JPH0693974A - Trace flow rate pump - Google Patents

Trace flow rate pump

Info

Publication number
JPH0693974A
JPH0693974A JP24301892A JP24301892A JPH0693974A JP H0693974 A JPH0693974 A JP H0693974A JP 24301892 A JP24301892 A JP 24301892A JP 24301892 A JP24301892 A JP 24301892A JP H0693974 A JPH0693974 A JP H0693974A
Authority
JP
Japan
Prior art keywords
pump
flow rate
cylinder
volume
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24301892A
Other languages
Japanese (ja)
Inventor
Kenichiro Takahashi
健一郎 高橋
Kouji Tsutsuda
恒治 筒田
Sadafumi Onuma
定文 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24301892A priority Critical patent/JPH0693974A/en
Publication of JPH0693974A publication Critical patent/JPH0693974A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a technology through which a specified amount or less of a flow rate is continued to be stably fed to a column, in a trace flow rate pump for a liquid chromatograph. CONSTITUTION:A trace flow rate pump is formed of a base plate part comprising a piezoelectric element 1, a plunger 2, and a cylinder 3. Fluid is sucked and delivered through the change of the volume of a plunger in the cylinder by means of a voltage applied on the piezoelectric element. High speed control the speed of which is approximate 100 times as fast as that of a conventional motor-operated pump is practicable and the generation of a pressure fluctuation ripple can be reduced through coping at a high speed with a fluctuation in a flow rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】分析装置における試料の送出手段
として利用され、特に液体クロマトグラフ分析装置にお
ける微流量ポンプに最適である。
It is used as a sample delivery means in an analyzer, and is most suitable for a fine flow rate pump in a liquid chromatograph analyzer.

【0002】[0002]

【従来の技術】従来より液体クロマトグラフ分析装置に
おけるポンプは、高圧力で試料を送出する必要性があ
り、動力源にモータを使用し、シリンダ内部にプランジ
ャを往復させることにより、シリンダ内に試料を吸入し
送出している。但し、シリンダが1つの場合、試料吸入
中は送出不能となり、送出流量が脈流になってしまう。
そこで2つのシリンダを組合せることにより、1方のシ
リンダが吸入中は、残る1方のシリンダが送出するよう
動作させ、脈流を小さくしている。
2. Description of the Related Art Conventionally, a pump in a liquid chromatograph analyzer needs to deliver a sample at a high pressure. A motor is used as a power source and a plunger is reciprocated in the cylinder to reciprocate the sample in the cylinder. Is inhaled and delivered. However, when the number of cylinders is one, the sample cannot be delivered during inhalation, and the delivered flow rate becomes a pulsating flow.
Therefore, by combining the two cylinders, while one cylinder is inhaling, the remaining one cylinder is operated so as to deliver, thereby reducing the pulsating flow.

【0003】[0003]

【発明が解決しようとする課題】液体クロマトグラフ分
析装置の高感度化により微量試料での測定が可能とな
り、試料送出量の微量化が進んできている。従来の動力
源をモータだけに頼る構成のポンプでは微流量制御が困
難となってきた。特に前記した2つのシリンダ動作にお
いて、吸入と送出の切替時点で発生する流量変動,プラ
ンジャの移動量精度限界による流量変動の補正を高速度
に追従して、高精度で補正する技術が必要となってい
る。本発明は電気信号に高速に応答し高精度に制御可能
な高圧力ポンプを実現し、微流量を安定に制御するポン
プを提供することを目的とする。
Due to the high sensitivity of the liquid chromatograph analyzer, it becomes possible to perform measurement with a small amount of sample, and the amount of sample delivery has been reduced. Fine flow rate control has become difficult with conventional pumps that rely solely on motors as power sources. In particular, in the above-mentioned two cylinder operations, there is a need for a technology for correcting the flow rate fluctuation occurring at the time of switching between suction and delivery and the flow rate fluctuation due to the accuracy limit of the moving amount of the plunger at a high speed and with high accuracy. ing. It is an object of the present invention to provide a high pressure pump that responds to an electric signal at high speed and can be controlled with high accuracy, and to provide a pump that stably controls a minute flow rate.

