Circulation 9 River Water 11 Regenerator 12 Condenser 13 Evaporator 14 Absorber 15 Heat Exchange 16 High-temperature water circuit 17 Hot water supply / heating load 21 Hot-water circuit 31 Pump 41 Sensor 42 Controller 43 Sensor 44 Controller 45 Sensor 46 Controller A First absorption heat pump B Second absorption heat pump

フロントページの続き (72)発明者 大熊 孝夫 東京都練馬区桜台3−14−9 (72)発明者 金子 敏之 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 山崎 志奥 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内Front page continuation (72) Inventor Takao Okuma 3-14-9 Sakuradai, Nerima-ku, Tokyo (72) Inventor Toshiyuki Kaneko 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Yamazaki Shioku Osaka Prefecture Moriguchi City Keihan Hon-dori 2-chome 18 Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高温再生器、低温再生器、凝縮器、蒸発
器、吸収器、高温熱交換器および低温熱交換器からなる
第1の吸収ヒートポンプと、再生器、凝縮器、蒸発器、
吸収器および熱交換器からなる第2の吸収ヒートポンプ
とからなり、第1の吸収ヒートポンプの吸収器および凝
縮器と第2の吸収ヒートポンプの蒸発器とを熱的に接続
する温水循環路を設け、第1の吸収ヒートポンプの蒸発
器には低温熱源として河川水などを導き、第2の吸収ヒ
ートポンプから高温水を取り出す吸収ヒートポンプ装置
において、温水循環路の温度を低温熱源の温度によりカ
スケード制御することを特徴とする吸収ヒートポンプの
制御装置。
1. A first absorption heat pump comprising a high temperature regenerator, a low temperature regenerator, a condenser, an evaporator, an absorber, a high temperature heat exchanger and a low temperature heat exchanger, and a regenerator, a condenser, an evaporator,
A second absorption heat pump including an absorber and a heat exchanger, and a hot water circulation path that thermally connects the absorber and condenser of the first absorption heat pump to the evaporator of the second absorption heat pump, In the absorption heat pump device that introduces river water or the like as a low-temperature heat source into the evaporator of the first absorption heat pump and takes out high-temperature water from the second absorption heat pump, it is possible to perform cascade control of the temperature of the hot water circulation path according to the temperature of the low-temperature heat source. Characteristic absorption heat pump control device.
【請求項2】 第1の吸収ヒートポンプと第2の吸収ヒ
ートポンプが共に再生器、凝縮器、蒸発器、吸収器およ
び熱交換器からなり、第1の吸収ヒートポンプの吸収器
および凝縮器と第2の吸収ヒートポンプの蒸発器とを熱
的に接続する温水循環路を設け、第1の吸収ヒートポン
プの蒸発器には低温熱源として河川水などを導き、第2
の吸収ヒートポンプから高温水を取り出す吸収ヒートポ
ンプ装置において、温水循環路の温度を低温熱源の温度
によりカスケード制御することを特徴とする吸収ヒート
ポンプの制御装置。
2. The first absorption heat pump and the second absorption heat pump both include a regenerator, a condenser, an evaporator, an absorber and a heat exchanger, and the first absorption heat pump has an absorber and a condenser and a second absorption heat pump. A hot water circuit is provided to thermally connect the evaporator of the absorption heat pump to the first absorption heat pump, and river water or the like is introduced to the evaporator of the first absorption heat pump as a low temperature heat source.
In the absorption heat pump device for extracting high-temperature water from the absorption heat pump, the control device of the absorption heat pump, wherein the temperature of the hot water circulation path is cascade-controlled by the temperature of the low-temperature heat source.
JP21659791A 1991-08-02 1991-08-02 Absorption heat pump controller Expired - Fee Related JP3158518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21659791A JP3158518B2 (en) 1991-08-02 1991-08-02 Absorption heat pump controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21659791A JP3158518B2 (en) 1991-08-02 1991-08-02 Absorption heat pump controller

Publications (2)

Publication Number Publication Date
JPH0694321A true JPH0694321A (en) 1994-04-05
JP3158518B2 JP3158518B2 (en) 2001-04-23

Family

ID=16690919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21659791A Expired - Fee Related JP3158518B2 (en) 1991-08-02 1991-08-02 Absorption heat pump controller

Country Status (1)

Country Link
JP (1) JP3158518B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089338A3 (en) * 2010-01-19 2011-10-27 Atoll Energy Thermal power upgrade facility
CN111391555A (en) * 2020-03-23 2020-07-10 浙江哈尔斯真空器皿股份有限公司 Metal water cup shell with continuous pressed patterns on surface and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089338A3 (en) * 2010-01-19 2011-10-27 Atoll Energy Thermal power upgrade facility
US8820099B2 (en) 2010-01-19 2014-09-02 Atoll Energy Thermal power upgrade facility
CN111391555A (en) * 2020-03-23 2020-07-10 浙江哈尔斯真空器皿股份有限公司 Metal water cup shell with continuous pressed patterns on surface and manufacturing method thereof

Also Published As

Publication number Publication date
JP3158518B2 (en) 2001-04-23

Similar Documents

Publication Publication Date Title
JP4606255B2 (en) Operation method of single double effect absorption refrigerator
JP2002357370A (en) Control method of absorption refrigerating machine
JP2009085509A (en) Method of preventing crystallization of absorbent of high concentration in low-temperature heat exchanger in absorption type refrigerating machine
JP3241550B2 (en) Double effect absorption chiller / heater
JP2009243706A (en) Absorption heat pump
JPH0694321A (en) Device for controlling absorption heat pump
JP6603066B2 (en) Waste heat input type absorption chiller / heater
KR20050101113A (en) Absorption refrigerator
JP2542537B2 (en) Absorption heat pump device
JP3083361B2 (en) Absorption heat pump
JP2000274864A (en) Method for controlling absorption refrigerator
KR20090103740A (en) Absorption heat pump
JPH0552438A (en) Absorption heat pump
JP2892519B2 (en) Absorption heat pump equipment
JP3280169B2 (en) Double effect absorption refrigerator and chiller / heater
JP2744036B2 (en) Absorption refrigerator
JPS5828508B2 (en) Absorption cold/hot water supply device
JP3081490B2 (en) Absorption refrigerator
JPH11211262A (en) Absorption type refrigerating machine system
JP2001263851A (en) Method for controlling absorption refrigerating machine
JP3173057B2 (en) Absorption heat pump
JP2858921B2 (en) Control device for absorption refrigerator
JPH07127945A (en) Absorption type freezer
JP2001208443A (en) Absorption freezer
JP2858931B2 (en) Control device for absorption refrigerator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees