JPH06307232A - Exhaust emission control device of internal combustion engine - Google Patents

Exhaust emission control device of internal combustion engine

Info

Publication number
JPH06307232A
JPH06307232A JP9328193A JP9328193A JPH06307232A JP H06307232 A JPH06307232 A JP H06307232A JP 9328193 A JP9328193 A JP 9328193A JP 9328193 A JP9328193 A JP 9328193A JP H06307232 A JPH06307232 A JP H06307232A
Authority
JP
Japan
Prior art keywords
absorbent
exhaust
hydrogen gas
engine
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9328193A
Other languages
Japanese (ja)
Other versions
JP2780596B2 (en
Inventor
Satomi Seto
里美 瀬戸
Shinichi Takeshima
伸一 竹島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5093281A priority Critical patent/JP2780596B2/en
Publication of JPH06307232A publication Critical patent/JPH06307232A/en
Application granted granted Critical
Publication of JP2780596B2 publication Critical patent/JP2780596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • F01N3/0885Regeneration of deteriorated absorbents or adsorbents, e.g. desulfurization of NOx traps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/04Exhaust treating devices having provisions not otherwise provided for for regeneration or reactivation, e.g. of catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/04Adding substances to exhaust gases the substance being hydrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE:To conduct efficiently the recovery operation of the SOX poisoning of an NOX absorbent. CONSTITUTION:An NOX absorbent 24 and a hydrogen gas supply device 31 to supply hydrogen gas to the NOX absorbent 24 are provided at the exhaust passage 22 of an internal combustion engine 1. When the NOX absorbing quantity of the NOX absorbent 24 has increased, NOX release from the NOX absorbent 24 and reducing purification are conducted by making the exhaust air-fuel ratio of the engine 1 rich, and when the SOX absorbing quantity of the NOX absorbent 24 has increased, the exhaust air-fuel ratio of the engine 1 is made rich and at the same time hydrogen gas is supplied to the NOX absorbent 24 from the hydrogen gas supply device 31 and the SOX poisoning of the NOX absorbent 24 is dissolved. As a result, the consumption quantity of hydrogen gas is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の排気浄化装置
に関し、詳細には排気中のNOX を除去するNOX 吸収
剤をそなえた内燃機関の排気浄化装置に関する。
Relates to an exhaust purifying apparatus of the present invention is an internal combustion engine BACKGROUND OF THE relates to an exhaust purifying apparatus for an internal combustion engine equipped with the NO X absorbent to remove NO X in the exhaust gas in particular.

【0002】[0002]

【従来の技術】特開昭62−106826号公報には、
排気ガスの空燃比がリーンのときにはNOX を吸収し排
気ガス中の酸素濃度が低下すると吸収したNOX を放出
するNOX 吸収剤をディーゼル機関の排気通路内に配置
し、このNOX 吸収剤に排気中のNOX を吸収させる排
気浄化装置が開示されている。同公報の装置では、NO
X 吸収剤の吸収効率が低下したときに排気の流入を遮断
してNOX 吸収剤に水素ガスを供給し、NOX 吸収剤か
ら吸収したNOX を放出させるとともに放出されたNO
X の還元浄化を行っている。
2. Description of the Related Art Japanese Unexamined Patent Publication No. 62-106826 discloses
NO when the air-fuel ratio of the exhaust gas is leanXAbsorbs and drains
NO absorbed when the oxygen concentration in the gas decreasesXEmit
NO toXAbsorbent placed in exhaust passage of diesel engine
And this NOXNO in exhaust gas to absorbentXExcretion to absorb
An air purification device is disclosed. In the device of the publication, the NO
XBlocks exhaust gas inflow when the absorption efficiency of the absorbent decreases
Then NOXSupplying hydrogen gas to the absorbent, NOXAbsorbent
NO absorbed fromXReleased and NO released
XWe carry out reduction purification of.

【0003】上記特開昭62−106826号公報の装
置では、NOX 吸収剤に水素ガスを供給してNOX 吸収
剤の雰囲気酸素濃度を低下させることによりNOX 吸収
剤からのNOX の放出及び還元浄化(以下NOX 吸収剤
の「再生」という)を行っているため、NOX 吸収剤を
収容した容器内の酸素を消費するために多量の水素が消
費される。従って、上記公報の装置ではNOX 吸収剤の
再生操作毎に多量の水素ガスを供給する必要があり、水
素ガスの消費量が増大する。水素ガスは貯蔵容器、水素
ガス発生装置等によって供給することが可能であるが、
大量の水素ガスを供給するためには容器や発生装置の規
模を大きくするひつようがあり、車両に搭載する上で問
題が生じたり、水素や水素発生用の原料の頻繁な補給が
必要になる等の問題がある。
[0003] In the apparatus of JP-A Sho 62-106826, the release of the NO X from the NO X absorbent by lowering the atmospheric oxygen concentration of the NO X absorbent by supplying hydrogen gas to the NO X absorbent and to doing reduce and purify (following the NO X absorbent as "regeneration"), a large amount of hydrogen is consumed in order to consume the oxygen in the container with the NO X absorbent. Therefore, in the device of the above publication, it is necessary to supply a large amount of hydrogen gas for each regeneration operation of the NO x absorbent, and the hydrogen gas consumption increases. Hydrogen gas can be supplied by a storage container, hydrogen gas generator, etc.
In order to supply a large amount of hydrogen gas, it is necessary to increase the scale of the container and generator, which causes problems in mounting on a vehicle and requires frequent replenishment of hydrogen and raw materials for hydrogen generation. There is a problem such as.