【0004】[0004]

【課題を解決するための手段】請求項1は、例えば圧電
素子にプランジャを固定し、圧電素子の体積変化が、シ
リンダ内部のプランジャの体積変化になる構造にする。
図1の微流量ポンプ原理図に本構成の一例を示す。吸入
側に、吸入弁を接続し、送出側に吐出弁を接続すること
により、圧電素子の体積が小さくなるよう印加電圧を変
化させると、シリンダ内のプランジャの体積が小さくな
り、シリンダ内圧力が下り吐出弁が閉じて、吸入弁が開
き、シリンダ内に試料が吸入される。次に圧電素子の体
積が大きくなるよう印加電圧を変化させると、シリンダ
内のプランジャの体積が大きくなり、シリンダ内圧が上
り吸入弁が閉じ吐出弁が開く、これによりシリンダ内の
試料が吐出弁を通り送出される。
According to a first aspect of the present invention, for example, a plunger is fixed to a piezoelectric element, and a volume change of the piezoelectric element results in a volume change of the plunger inside the cylinder.
An example of this structure is shown in the principle diagram of the minute flow rate pump in FIG. If the applied voltage is changed so that the volume of the piezoelectric element is reduced by connecting the suction valve to the suction side and the discharge valve to the delivery side, the volume of the plunger in the cylinder decreases and the pressure in the cylinder decreases. The downward discharge valve is closed, the suction valve is opened, and the sample is sucked into the cylinder. Next, when the applied voltage is changed so that the volume of the piezoelectric element increases, the volume of the plunger in the cylinder increases, the cylinder internal pressure rises, the suction valve closes, and the discharge valve opens, which causes the sample in the cylinder to discharge the discharge valve. Sent out.

【0005】請求項2は、試料を送出するメインポンプ
の出力と負荷の間に、本微流量ポンプを配置し、出力の
圧力値が一定になるように、プランジャをシリンダ内に
出し入れするよう制御する構成にしたもので1例を(図
3)の微流量補正ポンプ構成図に示す。
According to a second aspect of the present invention, the fine flow rate pump is arranged between the output of the main pump for delivering the sample and the load, and the plunger is controlled to be taken in and out of the cylinder so that the pressure value of the output becomes constant. An example of such a configuration is shown in the fine flow rate correction pump configuration diagram of FIG.

【0006】[0006]

【作用】本発明における圧電素子は、例えば積層型セラ
ミックにより作られたものがある。印加電圧を約600
Vぐらい変化することにより0.1μm 以下の精度で6
0μmの変位し、11KN以上の力を発生するものが製
品化されている。電圧変化に対する変位の応答性は、1
00μsec 以下であることからDCから10KHZ以上
までの制御が自由に行なえる。これに対し、モータによ
る従来からの技術では、発生力及び変位量を大きくでき
る点で優れているが、微流量を高精度に制御するための
微量変位制御性及び高速応答性に劣る。
The piezoelectric element according to the present invention may be made of, for example, a laminated ceramic. Applied voltage is about 600
By changing about V, 6 with an accuracy of 0.1 μm or less
A product that has a displacement of 0 μm and generates a force of 11 KN or more has been commercialized. The response of displacement to voltage change is 1
Since it is 00 μsec or less, control from DC to 10 KHZ or more can be freely performed. On the other hand, the conventional technique using the motor is excellent in that the generated force and the displacement amount can be increased, but is inferior in the small displacement controllability for controlling the minute flow rate with high accuracy and the high-speed response.

【0007】[0007]

【実施例】本発明の一実施例を図2の微流量ポンプ構成
図に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention is shown in the fine flow rate pump configuration diagram of FIG.

