JPH0693829A - Exhaust gas purifying device for internal combustion engine - Google Patents

Exhaust gas purifying device for internal combustion engine

Info

Publication number
JPH0693829A
JPH0693829A JP23984692A JP23984692A JPH0693829A JP H0693829 A JPH0693829 A JP H0693829A JP 23984692 A JP23984692 A JP 23984692A JP 23984692 A JP23984692 A JP 23984692A JP H0693829 A JPH0693829 A JP H0693829A
Authority
JP
Japan
Prior art keywords
exhaust gas
exhaust
concentration
temperature
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23984692A
Other languages
Japanese (ja)
Other versions
JP3116588B2 (en
Inventor
Kuniaki Sawamoto
国章 沢本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP04239846A priority Critical patent/JP3116588B2/en
Publication of JPH0693829A publication Critical patent/JPH0693829A/en
Application granted granted Critical
Publication of JP3116588B2 publication Critical patent/JP3116588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons

Abstract

PURPOSE:To monitor the adsorption and desorption of unburnt components such as HC in an adsorbing device for adsorbing the unburnt components. CONSTITUTION:Concentration of HC at inlet and outlet sides of an adsorbing device A provided in an exhaust bypass passage, by means of sensors B, C, and a flow rate of exhaust gas passing through the adsorbing device A is detected. Further, a quantity of HC adsorbed by the adsorbing device is computed in accordance with the concentrations of HC at the inlet and outlet sides, and the flow rate of the exhaust gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の排気浄化装
置に関し、特にHC等の未燃成分を吸着する吸着装置を
備えるものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification device for an internal combustion engine, and more particularly to a device provided with an adsorption device for adsorbing unburned components such as HC.

【0002】[0002]

【従来の技術】この種の内燃機関の排気浄化装置の従来
例として、以下のようなものがある(実開昭63−687
13号公報参照)。すなわち、三元触媒装置が介装され
る排気通路を前記三元触媒装置上流において分岐させて
バイパス通路を形成し、このバイパス通路に吸着装置を
介装する。
2. Description of the Related Art The following is a conventional example of this type of exhaust gas purifying apparatus for an internal combustion engine (Actual No. Sho 63-687).
(See Japanese Patent No. 13). That is, the exhaust passage in which the three-way catalyst device is interposed is branched upstream of the three-way catalyst device to form a bypass passage, and the adsorption device is interposed in this bypass passage.

【0003】そして、排気温度が低い運転領域では排気
をバイパス通路を流通させて排気中のHC等の未燃成分
を吸着装置にて吸着捕集した後、排気を三元触媒装置に
導入する。また、排気温度が高い運転領域では排気を吸
着装置に流通させることなく三元触媒装置に導入する。
In an operating region where the exhaust gas temperature is low, the exhaust gas is passed through the bypass passage to adsorb and collect unburned components such as HC in the exhaust gas by the adsorbing device, and then the exhaust gas is introduced into the three-way catalyst device. Further, in the operating region where the exhaust gas temperature is high, the exhaust gas is introduced into the three-way catalyst device without flowing through the adsorption device.

【0004】[0004]

【発明が解決しようとする課題】ところで、排気エミッ
ションの低減対策に対応させるためには、自己診断,H
Cの脱離,吸着状況をモニタする必要があるが、前記従
来例においては前記対策が行われれていなかった。本発
明は、このような実状に鑑みてなされたもので、HC等
の未燃成分の吸着,脱離状況をモニタ可能ならしめるこ
とを目的とする。
By the way, self-diagnosis and H
Although it is necessary to monitor the state of desorption and adsorption of C, the above-mentioned measures have not been taken in the conventional example. The present invention has been made in view of such a situation, and an object thereof is to enable monitoring of the adsorption and desorption states of unburned components such as HC.

【0005】[0005]

【課題を解決するための手段】このため、本発明は図1
に示すように、排気中の未燃成分を吸着する吸着装置A
入口の排気中の未燃成分濃度を検出する第1濃度検出手
段Bと、前記吸着装置A出口の排気中の未燃成分濃度を
検出する第2濃度検出手段Cと、前記吸着装置Aを通過
する排気流量を検出する排気流量検出手段Dと、検出さ
れた入口側未燃成分濃度と出口側未燃成分濃度と排気流
量とに基づいて前記吸着装置Aに吸着される未燃成分量
を演算する吸着量演算手段Eと、を備えるようにした。
Therefore, the present invention is based on FIG.
As shown in Fig. 3, an adsorption device A for adsorbing unburned components in exhaust gas
The first concentration detecting means B for detecting the concentration of unburned components in the exhaust gas at the inlet, the second concentration detection means C for detecting the concentration of unburned components in the exhaust gas at the outlet of the adsorption device A, and the passage through the adsorption device A The exhaust flow rate detection means D for detecting the exhaust flow rate, and the unburned component amount adsorbed in the adsorbing device A are calculated based on the detected inlet side unburned component concentration, outlet side unburned component concentration and exhaust flow rate. The adsorption amount calculating means E for

【0006】[0006]

【作用】このようにして、吸着装置の入口側及び出口側
の未燃成分濃度と排気流量とに基づいて吸着装置に吸着
される未燃成分量を演算し、もって吸着装置の未燃成分
の吸着,脱離状況をモニタできるようにした。
In this way, the amount of unburned components adsorbed in the adsorbing device is calculated based on the unburned component concentration on the inlet side and the outlet side of the adsorbing device and the exhaust flow rate, and thus the unburned component of the adsorbing device is calculated. It has become possible to monitor the adsorption and desorption status.