【0004】本願出願人は、上記の問題に対し、NOX
吸収剤の再生時にエンジンに供給する燃料の量を増量し
て排気空燃比をリッチに移行させ排気中の未燃HC、C
O成分を増大させてNOX 吸収剤の再生を行う排気浄化
装置を既に提案している(特願平4−214313
号)。NOX 吸収剤は、上述のようにリーン空燃比の排
気中のNOX を吸収し、排気中の酸素濃度が低下すると
吸収したNOX を放出するNOX の吸放出作用を行う。
この吸放出作用については後に詳述するが、排気中に硫
黄酸化物(SOX )が存在するとNOX 吸収剤はNOX
の吸収作用を行うのと全く同じメカニズムで排気中のS
X の吸収を行う。
The applicant of the present invention has responded to the above problems by using NO x.
When the absorbent is regenerated, the amount of fuel supplied to the engine is increased to shift the exhaust air-fuel ratio to rich and unburned HC, C in the exhaust gas
An exhaust gas purification device that regenerates the NO x absorbent by increasing the O component has already been proposed (Japanese Patent Application No. 4-214313).
issue). The NO X absorbent absorbs NO X in the exhaust gas of a lean air-fuel ratio as described above, the oxygen concentration in the exhaust performing absorbing and releasing action of the NO X that releases NO X absorbed and reduced.
This absorption and release action will be described in detail later, but if sulfur oxides (SO X ) are present in the exhaust gas, the NO X absorbent will be NO X.
The same mechanism that absorbs the S
Absorbs O X.

【0005】ところが、NOX 吸収剤に吸収されたSO
X は安定な硫酸塩を形成するため、通常NOX 吸収剤の
再生を行う温度では分解、放出されにくくNOX 吸収剤
内に蓄積されやすい傾向がある。NOX 吸収剤内のSO
X 蓄積量が増大すると、NO X 吸収剤のNOX 吸収容量
が減少して排気中のNOX の除去を十分に行うことがで
きなくなりNOX の浄化効率が低下する、いわゆるSO
X 被毒が生じる問題がある。
However, NOXSO absorbed by absorbent
XForms a stable sulfate, so NOXAbsorbent
No decomposition or release at the temperature for regeneration NOXAbsorbent
Tends to accumulate within. NOXSO in absorbent
XWhen the accumulated amount increases, NO XAbsorbent NOXAbsorption capacity
NO in exhaust gasXCan be removed sufficiently
No longer stopXOf so-called SO
XThere is a problem of poisoning.

【0006】一方、NOX 吸収剤に吸収されたSOX
ついてはNOX 吸収剤を高温かつリッチ空燃比雰囲気に
置くことによりNOX の吸放出と同じメカニズムでNO
X 吸収剤から放出させることができることが知られてい
る。本願出願人は、NOX 吸収剤が高温状態になってい
る時にエンジンへの燃料供給を増量して排気空燃比をリ
ッチにする事によりNOX 吸収剤からSOX を放出させ
るSOX 被毒の解消方法について既に特願平4−198
224号に提案している。
On the other hand, NO for absorbed SO X in the X absorbent NO X absorbent hot and NO by the same mechanism as the absorption and desorption of NO X by placing the rich air-fuel ratio atmosphere
It is known that it can be released from the X- absorbent. Applicant, the NO X absorbent is SO X poisoning which releases SO X from the NO X absorbent by which to increase the fuel supply to the engine to the exhaust air-fuel ratio rich when they are hot state About the solution method Japanese Patent Application No. 4-198
Proposed in No. 224.

【0007】[0007]

【発明が解決しようとする課題】一般にNOX 吸収剤の
SOX 被毒を解消するためにはHC、CO成分より水素
を使用する方が効果があることが知られている。水素は
硫酸との親和力が特に強く、NOX 吸収剤に吸収された
SOX と活発に反応して気体のH2 Sを生成し、NOX
吸収剤から放出させる。
It is generally known that hydrogen is more effective than HC and CO components in order to eliminate SO X poisoning of NO X absorbent. Hydrogen has a particularly strong affinity with sulfuric acid, and actively reacts with SO X absorbed by the NO X absorbent to generate gaseous H 2 S, and NO X.
Release from absorbent.