【0008】4の吸入弁と、吸入弁を通し試料を吸入
し、5の吐出弁を通し、試料を送出する10の微流量ポ
ンプと、5の吐出弁からの試料を吸入し、負荷に送出す
る11の微流量ポンプ2と、11の微流量ポンプ2と、
負荷の間の流路圧力を測定する12の圧力センサと、1
6の流量設定回路の設定信号と、12の圧力センサから
の信号により、10,11の微流量ポンプ1と2の制御
信号を作り出す15のポンプ制御回路と、前記制御信号
量に応じた電圧を発生する、13の電圧発生回路1と、
14の電圧発生回路2により構成させる。10と11の
微流量ポンプ1,2は、図1の微流量ポンプ原理図に示
される1の圧電素子と、2のプランジャと、3のシリン
ダにより構成される。図4の制御信号とシリンダ内プラ
ンジャ体積の関係図に、15のポンプ制御回路OUT
1,2から出力される制御信号と、10,11の微流量
ポンプ1,2におけるシリンダ内プランジャ体積の関係
を示す。図5,図6に動作時のポンプ2と1の制御信号
を示す。図7に図5と図6の制御信号におけるa〜d区
間それぞれに対応した動作状態を示す。以上の図により
1実施例の動作を示す。本実施例の場合2つの微流量ポ
ンプ1,2におけるプランジャの動きと、吸入弁と吐出
弁の動きにより4つの動作状態を繰返すことにより機能
する。図5のaで示される区間は、図7のa区間の動作
に示される状態で、制御信号は図5に示すように、ポン
プ1は、減少方向に変化していることから、ポンプ1の
第1プランジャはシリンダの外に出る方向に動作するこ
とから吸入弁が開き試料溶液を吸入する。ポンプ2の制
御信号は、増加方向に変化していることからポンプ2の
シリンダ内に第2プランジャが入る方向に動作すること
からポンプ2のシリンダ内圧力が上り、吐出弁は閉じて
ポンプ2内部の試料は第2プランジャがシリンダに入っ
た体積分だけ外部に送出される。次にbの区間の動作に
移り、ポンプ1の制御信号だけが減少方向から増加方向
に変化する。これにより、ポンプ1の内圧が上り吸入弁
が閉じる。ポンプ2はa区間と同じく試料を送出する。
次にc区間の動作になる。b区間においてポンプ1の内
圧がポンプ2の内圧以上になった所で吐出弁が開き、ポ
ンプ1の試料はポンプ2に押し出される。この区間では
外部に送出され量がポンプ1と2が押し出す和になる。
送出量を一定にする場合は、図5のcに示すように制御
信号の変化量を小さくする。次のd区間は、ポンプ2の
制御信号を減少方向に変化させることでポンプ1が吸入
した試料をポンプ2に吸入する動作となる。又同時に外
部にも送出する必要があるためポンプ1の制御信号の増
加率は図6のdに示すように高くなる。この間吸入弁は
閉じ、吐出弁は開く。以上a,b,c,dの動作を1サ
イクルとして繰返す。この1サイクルを一定時間内にど
のくらい繰返すかによって、本実施例の微流量ポンプか
ら送出される試料の量が変化する。又本実施例では、ポ
ンプの送出口と負荷との間に圧力センサを配置すること
により、負荷となる例えば液体クロマトグラフ用カラム
のように流入抵抗が安定している場合、圧力の変動は、
流量の変動となることから、図2の15ポンプ制御回路
が12の圧力センサからの圧力信号を入力することによ
り、負荷への流量が一定になるように制御することも可
能としている。
[0008] A suction valve of 4 and a sample is sucked through the suction valve and is discharged through a discharge valve of 5, and a fine flow pump of 10 and a sample from the discharge valve of 5 are sucked and sent to a load. 11 minute flow pump 2 and 11 minute flow pump 2
12 pressure sensors for measuring flow path pressure between loads, 1
15 pump control circuits that generate control signals for the fine flow pumps 1 and 2 of 10, 11 by the setting signal of the flow rate setting circuit of 6 and the signal from the pressure sensor of 12, and a voltage according to the control signal amount. 13 voltage generating circuits 1 that are generated,
It is configured by 14 voltage generation circuits 2. The minute flow pumps 1 and 2 of 10 and 11 are composed of a piezoelectric element 1 shown in the principle diagram of the minute flow pump of FIG. 1, a plunger 2 and a cylinder 3 respectively. In the relationship diagram between the control signal and the cylinder plunger volume in FIG. 4, 15 pump control circuits OUT
2 shows the relationship between the control signals output from the Nos. 1 and 2 and the in-cylinder plunger volumes of the minute flow pumps 1 and 10. 5 and 6 show control signals for the pumps 2 and 1 during operation. FIG. 7 shows operation states corresponding to the sections a to d in the control signals of FIGS. The operation of one embodiment is shown by the above figures. In the case of the present embodiment, it functions by repeating four operating states by the movement of the plungers of the two minute flow rate pumps 1 and 2, and the movements of the suction valve and the discharge valve. The section indicated by a in FIG. 5 is the state shown by the operation in the section a in FIG. 7, and the control signal is changing in the decreasing direction as shown in FIG. Since the first plunger operates in the direction to go out of the cylinder, the suction valve opens and the sample solution is sucked. Since the control signal of the pump 2 is changing in the increasing direction, the second plunger moves into the cylinder of the pump 2 so that the pressure in the cylinder of the pump 2 rises, the discharge valve is closed, and the inside of the pump 2 is closed. Sample is sent out to the outside by the volume of the second plunger entering the cylinder. Next, in the operation of the section b, only the control signal of the pump 1 changes from the decreasing direction to the increasing direction. As a result, the internal pressure of the pump 1 rises and the suction valve closes. The pump 2 delivers the sample similarly to the section a.
Next, the operation of section c starts. In the section b, the discharge valve opens when the internal pressure of the pump 1 becomes equal to or higher than the internal pressure of the pump 2, and the sample of the pump 1 is pushed out to the pump 2. In this section, the amount delivered to the outside is the sum of the pumps 1 and 2 pushing out.
In the case of keeping the sending amount constant, the change amount of the control signal is made small as shown in FIG. In the next section d, the control signal of the pump 2 is changed in the decreasing direction so that the sample sucked by the pump 1 is sucked into the pump 2. At the same time, since it is necessary to send the signal to the outside, the increase rate of the control signal of the pump 1 becomes high as shown in d of FIG. During this time, the suction valve closes and the discharge valve opens. The above operations of a, b, c and d are repeated as one cycle. The amount of the sample delivered from the minute flow rate pump of this embodiment changes depending on how many times this one cycle is repeated within a fixed time. Further, in the present embodiment, by arranging a pressure sensor between the delivery port of the pump and the load, when the inflow resistance is stable as in a load column, for example, a liquid chromatograph column, the pressure fluctuation is
Since the flow rate fluctuates, it is possible to control the flow rate to the load to be constant by inputting the pressure signal from the 12 pressure sensors to the 15 pump control circuit in FIG.