【0007】[0007]

【実施例】以下に、本発明の実施例を図面に基づいて説
明する。図2〜図5は本発明の第1実施例を示す。図2
において、機関1の排気通路2には三元触媒装置(図示
せず)が介装され、三元触媒装置上流において排気通路
が分岐された後さらに合流されてバイパス通路3が形成
されている。前記バイパス通路には排気中のHCを吸着
捕集する吸着装置4が介装されている。前記吸着装置4
上流のバイパス通路3には第1排気切換弁5が介装さ
れ、バイパス通路3との分岐部下流の排気通路2には第
2排気切換弁6が介装されている。これら第1及び第2
排気切換弁5,6はマイクロコンピュータ等からなる吸
着量演算手段としての制御装置7により、開閉制御され
る。
Embodiments of the present invention will be described below with reference to the drawings. 2 to 5 show a first embodiment of the present invention. Figure 2
In the exhaust passage 2 of the engine 1, a three-way catalyst device (not shown) is interposed, and the exhaust passage is branched upstream of the three-way catalyst device and then merged to form a bypass passage 3. An adsorption device 4 that adsorbs and collects HC in the exhaust gas is interposed in the bypass passage. The adsorption device 4
A first exhaust switching valve 5 is provided in the upstream bypass passage 3, and a second exhaust switching valve 6 is provided in the exhaust passage 2 downstream of the branch portion with the bypass passage 3. These first and second
The exhaust switching valves 5 and 6 are controlled to be opened / closed by a control device 7 which is a suction amount calculation means such as a microcomputer.

【0008】前記吸着装置4上流のバイパス通路3には
排気中のHC1濃度を検出する第1濃度検出手段として
の第1HC濃度センサ8が設けられ吸着装置4下流のバ
イパス通路3には第2濃度検出手段としての第2HC濃
度センサ9が設けられ、これらセンサ8,9の検出信号
は前記制御装置7に入力されている。また、制御装置7
には、排気流量検出手段としてのエアフローメータ10
からの吸入空気量検出信号と、水温センサ11からの冷
却水温度検出信号と、が入力されている。
The bypass passage 3 upstream of the adsorption device 4 is provided with a first HC concentration sensor 8 as a first concentration detecting means for detecting the concentration of HC1 in the exhaust gas, and the bypass passage 3 downstream of the adsorption device 4 is provided with a second concentration. A second HC concentration sensor 9 as a detecting means is provided, and detection signals of these sensors 8 and 9 are input to the control device 7. In addition, the control device 7
Includes an air flow meter 10 as an exhaust flow rate detecting means.
The intake air amount detection signal from the water temperature sensor 11 and the cooling water temperature detection signal from the water temperature sensor 11 are input.

【0009】制御装置7は図3のフローチャートに従っ
て作動し表示器12を作動させるようになっている。次
に、作用を図5のフローチャートに従って説明する。こ
のルーチンは例えば0.5秒毎に時間同期で実行され
る。S1では、吸入空気量,冷却水温度の検出信号を読
込む。
The control device 7 operates according to the flow chart of FIG. 3 to operate the indicator 12. Next, the operation will be described with reference to the flowchart of FIG. This routine is executed in time synchronization, for example, every 0.5 seconds. In S1, the detection signals of the intake air amount and the cooling water temperature are read.

【0010】S2では、検出された冷却水温度に基づい
て第1排気切換弁5の開度をマップから検出し、この検
索値になるように第1排気切換弁5の開度を制御する。
第1排気切換弁5の開度は図4に示すように冷却水温度
が50℃以下でHCの吸着を行うために全開されると共
に冷却水温度が80℃以上でHCの脱離を行うために全
開されるように設定されている。また、前記開度は、図
4に示すように冷却水温度が60℃から75℃の範囲で
全開され、さらに他の温度領域(50℃〜60℃,75
℃〜80℃)においては冷却水温度に応じた中間開度に
なるように設定されている。
In S2, the opening degree of the first exhaust switching valve 5 is detected from the map based on the detected cooling water temperature, and the opening degree of the first exhaust switching valve 5 is controlled so as to reach this search value.
As shown in FIG. 4, the opening degree of the first exhaust switching valve 5 is fully opened to adsorb HC at a cooling water temperature of 50 ° C. or lower, and desorbs HC at a cooling water temperature of 80 ° C. or higher. It is set to be fully opened. Further, as shown in FIG. 4, the opening is fully opened when the cooling water temperature is in the range of 60 ° C. to 75 ° C., and still another temperature region (50 ° C. to 60 ° C., 75
(° C to 80 ° C), it is set to have an intermediate opening degree according to the cooling water temperature.