【0008】上述の特願平4−198224号のように
エンジンの排気温度が高いときにエンジンの燃焼空燃比
をリッチにして排気ガス中のCO成分を増大させること
よっても排気中で、 CO+H2 O→CO2 +H2 の反応が生じ、ある程度の量の水素を発生させることが
できる。
[0008] In the exhaust also by that increase the CO component of the combustion air-fuel ratio of the engine when the exhaust temperature is high in the rich exhaust gas of the engine as No. aforementioned Japanese Patent Application No. 4-198224, CO + H 2 The reaction of O → CO 2 + H 2 occurs, and a certain amount of hydrogen can be generated.

【0009】しかし、上記により水素を発生させ、SO
X 被毒の解消に利用するためには、排気温度を上記反応
を生じる程高い状態に維持し、かつ発生したH2 が排気
中の酸素と反応する前にNOX 吸収剤に到達させるこ
と、すなわちエンジンを高負荷かつ高回転で運転する必
要がある。このため、上記反応によるH2 をSOX 被毒
の解消に利用できる運転条件は極めて限られてしまい、
車両の市街地走行時等の条件下では効率的にSOX 被毒
を解消することが困難である。
However, as described above, hydrogen is generated and SO
In order to utilize for the elimination of X poisoning, the exhaust gas temperature is kept high enough to cause the above reaction, and the generated H 2 reaches the NO X absorbent before reacting with the oxygen in the exhaust gas, That is, it is necessary to operate the engine under high load and high rotation. Therefore, the operating conditions in which H 2 due to the above reaction can be used for eliminating SO X poisoning are extremely limited,
It is difficult to eliminate SO X poisoning efficiently under conditions such as when the vehicle is running in urban areas.

【0010】一方、前述の特開昭62−106826号
公報のようにNOX 吸収剤の再生に水素ガスを使用する
装置ではNOX 吸収剤の再生時にSOX 被毒の解消を図
ることも可能であるが、この場合前述のように水素ガス
の消費量が多大になる問題が生じる。本発明は上記問題
に鑑み、多大な水素ガスの消費を伴うことなく簡易かつ
効率的にNOX 吸収剤のSOX 被毒を解消する手段を提
供することを目的とする。
On the other hand, can also be achieved to eliminate the SO X poisoning during reproduction of the NO X absorbent is a device that uses hydrogen gas regeneration of the NO X absorbent as JP 62-106826 JP previously described However, in this case, there arises a problem that the amount of hydrogen gas consumed becomes large as described above. In view of the above problems, and an object thereof is to provide a means for eliminating the SO X poisoning of easily and efficiently the NO X absorbent without the consumption of significant hydrogen gas.

【0011】[0011]

【課題を解決するための手段】本発明によれば、流入排
気の空燃比がリーンのときにNOX を吸収し流入排気の
酸素濃度が低下したときに吸収したNOX を放出するN
X 吸収剤を排気通路に配置して排気中のNOX を吸収
させ、NOX 吸収後に前記NOX 吸収剤に流入する排気
空燃比をリッチにして前記NOX 吸収剤から吸収したN
X を放出させるとともに放出されたNOX を還元浄化
する内燃機関の排気浄化装置において、前記NOX 吸収
剤に蓄積されたSOX の量を直接的または間接的に検出
する手段と、該検出されたSOX 蓄積量が所定値以上の
ときにNOX 吸収剤に流入する排気空燃比をリッチにす
るリッチ化手段と、該リッチ化手段により排気空燃比が
リッチにされたときに前記NOX 吸収剤に水素ガスを供
給する手段とを備えたことを特徴とする内燃機関の排気
浄化装置が提供される。
According to the present invention, N which absorbs NO X when the air-fuel ratio of the inflowing exhaust gas is lean and releases the absorbed NO X when the oxygen concentration of the inflowing exhaust gas decreases.
An O X absorbent is disposed in the exhaust passage to absorb NO X in the exhaust gas, and the exhaust air-fuel ratio flowing into the NO X absorbent after NO X absorption is made rich to absorb N X from the NO X absorbent.
In an exhaust emission control device for an internal combustion engine that releases O x and reduces and purifies the released NO x , a means for directly or indirectly detecting the amount of SO x accumulated in the NO x absorbent, and the detection and enriching means for SO X storage amount which is to rich the air-fuel ratio of exhaust gas flowing into the NO X absorbent when the predetermined value or more, the NO X when the exhaust air-fuel ratio is made rich by the rich means An exhaust gas purifying apparatus for an internal combustion engine, comprising: a means for supplying hydrogen gas to an absorbent.

【0012】[0012]

【作用】NOX 吸収剤のSOX 被毒解消を行う際に排気
空燃比をリッチに移行することにより、排気中の酸素濃
度が急激に低下する。この状態でNOX 吸収剤に水素ガ
スが供給されるため、供給された水素ガスは排気中の酸
素の消費に使用されることなくその全量がNOX 吸収剤
のSOX 被毒解消に使用され、水素ガス消費量が低減さ
れる。
The oxygen concentration in the exhaust gas is drastically reduced by shifting the exhaust air-fuel ratio to rich when the SO x poisoning of the NO x absorbent is eliminated. In this state, hydrogen gas is supplied to the NO x absorbent, so the supplied hydrogen gas is not used for consuming oxygen in the exhaust gas but the entire amount is used for eliminating SO x poisoning of the NO x absorbent. , Hydrogen gas consumption is reduced.