【0009】本実施例によれば微流量ポンプを2つ組み
合わせることにより微小流量(特に約毎分0.1〜1μ
l を中心とする微小流量)を安定に、送出するポンプ
を提供できる。
According to the present embodiment, by combining two minute flow rate pumps, a minute flow rate (especially about 0.1 to 1 μm / min) can be obtained.
It is possible to provide a pump that stably delivers a minute flow rate centered on l 1.

【0010】図3は本発明の他の実施例を示すものであ
り、20のメインポンプの出力と負荷の間に本発明の微
流量ポンプを接続した例である。負荷と微流量ポンプと
の間に、12の圧力センサからの信号により、13の電
圧発生回路に制御信号を送り、圧力が上ると微流量ポン
プのシリンダ内容量が大きくなるように、動作するし、
圧力を低下させ、圧力が下ると前記動作の逆方向の動き
をして圧力を上げるよう動作する。本実施例によればポ
ンプ出力の微量圧力変動を吸収し圧力変動の小さなポン
プを提供することができる。
FIG. 3 shows another embodiment of the present invention, which is an example in which the minute flow pump of the present invention is connected between the output of 20 main pumps and the load. A control signal is sent between the load and the fine flow rate pump by the signal from the 12 pressure sensor to the voltage generating circuit at 13 to operate so that the cylinder capacity of the fine flow rate pump increases as the pressure rises. ,
When the pressure is lowered and the pressure is lowered, the operation moves in the opposite direction to the above-mentioned operation to increase the pressure. According to the present embodiment, it is possible to provide a pump having a small pressure fluctuation by absorbing a slight pressure fluctuation of the pump output.