【0011】S3では、検出された冷却水温度に基づい
て第2排気切換弁6の開度をマップから検出し、この検
索値になるように第2排気切換弁6の開度を制御する。
第2排気切換弁6の開度は図5に示すように冷却水温度
が50℃以下でHCの吸着のために排気をバイパス通路
3に流通させるべく全開させ、冷却水温度が60℃以上
で排気を排気通路2に流通させるべく全開させ、50℃
から60℃の範囲では冷却水温度に応じた中間開度にな
るように設定されている。
In step S3, the opening of the second exhaust switching valve 6 is detected from the map based on the detected cooling water temperature, and the opening of the second exhaust switching valve 6 is controlled so as to reach this search value.
As shown in FIG. 5, the opening of the second exhaust switching valve 6 is fully opened to allow the exhaust gas to flow through the bypass passage 3 for adsorbing HC when the cooling water temperature is 50 ° C. or lower, and when the cooling water temperature is 60 ° C. or higher. Fully open the exhaust gas to flow through the exhaust passage 2, 50 ℃
In the range of from 60 ° C. to 60 ° C., the intermediate opening degree is set according to the cooling water temperature.

【0012】S4では、S2にて検索された開度TVO
1に基づいて第1排気切換弁5のボア開口面積S1を次
式により演算する。 S1=π(R1)2(1−COSTVO1) R1は
第1排気切換弁5のボア半径である。S5では、S3に
て検出された開度TVO2に基づいて第2排気切換弁6
のボア開口面積S2を次式により演算する。
At S4, the opening TVO retrieved at S2
Based on 1, the bore opening area S1 of the first exhaust switching valve 5 is calculated by the following equation. S1 = π (R1) 2 (1-COSTVO1) R1 is the bore radius of the first exhaust switching valve 5. In S5, the second exhaust switching valve 6 is opened based on the opening TVO2 detected in S3.
The bore opening area S2 of is calculated by the following equation.

【0013】S2=π(R2)2(1−COSTVO2)
R2は第2排気切換弁6のボア半径である。S6
では、第1HC濃度センサ8の検出信号から吸着装置4
の入口側HC濃度HC1を読込む。S7では、第2HC
濃度センサ9の検出信号から吸着装置4の出口側HC濃
度HC2を読込む。
S2 = π (R2) 2 (1-COSTVO2)
R2 is a bore radius of the second exhaust switching valve 6. S6
Then, from the detection signal of the first HC concentration sensor 8, the adsorption device 4
The HC concentration HC1 on the inlet side of is read. In S7, the second HC
The HC concentration HC2 on the outlet side of the adsorption device 4 is read from the detection signal of the concentration sensor 9.

【0014】S8では、前記S4及びS5にて演算され
たボア開口面積S1,S2と入口側及び出口側HC濃度
HC1,HC2と検出された吸入空気量Qとに基づい
て、今回ルーチンの0.5秒間に吸着装置4に吸着され
る吸着HC重量MHCを次式により演算する。 MHC=K×Q×(HC1−HC2)×S1/(S1+
S2) Kは、定数であり、吸着状態にあるときには正の値に、
脱離状態にあるときには負の値に、平衡状態のときには
零に設定される。ここで、{Q×S1/(S1+S
2)}は吸着装置4を通過する排気流量に相当する。
In step S8, the routine proceeds to 0. of the routine based on the bore opening areas S1 and S2 calculated in steps S4 and S5, the inlet and outlet HC concentrations HC1 and HC2, and the detected intake air amount Q. The adsorbed HC weight MHC adsorbed by the adsorption device 4 in 5 seconds is calculated by the following equation. MHC = K × Q × (HC1-HC2) × S1 / (S1 +
S2) K is a constant, which is a positive value when in the adsorption state,
It is set to a negative value in the detached state and to zero in the equilibrium state. Here, {Q × S1 / (S1 + S
2)} corresponds to the exhaust gas flow rate passing through the adsorption device 4.

【0015】S9では、S8にて演算された吸着HC重
量MHCを前回ルーチンにて算出された総吸着HC重量
TMHCに加算して、新たな総吸着HC重量を求める。
S10では、イグニッションスイッチがオンか否かを判
定し、YESのときにはS11に進みNOのときにはS
12に進む。S11では、S9にて求められた総吸着H
C重量を表示装置12に表示させ、運転者にHC吸着量
を知らせる。これにより、HC吸着量が多いときにはH
Cを酸化除去させるために運転者に高速(例えば40km
/h)以上の運転を行わせるように促すことができる。
In S9, the adsorbed HC weight MHC calculated in S8 is added to the total adsorbed HC weight TMHC calculated in the previous routine to obtain a new total adsorbed HC weight.
In S10, it is determined whether or not the ignition switch is ON. If YES, the process proceeds to S11, and if NO, S
Proceed to 12. In S11, the total adsorption H determined in S9
The C weight is displayed on the display device 12 to inform the driver of the HC adsorption amount. As a result, when the HC adsorption amount is large, H
The driver must drive at high speed (eg 40 km) to oxidize and remove C.
/ H) It is possible to encourage the driver to perform the above driving.