【0013】また、水素ガスは特に硫酸との親和力が強
く、HC、CO等と較べて低い温度でNOX 吸収剤中の
SOX と反応し、H2 Sを生成する。このため、HC、
COを用いた場合にはSOX 被毒の解消のためにはNO
X 吸収剤を高温(500〜600度C以上)に保持する
必要があるのに対して、水素ガスを用いた場合には比較
的低温(300〜400度C)でもSOX 被毒が解消さ
れる。 従って、比較的排気温度が低い市街地走行時等
でも容易にSOX 被毒解消に必要なNOX 吸収剤温度が
得られる。
Further, hydrogen gas has a particularly strong affinity with sulfuric acid, and reacts with SO X in the NO X absorbent at a lower temperature than HC, CO, etc., and produces H 2 S. Therefore, HC,
NO, for elimination of SO X poisoning in the case of using a CO
While it is necessary to keep the X absorbent at a high temperature (500 to 600 ° C or higher), when hydrogen gas is used, SO X poisoning is eliminated even at a relatively low temperature (300 to 400 ° C). It Therefore, NO X absorbent temperature is obtained necessary readily SO X poisoning recovery even at relatively low exhaust temperature city driving or the like.

【0014】[0014]

【実施例】図1に本発明の実施例を示す。図1におい
て、1は内燃機関本体、2は内燃機関の吸気通路をそれ
ぞれ示す。機関1の各シリンダの吸気ポートは枝管4を
介してサージタンク5に接続され、各シリンダの枝管4
には各吸気ポート内に燃料を噴射する燃料噴射弁7が取
付けられている。サージタンク5は吸気通路2に接続さ
れ、吸気通路2はエアフローメータ8を介してエアクリ
ーナ10に接続されている。給気通路2内にはスロット
ル弁11が配置されており、スロットル弁11にはその
全閉状態を検出してアイドル信号を出力するアイドルス
イッチ12が設けられている。
EXAMPLE FIG. 1 shows an example of the present invention. In FIG. 1, 1 is an internal combustion engine body, and 2 is an intake passage of the internal combustion engine. The intake port of each cylinder of the engine 1 is connected to the surge tank 5 via the branch pipe 4, and the branch pipe 4 of each cylinder is connected.
Is equipped with a fuel injection valve 7 for injecting fuel into each intake port. The surge tank 5 is connected to the intake passage 2, and the intake passage 2 is connected to an air cleaner 10 via an air flow meter 8. A throttle valve 11 is arranged in the air supply passage 2, and the throttle valve 11 is provided with an idle switch 12 which detects a fully closed state and outputs an idle signal.

【0015】また、機関1の各排気ポートは排気マニホ
ルド21を介して排気通路22に接続され、排気通路2
2には後述のNOX 吸収剤24が設けられている。図に
31で示すのはNOX 吸収剤24に水素ガスを供給する
水素ガス供給装置である。本実施例では水素ガス供給装
置31は水の電気分解により水素ガスを発生する水素ガ
ス発生装置32と、発生した水素ガスを貯蔵する容器3
3とを備えており、水素ガスは容器33から制御弁34
を介してNOX 吸収剤24の上流側の排気通路22に供
給される。
Further, each exhaust port of the engine 1 is connected to an exhaust passage 22 via an exhaust manifold 21, and the exhaust passage 2
2 is provided with a NO x absorbent 24 described later. Reference numeral 31 in the drawing denotes a hydrogen gas supply device for supplying hydrogen gas to the NO X absorbent 24. In this embodiment, the hydrogen gas supply device 31 is a hydrogen gas generator 32 that generates hydrogen gas by electrolysis of water, and the container 3 that stores the generated hydrogen gas.
3 and hydrogen gas from the container 33 to the control valve 34.
Is supplied to the exhaust passage 22 on the upstream side of the NO x absorbent 24.

【0016】図に30で示すのは、機関の制御を行う電
子制御ユニット(ECU)30である。ECU30は、
CPU(中央演算装置)、RAM(ランダムアクセスメ
モリ)、ROM(リードオンリメモリ)、入出力ポート
を双方向バスで接続した公知の形式のディジタルコンピ
ュータからなり、燃料噴射弁7からの燃料噴射量制御等
のエンジンの基本制御を行う他、本実施例ではNOX
収剤のSOX 被毒解消操作の制御をも行っている。これ
らの制御のため、ECU30の入力ポートにはエアフロ
ーメータ8から機関吸入空気量に比例した出力電圧が、
また車速センサ14から車両走行速度を表す出力電圧が
それぞれ図示しないA/D変換器を介して入力されてい
るほか、回転数センサ13から機関回転数を表す出力パ
ルス信号が、アイドルスイッチ12からアイドル信号が
それぞれ入力されている。
Reference numeral 30 in the drawing denotes an electronic control unit (ECU) 30 for controlling the engine. The ECU 30
A CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a digital computer of a known type in which input / output ports are connected by a bidirectional bus. In addition to the basic control of the engine such as the above, the present embodiment also controls the SO X poisoning elimination operation of the NO X absorbent. For these controls, the output voltage proportional to the engine intake air amount from the air flow meter 8 is input to the input port of the ECU 30.
Further, an output voltage representing the vehicle traveling speed is input from the vehicle speed sensor 14 via an A / D converter (not shown), and an output pulse signal representing the engine speed is output from the rotation speed sensor 13 from the idle switch 12. Each signal is being input.