【0011】図8は、圧電素子によりプランジャの機能
を兼ねた1実施例である。本発明において圧電素子の体
積変位量が液体の圧縮変位量より小さい場合、外部への
送出が不可能になる。本実施例はシリンダ内容量に対
し、圧電素子の変位面積を広げることにより、送出する
液体の圧縮量より大きな変位を実現した1実施例であ
る。
FIG. 8 shows an embodiment in which a piezoelectric element also functions as a plunger. In the present invention, when the volume displacement of the piezoelectric element is smaller than the compression displacement of the liquid, it cannot be delivered to the outside. This embodiment is one embodiment in which the displacement area of the piezoelectric element is expanded with respect to the capacity in the cylinder to realize a displacement larger than the amount of compression of the liquid to be delivered.

【0012】[0012]

【発明の効果】【The invention's effect】

1.ポンプのシリンダ内容量を最大から最小まで又は、
最小から最大までを100μsec 以上の高速で、高精度に
変化させることが可能となり従来技術であるモータ駆動
方式に比較し、約100倍以上の高速制御可能なポンプ
が提供できる。
1. Maximum to minimum cylinder capacity of pump, or
It is possible to change from the minimum to the maximum at a high speed of 100 μsec or more with high precision, and it is possible to provide a pump capable of performing high-speed control about 100 times or more as compared with the conventional motor drive method.

【0013】2.高速制御が可能となり、従来方法では
取り除く事のできなかった圧力変動リップルを減少する
ことが可能となった。
2. High-speed control has become possible, and it has become possible to reduce pressure fluctuation ripples that could not be removed by conventional methods.

【0014】3.モータ及び往復運動変換機構が不要と
なり小型化,ローコスト化が可能となった。
3. A motor and a reciprocating motion conversion mechanism are not required, which enables downsizing and cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】微流量ポンプ原理図である。FIG. 1 is a principle diagram of a minute flow rate pump.

【図2】微流量ポンプ構成図である。FIG. 2 is a configuration diagram of a minute flow rate pump.

【図3】微流量補正ポンプ図である。FIG. 3 is a fine flow rate correction pump diagram.

【図4】制御信号とシリンダ内プランジャ体積の関係を
示すグラフである。
FIG. 4 is a graph showing a relationship between a control signal and an in-cylinder plunger volume.

【図5】図2に示す実施例における微流量ポンプ2の制
御信号を示すグラフである。
5 is a graph showing a control signal of the minute flow rate pump 2 in the embodiment shown in FIG.

【図6】図2に示す実施例における微流量ポンプ1の制
御信号を示すグラフである。
FIG. 6 is a graph showing a control signal of the minute flow rate pump 1 in the embodiment shown in FIG.

【図7】図2に示す実施例における動作を示す図であ
る。
FIG. 7 is a diagram showing an operation in the embodiment shown in FIG.

【図8】微流量ポンプの他の実施例を示す原理図であ
る。
FIG. 8 is a principle view showing another embodiment of the minute flow rate pump.

【符号の説明】[Explanation of symbols]