【0016】S12では、総吸着HC重量を次回の運転
時のデータとして、RAMに記憶させる。以上説明した
ように、吸着装置4の入口側及び出口側のHC濃度と吸
着装置4に導入される排気流量とに基づいて総吸着HC
重量を演算して表示装置12にて表示させるようにした
ので、吸着装置4のHC吸着,脱離状況を運転者がモニ
タでき、もって吸着量が多いときには運転者に高速運転
(例えば40km/h)を促して吸着量を確実に減少させ
ることができ、また北米の排気対策にも対応できる。
In S12, the total adsorbed HC weight is stored in the RAM as data for the next operation. As described above, the total adsorbed HC based on the HC concentration on the inlet side and the outlet side of the adsorption device 4 and the exhaust flow rate introduced into the adsorption device 4.
Since the weight is calculated and displayed on the display device 12, the driver can monitor the HC adsorption and desorption conditions of the adsorption device 4, and when the adsorption amount is large, the driver can operate at high speed (for example, 40 km / h). ) Can be surely reduced and the adsorbed amount can be surely reduced, and the exhaust gas measures in North America can also be dealt with.

【0017】次に、本発明の第2実施例を図6〜図9に
基づいて説明する。尚、以下の実施例における構成は前
記第1実施例と同一要素には図2と同一符号を付して説
明を省略し、また以下の実施例におけるフローチャート
においては前記第1実施例のフローチャートと同一ステ
ップには図3と同一ステップ数を付して説明を省略す
る。
Next, a second embodiment of the present invention will be described with reference to FIGS. In the configuration of the following embodiments, the same elements as those of the first embodiment are designated by the same reference numerals as those of FIG. 2 and their description is omitted. Further, in the flow charts of the following embodiments, the same flow chart as that of the first embodiment is used. The same steps are denoted by the same step numbers as those in FIG. 3, and description thereof will be omitted.

【0018】図6において、吸着装置4には排気温度を
検出する排気温度センサ21が取付けられ、排気温度セ
ンサ21の出力信号は制御装置22に入力されている。
そして、図7のS21において、吸入空気量,排気温度
の検出信号を読込む。S22では、検出された排気温度
に基づいて、第1排気切換弁5の開度をマップから検索
し、この検索値になるように第1排気切換弁5の開度を
制御する。第1排気切換弁5の開度は図8に示すように
排気温度が約200℃以下でHCの吸着を行うために全
開されると共に排気温度が約300℃以上でHCの脱離
を行うために全開されるように設定されている。また、
前記開度は図8に示すように排気温度が約220℃〜約
270℃の範囲で最小開度に設定され、さらに他の温度
領域においては排気温度に応じた中間開度に設定されて
いる。
In FIG. 6, an exhaust temperature sensor 21 for detecting the exhaust temperature is attached to the adsorption device 4, and the output signal of the exhaust temperature sensor 21 is input to the control device 22.
Then, in S21 of FIG. 7, the detection signals of the intake air amount and the exhaust temperature are read. In S22, the opening degree of the first exhaust gas switching valve 5 is searched from the map based on the detected exhaust gas temperature, and the opening degree of the first exhaust gas switching valve 5 is controlled so as to reach this search value. As shown in FIG. 8, the opening of the first exhaust switching valve 5 is fully opened to adsorb HC at an exhaust temperature of about 200 ° C. or lower, and desorbs HC at an exhaust temperature of about 300 ° C. or higher. It is set to be fully opened. Also,
As shown in FIG. 8, the opening degree is set to the minimum opening degree in the exhaust gas temperature range of about 220 ° C. to about 270 ° C., and is set to the intermediate opening degree according to the exhaust temperature in other temperature regions. .

【0019】S23では、検出された排気温度に基づい
て、第2排気切換弁6の開度をマップから検索し、この
検索値になるように第2排気切換弁6の開度を制御す
る。第2排気切換弁6の開度は、図9に示すように排気
温度が排気温度が約200℃以下で排気をバイパス通路
3に流通させるべく全閉させ、排気温度が約220〜2
30℃以上で全開させ、他の温度領域で排気温度に応じ
た中間温度に設定されている。
In S23, the opening of the second exhaust switching valve 6 is searched from the map based on the detected exhaust temperature, and the opening of the second exhaust switching valve 6 is controlled so as to reach this search value. As shown in FIG. 9, the opening degree of the second exhaust switching valve 6 is fully closed to allow the exhaust gas to flow to the bypass passage 3 when the exhaust gas temperature is about 200 ° C. or less, and the exhaust gas temperature is about 220 to 2
It is fully opened at 30 ° C or higher, and is set to an intermediate temperature according to the exhaust temperature in other temperature regions.