【0017】また、ECU30の出力ポートは図示しな
い駆動回路を介して燃料噴射弁7、水素ガス発生装置3
2、制御弁34にそれぞれ接続され、機関への燃料噴射
量、水素ガス発生装置の作動及び、制御弁34の開閉を
制御している。次に、本実施例に使用するNOX 吸収剤
24について説明する。NOX 吸収剤24は例えばアル
ミナ等の担体を使用し、この担体に例えばカリウムK、
ナトリウムNa 、リチウムLi 、セシウムCs のような
アルカリ金属、バリウムBa , カルシウムCa のような
アルカリ土類、ランタンLa ,イットリウムYのような
希土類から選ばれた少なくとも一つと、白金Pt のよう
な貴金属とが担持されている。このNOX 吸収剤は、流
入する排気の空燃比がリーンの場合にはNOX を吸収
し、酸素濃度が低下するとNOX を放出するNOX の吸
放出作用を行う。
The output port of the ECU 30 has a fuel injection valve 7 and a hydrogen gas generator 3 through a drive circuit (not shown).
2. Control valves 34 are respectively connected to control the fuel injection amount to the engine, the operation of the hydrogen gas generator, and the opening / closing of control valve 34. Next, the NO X absorbent 24 used in this embodiment will be described. As the NO x absorbent 24, a carrier such as alumina is used, and potassium K,
At least one selected from sodium Na, lithium Li, alkali metals such as cesium Cs, alkaline earths such as barium Ba and calcium Ca, rare earths such as lanthanum La and yttrium Y, and a noble metal such as platinum Pt. Is carried. This the NO X absorbent is an air-fuel ratio of the exhaust flowing absorbs NO X in the case of lean, the oxygen concentration is carried out to absorbing and releasing action of the NO X that releases NO X when lowered.

【0018】なお、上述の排気空燃比とは、ここではN
X 吸収剤の上流側の排気通路やエンジン燃焼室、吸気
通路等にそれぞれ供給された空気量の合計と燃料の合計
の比を意味するものとする。従って、NOX 吸収剤の上
流側排気通路に燃料、水素ガスまたは空気が供給されな
い場合には排気空燃比はエンジンの運転空燃比(エンジ
ン燃焼室内の燃焼における空燃比)と等しくなる。
The exhaust air-fuel ratio mentioned above means here N
It means the ratio of the total amount of air and the total amount of fuel supplied to the exhaust passage on the upstream side of the O X absorbent, the engine combustion chamber, the intake passage, and the like. Therefore, the fuel in the upstream side exhaust passage of the NO X absorbent, hydrogen gas or the exhaust air-fuel ratio when the air is not supplied is equal to the operating air-fuel ratio of the engine (air-fuel ratio in the combustion in the engine combustion chamber).

【0019】本実施例では機関1の通常運転時の運転空
燃比はかなりリーンに制御されている。従ってNOX
収剤を通過する排気の空燃比はリーンであるためNOX
吸収剤は排気中のNOX を吸収する。また、後述のよう
に機関1の運転空燃比がリッチに切換えられ、NOX
収剤24を通過する排気空燃比がリッチになるとNO X
吸収剤は吸収したNOX を放出する。
In the present embodiment, the operating space during normal operation of the engine 1
The fuel ratio is fairly lean. Therefore NOXSucking
NO because the air-fuel ratio of the exhaust passing through the sorbent is leanX
Absorbent is NO in exhaust gasXAbsorbs. Also, as described below
The operating air-fuel ratio of the engine 1 is switched to rich, and NOXSucking
NO when the exhaust air-fuel ratio passing through the sorbent 24 becomes rich X
Absorbent NO absorbedXTo release.

【0020】上記吸放出作用の詳細なメカニズムについ
ては明らかでない部分もある。しかし、この吸放出作用
は図3に示すようなメカニズムで行われているものと考
えられる。次にこのメカニズムについて担体上に白金P
t およびバリウムBa を担持させた場合を例にとって説
明するが他の貴金属、アルカリ金属、アルカリ土類、希
土類を用いても同様なメカニズムとなる。
The detailed mechanism of the above-mentioned absorption and release action is not clear in some parts. However, it is considered that this absorbing / releasing action is performed by the mechanism shown in FIG. Next, regarding this mechanism, platinum P on the carrier
The case of supporting t and barium Ba will be described as an example, but the same mechanism can be obtained by using other noble metals, alkali metals, alkaline earths and rare earths.