1…圧電素子、2…プランジャ、3…シリンダ、4…吸
入弁、5…吐出弁、6…Oリング、7…圧電素子電極。
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric element, 2 ... Plunger, 3 ... Cylinder, 4 ... Suction valve, 5 ... Discharge valve, 6 ... O-ring, 7 ... Piezoelectric element electrode.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】微流量の液体を送出するポンプにおいて、
液体を吸入し送出するシリンダ手段と、電圧により体積
が変化する電圧体積変化部と、前記電圧体積変化部の体
積変化により前記シリンダ内体積を変化させる手段とを
有し、液体の送出量を電圧体積変化部に加える電圧によ
り制御可能にすることを特徴とする微流量ポンプ。
1. A pump for delivering a small amount of liquid,
It has a cylinder means for sucking and delivering liquid, a voltage volume changing portion whose volume is changed by voltage, and means for changing the internal volume of the cylinder by the volume change of the voltage volume changing portion, and the amount of liquid delivered is changed by voltage. A micro-flow pump characterized by being controllable by a voltage applied to a volume changing part.
【請求項2】請求項1記載の微流量ポンプを、主たるポ
ンプの出力と、液体を送る負荷部の中間に配置し、微流
量の制御を可能にしたことを特徴とする微流量ポンプ。
2. A fine flow rate pump according to claim 1, wherein the fine flow rate pump is arranged in the middle of the output of the main pump and the load part for feeding the liquid, and the fine flow rate can be controlled.
【請求項3】請求項1の電圧体積変化部をシリンダの内
壁を兼ねた構造とすることによりシリンダ内壁の収縮が
シリンダ内体積を変化させることを特徴とする微流量ポ
ンプ。
3. A minute flow rate pump characterized in that the voltage volume changing portion according to claim 1 has a structure which also serves as an inner wall of the cylinder, whereby contraction of the inner wall of the cylinder changes the inner volume of the cylinder.
JP24301892A 1992-09-11 1992-09-11 Trace flow rate pump Pending JPH0693974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24301892A JPH0693974A (en) 1992-09-11 1992-09-11 Trace flow rate pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24301892A JPH0693974A (en) 1992-09-11 1992-09-11 Trace flow rate pump

Publications (1)

Publication Number Publication Date
JPH0693974A true JPH0693974A (en) 1994-04-05

Family

ID=17097655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24301892A Pending JPH0693974A (en) 1992-09-11 1992-09-11 Trace flow rate pump

Country Status (1)

Country Link
JP (1) JPH0693974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011038527A (en) * 2010-09-06 2011-02-24 Seiko Epson Corp Fluid injection method
GB2481624A (en) * 2010-07-01 2012-01-04 Agilent Technologies Inc Controller and piezoelectric actuator provides pressure ripple compensation in chromatographic pump drive
JP2014238087A (en) * 2014-05-19 2014-12-18 セイコーエプソン株式会社 Control device for fuel injection apparatus, and surgical scalpel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2481624A (en) * 2010-07-01 2012-01-04 Agilent Technologies Inc Controller and piezoelectric actuator provides pressure ripple compensation in chromatographic pump drive
JP2011038527A (en) * 2010-09-06 2011-02-24 Seiko Epson Corp Fluid injection method
JP2014238087A (en) * 2014-05-19 2014-12-18 セイコーエプソン株式会社 Control device for fuel injection apparatus, and surgical scalpel

Similar Documents

Publication Publication Date Title
US7322803B2 (en) Pumps with diaphragms bonded as bellows
Smits Piezoelectric micropump with three valves working peristaltically
JP4276827B2 (en) Liquid chromatograph pump and operation method thereof
Cabuz et al. The dual diaphragm pump
EP0303220A2 (en) Low pulsation displacement pump
JPH01104989A (en) Pump device
JP7123968B2 (en) A positive displacement pump for medical fluids and a blood processing apparatus comprising a positive displacement pump for medical fluids and a method for controlling a positive displacement pump for medical fluids
JPS61255668A (en) Drug administration apparatus
JP4419790B2 (en) Piezoelectric diaphragm pump
JPH0693974A (en) Trace flow rate pump
US20180163712A1 (en) Chamber pump and method for operating a chamber pump
JP2000130353A (en) Liquid feeding pump
CN115350395A (en) Variable flow direction's piezoelectricity valveless pump and controlling means thereof
JP2012031817A (en) Liquid feed pump and liquid feed device
JP2002079161A (en) Dispenser
JPH0754114B2 (en) Control method of liquid delivery pump
JP2000230886A (en) Dispensing pipet
CN105370548A (en) Piezoelectric pump
JPH03134271A (en) Fine quantity delivery device
EP0106009B1 (en) Liquid chromatograph
JPH0472070B2 (en)
JPS5819868B2 (en) fluid supply device
JPH06159235A (en) Reciprocal liquid feed device
JPS6158286A (en) Control for piezo-electric vibrator
JP4136908B2 (en) Liquid feeding device