【0020】そして、第1実施例と同様に、S4及びS
5では、第1及び第2排気切換弁5,6のポート開口面
積を夫々演算すると共に、S8において吸着HC重量を
演算した後、S9において総吸着HC重量を演算する。
そして、イグニッションスイッチのオン時に表示装置1
2に総吸着HC重量を表示させ(S11)、イグニッシ
ョンスイッチオフ時に総吸着HC重量をRAMに記憶さ
せる(S12)。
Then, as in the first embodiment, S4 and S
In 5, the port opening areas of the first and second exhaust switching valves 5 and 6 are calculated, respectively, and the adsorbed HC weight is calculated in S8, and then the total adsorbed HC weight is calculated in S9.
Then, when the ignition switch is turned on, the display device 1
The total adsorbed HC weight is displayed in 2 (S11), and the total adsorbed HC weight is stored in the RAM when the ignition switch is turned off (S12).

【0021】本実施例においても、前記第1実施例と同
様な効果を奏する他、吸着装置4内の排気温度を検出し
排気流を制御するようにしたので、HCの吸着,脱離条
件を正確に検出できるため、HCの吸着,脱離のモニタ
を第1実施例よりも正確に行える。次に本発明の第3実
施例を図10〜図13に基づいて説明する。
In this embodiment as well, the same effect as in the first embodiment is obtained, and the exhaust temperature in the adsorption device 4 is detected to control the exhaust flow, so that the conditions for adsorbing and desorbing HC are set. Since it can be detected accurately, the adsorption and desorption of HC can be monitored more accurately than in the first embodiment. Next, a third embodiment of the present invention will be described with reference to FIGS.

【0022】図10において、吸着装置4には吸着剤温
度を検出する吸着剤温度センサ31が取付けられ、吸着
剤温度センサ31の検出信号は制御装置32に入力され
ている。そして、図11のS31において吸入空気量,
吸着剤温度の検出信号を読込む。
In FIG. 10, an adsorbent temperature sensor 31 for detecting the adsorbent temperature is attached to the adsorber 4, and a detection signal of the adsorbent temperature sensor 31 is input to the controller 32. Then, in S31 of FIG. 11, the intake air amount,
Read the detection signal of the adsorbent temperature.

【0023】S32では、検出された吸着剤温度に基づ
いて、第1排気切換弁5の開度をマップから検索し、こ
の検索値になるように第1排気切換弁5の開度を制御す
る。第1排気切換弁5の開度は図12に示すように吸着
剤温度が約200℃以下でHCの吸着を行うために全開
される共に吸着剤温度が約300℃以上でHCの脱離を
行うために全開されるように設定されている。また、前
記開度は図12に示すように吸着剤温度が約220℃〜
約270℃の範囲で最小開度に設定され、さらに他の温
度領域においては吸着剤温度に応じた中間温度に設定さ
れている。
In S32, the opening of the first exhaust switching valve 5 is searched from the map based on the detected adsorbent temperature, and the opening of the first exhaust switching valve 5 is controlled so as to reach this search value. . As shown in FIG. 12, the opening of the first exhaust switching valve 5 is fully opened to adsorb HC at an adsorbent temperature of about 200 ° C. or lower, and desorbs HC at an adsorbent temperature of about 300 ° C. or higher. It is set to be fully open to do. Further, as shown in FIG. 12, the opening is such that the adsorbent temperature is about 220 ° C.
The minimum opening is set in the range of about 270 ° C., and in another temperature range, it is set to an intermediate temperature according to the adsorbent temperature.

【0024】そして、S34では検出された吸着剤温度
は400℃以上か否かを判定し、YESのときにはS3
5に進みNOのときにはS8に進む。ここで、銅,パラ
ジウムをイオン交換したゼオライトからなる吸着剤の温
度が400℃以上のときに吸着剤装置4内でHCが酸化
される。したがって、吸着剤温度が400℃以上と判定
されたときにはS35において今回ルーチンにおける吸
着HC重量を零に設定し、S9に進む。一方、吸着剤温
度が400℃未満のときにはS8において今回ルーチン
における吸着HC重量を演算し、S9に進む。S9で
は、S8若しくはS35にて求められた吸着HC重量に
基づいて総吸着HC重量を演算する。そして、イグニッ
ションスイッチのオン時に表示装置12に総吸着HC重
量を表示させ(S11)、イグニッションスイッチオフ
時に総吸着HC重量をRAMに記憶させる(S12)。
Then, in S34, it is determined whether or not the detected adsorbent temperature is 400 ° C. or higher, and when YES, S3.
If NO in step 5, the process proceeds to step S8. Here, HC is oxidized in the adsorbent device 4 when the temperature of the adsorbent made of zeolite in which copper and palladium are ion-exchanged is 400 ° C. or higher. Therefore, when it is determined that the adsorbent temperature is 400 ° C. or higher, the adsorbed HC weight in this routine is set to zero in S35, and the process proceeds to S9. On the other hand, when the adsorbent temperature is lower than 400 ° C., the adsorbed HC weight in this routine is calculated in S8, and the process proceeds to S9. In S9, the total adsorbed HC weight is calculated based on the adsorbed HC weight obtained in S8 or S35. Then, when the ignition switch is turned on, the total adsorbed HC weight is displayed on the display device 12 (S11), and when the ignition switch is turned off, the total adsorbed HC weight is stored in the RAM (S12).