【0021】すなわち、流入排気がかなりリーンになる
と流入排気中の酸素濃度が大幅に増大し、図3(A) に示
されるようにこれら酸素O2 がO2 - またはO2-の形で
白金Pt の表面に付着する。一方、流入排気中のNOは
白金Pt の表面上でこのO2 - またはO2-と反応し、N
2 となる(2NO+O2 →2NO2 ) 。次いで生成さ
れたNO2 の一部は白金Pt上で酸化されつつ吸収剤内
に吸収されて酸化バリウムBaOと結合しながら、図3
(A) に示されるように硝酸イオンNO3 - の形で吸収剤
内に拡散する。このようにしてNOX がNOX 吸収剤内
に吸収される。
That is, the inflow exhaust becomes considerably lean.
And the oxygen concentration in the exhaust gas increased significantly, as shown in Fig. 3 (A).
As these oxygen O2Is O2 -Or O2-In the form of
It adheres to the surface of platinum Pt. On the other hand, the NO in the exhaust gas is
This O on the surface of platinum Pt2 -Or O2-Reacts with N
O2Becomes (2NO + O2→ 2 NO2 ). Then generated
NO2Part of the inside of the absorbent while being oxidized on platinum Pt
While being absorbed by and bound to barium oxide BaO,
As shown in (A), nitrate ion NO3 -Absorbent in the form of
Diffuse in. NO in this wayXIs NOXIn absorbent
Is absorbed by.

【0022】従って、流入排気中の酸素濃度が高い限り
白金Pt の表面でNO2 が生成され、NOX 吸収剤のN
X 吸収量が増大して吸収剤のNOX 吸収能力が飽和し
ない限りNO2 が吸収剤内に吸収されて硝酸イオンNO
3 - が生成される。これに対して流入排気中の酸素濃度
が低下してNO2 の生成量が減少すると反応が逆方向
(NO3 - →NO2 )に進み、こうして吸収剤内の硝酸
イオンNO3 - がNO2の形で吸収剤から放出される。
すなわち、流入排気中の酸素濃度が低下するとNOX
収剤からNOX が放出されることになる。
Therefore, as long as the oxygen concentration in the inflowing exhaust gas is high, NO 2 is produced on the surface of platinum Pt, and N 2 of the NO x absorbent is generated.
O X absorption is increased NO X absorbing capacity of the absorbent as long as NO 2 not to saturate is absorbed in the absorber nitrate ion NO
3 - is generated. In contrast the oxygen concentration decreases and the amount of NO 2 is reduced by reaction backward in the inflowing exhaust gas (NO 3 - → NO 2) proceeds to thus of the absorbent and nitrate ions NO 3 - is NO 2 Is released from the absorbent in the form of.
That is, the oxygen concentration in the inflowing exhaust gas is NO X is released from the NO X absorbent when lowered.

【0023】一方、流入排気中のに燃HC、CO等の還
元成分が存在すると、これらの成分は白金Pt 上の酸素
2 - またはO2-と反応して酸化され、排気中の酸素を
消費して排気中の酸素濃度を低下させる。また、排気中
の酸素濃度低下によりNOX吸収剤から放出されたNO
2 は図3(B) に示すようにHC,COと反応して還元さ
れる。このようにして白金Pt の表面上にNO2 が存在
しなくなると吸収剤から次から次へとNO2 が放出され
る。
On the other hand, when reducing components such as fuel HC and CO are present in the inflowing exhaust gas, these components react with oxygen O 2 or O 2 on the platinum Pt to be oxidized, and the oxygen in the exhaust gas is removed. It is consumed to reduce the oxygen concentration in the exhaust gas. In addition, NO released from the NO X absorbent due to a decrease in oxygen concentration in the exhaust gas
2 is reduced by reacting with HC and CO as shown in FIG. 3 (B). When NO 2 is no longer present on the surface of platinum Pt in this manner, NO 2 is released from the absorbent one after another.