【0025】本実施例においても、前記第1実施例と同
様な効果を奏する他、吸着剤温度に応じて吸着HC重量
を変化させるようにしているので、総吸着HC重量を正
確に推定でき、吸着量のモニタ精度を高めることができ
る。次に、本発明の第4実施例を図14及び図15に基
づいて説明する。尚、図14のフローチャートにおい
て、前記第2実施例と同一ステップには図7と同一ステ
ップ数を付して説明を省略する。
Also in this embodiment, in addition to the same effect as the first embodiment, the adsorbed HC weight is changed according to the adsorbent temperature, so that the total adsorbed HC weight can be accurately estimated, It is possible to improve the accuracy of monitoring the adsorption amount. Next, a fourth embodiment of the present invention will be described with reference to FIGS. 14 and 15. In the flowchart of FIG. 14, the same steps as those in the second embodiment are designated by the same step numbers as those in FIG. 7 and their description is omitted.

【0026】本実施例は、前記第2実施例と同様に吸着
装置4内の排気温度を排気温度センサにより検出するも
のであって、S41において検出された排気温度が40
0℃以上か否かを判定しYESのときにはS42に進み
NOのときにはS45に進む。ここで、排気温度が40
0℃以上のときに吸着装置4内でHCが酸化されるよう
になる。
In this embodiment, as in the second embodiment, the exhaust gas temperature inside the adsorption device 4 is detected by the exhaust gas temperature sensor, and the exhaust gas temperature detected in S41 is 40%.
Whether the temperature is 0 ° C. or higher is determined. If YES, the process proceeds to S42, and if NO, the process proceeds to S45. Here, the exhaust temperature is 40
HC becomes oxidized in the adsorption device 4 when the temperature is 0 ° C. or higher.

【0027】そして、排気温度が400℃以上と判定さ
れたときには、S42においてタイマのカウント値に
0.5秒を加算してカウントを開始若しくは継続させ
る。S43では、タイマのカウント時間に基づいて、吸
着装置4内におけるHC酸化量HC3をマップから検索
する。前記吸着装置4内におけるHC酸化量は図15に
示すように排気温度が400℃に達した時点から急激に
増大した後経時と共に徐々に減少するようになってい
る。
When it is determined that the exhaust gas temperature is 400 ° C. or higher, 0.5 second is added to the count value of the timer in S42 to start or continue counting. In S43, the HC oxidation amount HC3 in the adsorption device 4 is searched from the map based on the count time of the timer. As shown in FIG. 15, the amount of HC oxidation in the adsorber 4 is designed to increase rapidly after the exhaust temperature reaches 400 ° C. and then gradually decrease with time.

【0028】S44では、検索されたHC酸化量HC3
に基づいて、今回ルーチンにおける吸着HC重量MHC
を次式により演算する。 MHC=K×Q×(HC1−HC3)×S1/(S1+
S2) Kは定数,Qは吸入空気量,HC1は吸着装置4の入口
側濃度,S1は第1排気切換弁5のボア開口面積,S2
は第2排気切換弁6のボア開口面積である。
In S44, the retrieved HC oxidation amount HC3
Based on, the adsorbed HC weight MHC in this routine
Is calculated by the following equation. MHC = K × Q × (HC1-HC3) × S1 / (S1 +
S2) K is a constant, Q is the intake air amount, HC1 is the inlet side concentration of the adsorption device 4, S1 is the bore opening area of the first exhaust switching valve 5, S2
Is the bore opening area of the second exhaust switching valve 6.

【0029】一方、排気温度が400℃未満と判定され
たときにはS45においてタイマのカウント値を初期値
(=0)にリセットした後S8に進み、吸着装置4の入
口側と出口側のHC濃度に基づいて今回ルーチンにおけ
る吸着HC重量を演算する。そして、S9において、S
8若しくはS44にて求められた吸着HC重量に基づい
て総吸着HC重量を演算する。
On the other hand, when it is determined that the exhaust temperature is less than 400 ° C., the count value of the timer is reset to the initial value (= 0) in S45, and then the process proceeds to S8, in which the HC concentration on the inlet side and the outlet side of the adsorption device 4 is set. Based on this, the adsorbed HC weight in this routine is calculated. Then, in S9, S
8 or the total adsorbed HC weight is calculated based on the adsorbed HC weight obtained in S44.

【0030】このようにして、HC酸化量を減算して総
吸着HC重量を求めるときには総吸着HC重量が負の値
になる可能性がある。このため、S46においてS9に
て演算された総吸着HC重量が零以上か否かを判定し、
YESのときにはS47を通過することなくS10に進
み、NOのときにはS47において総吸着HC重量を零
に設定した後S10に進む。
In this way, when the total amount of adsorbed HC is obtained by subtracting the amount of oxidized HC, the total amount of adsorbed HC may have a negative value. Therefore, in S46, it is determined whether the total adsorbed HC weight calculated in S9 is zero or more,
If YES, the process proceeds to S10 without passing through S47, and if NO, the total adsorbed HC weight is set to zero in S47 and then the process proceeds to S10.

【0031】そして、イグニッションスイッチ時に表示
装置12に総吸着HC重量を表示させ(S11)、イグ
ニッションスイッチオフ時に総吸着HC重量をRAMに
記憶させる(S12)。本実施例においても、前記第1
実施例と同様な効果を奏する他、吸着装置4内にて酸化
処理されるHC酸化量を求めるようにしたので、総吸着
HC重量をより高精度に求めることができ、もってモニ
タ精度を向上できる。
Then, when the ignition switch is turned on, the total adsorbed HC weight is displayed on the display device 12 (S11), and when the ignition switch is turned off, the total adsorbed HC weight is stored in the RAM (S12). Also in this embodiment, the first
In addition to the effect similar to that of the embodiment, the HC oxidation amount to be oxidized in the adsorption device 4 is obtained, so that the total adsorbed HC weight can be obtained with higher accuracy, and thus the monitoring accuracy can be improved. .

【0032】[0032]

【発明の効果】本発明は、以上説明したように、吸着装
置の入口側及び出口側の未燃成分濃度と排気流量とに基
づいて吸気装置の吸気量を演算するようにしたので、吸
気量をモニタすることができるため、未燃成分の吸着,
脱離状態を判断できる。
As described above, according to the present invention, the intake amount of the intake device is calculated based on the unburned component concentration on the inlet side and the outlet side of the adsorption device and the exhaust flow rate. It is possible to monitor the adsorption of unburned components,
The detached state can be judged.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のクレーム対応図。FIG. 1 is a diagram corresponding to a claim of the present invention.

【図2】 本発明の第1実施例を示す構成図。FIG. 2 is a configuration diagram showing a first embodiment of the present invention.

【図3】 同上のフローチャート。FIG. 3 is a flowchart of the above.

【図4】 同上の作用を説明するための特性図。FIG. 4 is a characteristic diagram for explaining the operation of the above.

【図5】 同上の作用を説明するための他の特性図。FIG. 5 is another characteristic diagram for explaining the operation of the above.

【図6】 本発明の第2実施例を示す構成図。FIG. 6 is a configuration diagram showing a second embodiment of the present invention.

【図7】 同上のフローチャート。FIG. 7 is a flowchart of the above.

【図8】 同上の作用を説明するための特性図。FIG. 8 is a characteristic diagram for explaining the operation of the above.

【図9】 同上の作用を説明するための他の特性図。FIG. 9 is another characteristic diagram for explaining the operation of the above.

【図10】 本発明の第3実施例を示す構成図。FIG. 10 is a configuration diagram showing a third embodiment of the present invention.

【図11】 同上のフローチャート。FIG. 11 is a flowchart of the above.

【図12】 同上の作用を説明するための特性図。FIG. 12 is a characteristic diagram for explaining the operation of the above.

【図13】 同上の作用を説明するための他の特性図。FIG. 13 is another characteristic diagram for explaining the operation of the same.

【図14】 本発明の第4実施例を示す構成図。FIG. 14 is a configuration diagram showing a fourth embodiment of the present invention.

【図15】 同上の作用を説明するための特性図。FIG. 15 is a characteristic diagram for explaining the operation of the above.

【符号の説明】[Explanation of symbols]