【0024】すなわち、流入排気中のHC,COは、ま
ず白金Pt 上のO2 - またはO2-とただちに反応して酸
化され、次いで白金Pt 上のO2 - またはO2-が消費さ
れてもまだHC,COが残っていればこのHC,COに
よって吸収剤から放出されたNOX が還元される。本実
施例では、ECU30は別途実行される図示しないルー
チンにより、所定のNOX 吸収剤再生条件が成立した時
に燃料噴射弁7から機関1に供給する燃料の量を増量し
て機関1の燃焼空燃比をリッチ側に移行させる。これに
より、NO X 吸収剤24を通過する排気の空燃比がリッ
チになり、酸素濃度が低下するとともに排気中の未燃H
C、CO等の成分が増大するため、上記のNOX 吸収剤
からのNOX の放出と還元浄化(再生)が行われる。
That is, HC and CO in the inflowing exhaust gas are
O on the platinum Pt2 -Or O2-Reacts immediately with the acid
And then O on the platinum Pt2 -Or O2-Consumed
If HC and CO still remain after this,
Therefore NO released from the absorbentXIs reduced. Real
In the embodiment, the ECU 30 is a separately executed routine (not shown).
Predetermined NO by chinXWhen the absorbent regeneration conditions are met
To increase the amount of fuel supplied from the fuel injection valve 7 to the engine 1.
The combustion air-fuel ratio of the engine 1 is shifted to the rich side. to this
Than NO XThe air-fuel ratio of the exhaust gas passing through the absorbent 24 is
And the oxygen concentration decreases and unburned H in the exhaust gas
Since the components such as C and CO increase, the above NOXAbsorbent
NO fromXIs released and reduction purification (regeneration) is performed.

【0025】なお、本実施例ではNOX 吸収剤再生条件
は、(1)機関排気温度が所定値以上であること(すな
わちNOX 吸収剤が活性温度(例えば250度C程度)
に達していること)、(2)前回の再生操作時から所定
時間以上(例えば数分程度)経過していること(すなわ
ちNOX 吸収剤のNOX 吸収量が増大していること)、
(3)スロットル弁11が全閉状態(エンジンブレーキ
またはアイドル運転中)であること、である。NOX
収剤の再生操作をエンジンブレーキ中等にのみ行うの
は、空燃比の変化により生じる運転中の機関トルク変動
により車両運転性が悪化することを防止することが主な
狙いである。
In the present embodiment, the NO x absorbent regeneration conditions are as follows: (1) The engine exhaust temperature is equal to or higher than a predetermined value (that is, the NO x absorbent has an activation temperature (for example, about 250 ° C.)).
It), has been reached (2) a predetermined time from the previous playback operation (for example, about several minutes) that it has passed (i.e. NO X absorption amount of the NO X absorbent is increasing),
(3) The throttle valve 11 is in a fully closed state (engine braking or idle operation). The purpose of performing the regeneration operation of the NO X absorbent only during engine braking is mainly to prevent deterioration of vehicle drivability due to engine torque fluctuations during operation caused by changes in the air-fuel ratio.

【0026】次にNOX 吸収剤のSOX 被毒のメカニズ
ムについて説明する。排気中にSOX 成分が含まれてい
ると、NOX 吸収剤は上述のNOX の吸収と同じメカニ
ズムで排気中のSOX を吸収する。すなわち、排気空燃
比がリーンのとき、排気中のSOX (例えばSO2 )は
白金Pt上で酸化されてSO3 - 、SO4 - となり、酸
化バリウムBaOと結合してBaSO4 を形成する。B
aSO 4 は比較的安定であり、また、結晶が粗大化しや
すいため一旦生成されると分解放出されにくい。このた
め、NOX 吸収剤中のBaSO4 の生成量が増大すると
NOX の吸収に関与できるBaOの量が減少してNOX
の吸収能力が低下してしまう。このSOX 被毒を防止す
るためには、NOX 吸収剤中に生成されたBaSO4
高温で分解するとともに、これにより生成されるSO3
- 、SO4 - の硫酸イオンを還元し、NOX 吸収剤から
放出させる必要がある。本発明では、水素ガスを用いて
硫酸イオンを還元し、気体状のH2 Sに転換することに
よりNOX吸収剤のSOX 被毒を解消している。
Next, NOXAbsorbent SOXPoisoned mechanics
I will explain about. SO during exhaustXContains ingredients
Then NOXAbsorbent is NO aboveXSame mechanism as absorption of
SO in the exhaustXAbsorbs. That is, exhaust air-fuel
SO in the exhaust when the ratio is leanX(Eg SO2) Is
SO oxidized by platinum Pt3 -, SOFour -And then acid
BaSO combined with BaOFourTo form. B
aSO FourIs relatively stable, and the crystals become coarse.
Once produced, it is difficult to decompose and release due to rinsing. others
NoXBaSO in the absorbentFourWhen the production of
NOXThe amount of BaO that can be involved in the absorption of NO decreasesX
Absorbs less. This SOXPrevent poisoning
NO in order toXBaSO formed in the absorbentFourTo
SO which is decomposed at high temperature and is generated by this3
-, SOFour -Reduce the sulfate ion of NO, NOXFrom absorbent
Need to be released. In the present invention, using hydrogen gas
Reduces sulfate ions to give gaseous H2To switch to S
More NOXAbsorbent SOXThe poisoning has been eliminated.