4 吸着装置 7 制御装置 8 第1HC濃度センサ 9 第2HC濃度センサ 12 表示器 4 Adsorption device 7 Control device 8 1st HC concentration sensor 9 2nd HC concentration sensor 12 Indicator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】機関の排気系に排気中の未燃成分を吸着す
る吸着装置を備える内燃機関の排気浄化装置において、
前記吸着装置入口の排気中の未燃成分濃度を検出する第
1濃度検出手段と、前記吸着装置出口の排気中の未燃成
分濃度を検出する第2濃度検出手段と、前記吸着装置を
通過する排気流量を検出する排気流量検出手段と、検出
された入口側未燃成分濃度と出口側未燃成分濃度と排気
流量とに基づいて前記吸着装置に吸着される未燃成分量
を演算する吸着量演算手段と、を備えたことを特徴とす
る内燃機関の排気浄化装置。
1. An exhaust gas purification device for an internal combustion engine, comprising an adsorption device for adsorbing unburned components in exhaust gas to an exhaust system of the engine,
First concentration detecting means for detecting the concentration of unburned component in the exhaust gas at the inlet of the adsorbing device, second concentration detecting means for detecting the concentration of unburnt component in the exhaust gas at the outlet of the adsorbing device, and passing through the adsorbing device Exhaust flow rate detecting means for detecting an exhaust flow rate, and an adsorption amount for calculating an unburned component amount adsorbed in the adsorption device based on the detected inlet side unburned component concentration, outlet side unburned component concentration and exhaust flow rate. An exhaust gas purifying apparatus for an internal combustion engine, comprising: an arithmetic unit.
JP04239846A 1992-09-08 1992-09-08 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP3116588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04239846A JP3116588B2 (en) 1992-09-08 1992-09-08 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04239846A JP3116588B2 (en) 1992-09-08 1992-09-08 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH0693829A true JPH0693829A (en) 1994-04-05
JP3116588B2 JP3116588B2 (en) 2000-12-11

Family

ID=17050745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04239846A Expired - Fee Related JP3116588B2 (en) 1992-09-08 1992-09-08 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3116588B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778401A3 (en) * 1995-12-04 1997-08-13 Bayerische Motoren Werke Ag Method for monitoring the operation of a hydrocarbon adsorber
FR2789730A1 (en) * 1999-02-12 2000-08-18 Toyota Motor Co Ltd Measurement device and method for defining quantity of adsorbed combustion residue in adsorbent in exhaust gas includes sensors placed around engine and attached to electronic control unit
WO2009109823A1 (en) * 2008-03-03 2009-09-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device and exhaust gas purification method
US8468805B2 (en) 2007-10-25 2013-06-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device and exhaust gas purification method for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778401A3 (en) * 1995-12-04 1997-08-13 Bayerische Motoren Werke Ag Method for monitoring the operation of a hydrocarbon adsorber
FR2789730A1 (en) * 1999-02-12 2000-08-18 Toyota Motor Co Ltd Measurement device and method for defining quantity of adsorbed combustion residue in adsorbent in exhaust gas includes sensors placed around engine and attached to electronic control unit
US6253547B1 (en) 1999-02-12 2001-07-03 Toyota Jidosha Kabushiki Kaisha Apparatus and method for determining amount of unburned fuel component adsorbed by an adsorbent in an internal combustion engine
US8468805B2 (en) 2007-10-25 2013-06-25 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device and exhaust gas purification method for internal combustion engine
WO2009109823A1 (en) * 2008-03-03 2009-09-11 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device and exhaust gas purification method
US8627650B2 (en) 2008-03-03 2014-01-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device and exhaust gas purification method

Also Published As

Publication number Publication date
JP3116588B2 (en) 2000-12-11

Similar Documents

Publication Publication Date Title
JP4349425B2 (en) NOx catalyst diagnostic device
JPH07259539A (en) Exhaust emission control device of internal combustion engine
JPH0693829A (en) Exhaust gas purifying device for internal combustion engine
JP2982440B2 (en) Exhaust gas purification device for internal combustion engine
JP2803480B2 (en) Adsorbent self-diagnosis device for internal combustion engine
JP2894135B2 (en) Degradation diagnosis device for HC adsorbent in exhaust gas purification device of internal combustion engine
US5555724A (en) Capacity determining system in exhaust emission control unit for internal combustion engine
JP3128873B2 (en) Exhaust gas purification device for internal combustion engine
JP2806170B2 (en) Exhaust gas purification device for internal combustion engine
JPH06307232A (en) Exhaust emission control device of internal combustion engine
JP3588662B2 (en) Catalyst self-diagnosis device
JP3413997B2 (en) Degradation diagnosis device for HC adsorbent in internal combustion engine
JP3277698B2 (en) Exhaust gas purification device for internal combustion engine
JPH06229234A (en) Exhaust emission control device for internal combustion engine
JP2800581B2 (en) Exhaust gas purification device for internal combustion engine
JPH0693846A (en) Exhaust emission control device for internal combustion engine
JP3216442B2 (en) Adsorbent self-diagnosis device for internal combustion engine
JP3409647B2 (en) Degradation diagnosis device for HC adsorbent of engine
JP2894141B2 (en) Adsorption amount estimation device for hydrocarbon adsorption / desorption device of internal combustion engine
JPH06200750A (en) Exhaust emission control device for internal combustion engine
JP2850664B2 (en) Exhaust gas purification device for internal combustion engine
JPS62291414A (en) Exhaust emission control device for diesel engine
JP3764193B2 (en) Exhaust purification device
JPH05156933A (en) Exhaust emission control device for internal combustion engine
JPH0666130A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20081006

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20091006

LAPS Cancellation because of no payment of annual fees