【0027】次に図1の実施例のSOX 被毒解消操作に
ついて説明する。本実施例では、機関の運転状態の履歴
からNOX 吸収剤24の温度を検出し、NOX 吸収剤2
4の温度が所定値以上になっているときに水素ガスを供
給しSO X 被毒の解消を行う。前述のようにSOX 被毒
の解消のためには安定な硫酸塩が分解可能な温度までN
X 吸収剤を昇温することが必要とされるが、本実施例
では硫酸と親和力の強い水素ガスを使用することにより
HC、CO等を使用した場合に較べて低い温度(300
〜400度C)でSOX 被毒を解消することが可能とな
っている。このため、大幅な高負荷高回転運転状態が必
要とされず市街地走行等においても充分にNOX 吸収剤
がSOX 被毒解消操作実行可能な温度まで昇温するの
で、SOX 被毒解消操作の実行がNOX 吸収剤温度によ
り制限される率が低くなり充分なSOX 被毒解消を行う
ことができる。
Next, the SO of the embodiment of FIG.XFor poisoning elimination operation
explain about. In this embodiment, the history of engine operating conditions
To NOXThe temperature of the absorbent 24 is detected and NOXAbsorbent 2
When the temperature of 4 is above the specified value, supply hydrogen gas.
Salary SO XEliminate poisoning. As mentioned above, SOXPoisoning
In order to eliminate the problem, N up to the temperature at which stable sulfate can be decomposed
OXAlthough it is necessary to raise the temperature of the absorbent, this example
By using hydrogen gas, which has a strong affinity with sulfuric acid,
Lower temperature than when using HC, CO, etc. (300
SO at ~ 400 degrees C)XIt is possible to eliminate poisoning
ing. For this reason, a significantly high load and high rotation operating condition is required.
It is not required, and it is sufficiently NO when driving in urban areas.XAbsorbent
Is SOXThe temperature rises to a temperature at which the poisoning elimination operation can be performed.
And SOXExecution of poisoning elimination operation is NOXDepending on the absorbent temperature
Sufficient SOXTo eliminate poisoning
be able to.

【0028】また、本実施例では水素ガス供給時には機
関空燃比をリッチ側に移行してから供給を行うようにす
る。これにより、水素ガス供給時にはNOX 吸収剤に流
入する排気中の酸素濃度が大幅に減少するので、排気中
の酸素を消費するために必要とされる水素ガスの量が減
少し少量の水素ガスでSOX 被毒の完全な解消を図るこ
とができる。
Further, in this embodiment, when the hydrogen gas is supplied, the engine air-fuel ratio is shifted to the rich side before the supply. As a result, the oxygen concentration in the exhaust gas that flows into the NO x absorbent during hydrogen gas supply is greatly reduced, and the amount of hydrogen gas required to consume oxygen in the exhaust gas is reduced, resulting in a small amount of hydrogen gas. Thus, SO X poisoning can be completely eliminated.

【0029】更に、本実施例では、機関アイドル運転時
(スロットル弁全閉時)のみに水素ガスの供給を行うよ
うにしている。このように排気流量が減少した時に水素
ガスを供給するようにしたことにより排気中の水素濃度
をSOX 被毒解消に必要とされるレベル(例えば1パー
セント程度)に維持するのに必要な水素ガスの供給量を
更にに低減でき、SOX 被毒解消操作時の水素ガスの消
費量が大幅に少なくなっている。
Further, in this embodiment, the hydrogen gas is supplied only when the engine is idle (when the throttle valve is fully closed). By supplying hydrogen gas when the flow rate of exhaust gas decreases in this way, the hydrogen concentration necessary for maintaining the hydrogen concentration in the exhaust gas at the level required for SO X poisoning elimination (for example, about 1%). The gas supply amount can be further reduced, and the hydrogen gas consumption amount during the SO X poisoning elimination operation is significantly reduced.

【0030】また、本実施例では水の電気分解により水
素を発生させる形式の水素発生装置を設け、発生した水
素を容器に貯蔵しておきSOX 被毒解消操作時にNOX
吸収剤に水素ガスを供給するようにしているが、上述の
ように水素ガスの消費量を低減した結果、水素ガス発生
装置や貯蔵容器の容量を小さくすることができ、車両へ
の搭載性が良好になるとともに、原料(水)の補給頻度
を低減することができる。
Further, in the present embodiment, a hydrogen generator of the type that generates hydrogen by electrolysis of water is provided, and the generated hydrogen is stored in a container and NO X is removed during SO X poisoning elimination operation.
Hydrogen gas is supplied to the absorbent, but as a result of reducing the consumption of hydrogen gas as described above, it is possible to reduce the capacity of the hydrogen gas generator and the storage container, and it is easy to mount on a vehicle. In addition to being good, it is possible to reduce the supply frequency of the raw material (water).

【0031】図2は、本実施例の上記SOX 被毒解消操
作の制御フローチャートである。本ルーチンは前述のE
CU30により一定時間毎に実行される。図2において
ルーチンがスタートすると、ステップ201では、機関
回転数N、機関吸入空気量Q、車速Sが読み込まれる。
なお、これらの値は別途ECU30により一定時間毎に
実行されるルーチンによりそれぞれのセンサから読み込
まれて、常時最新の値がECU30のRAMに格納され
ている。
FIG. 2 is a control flowchart of the SO X poisoning elimination operation of this embodiment. This routine is the above E
It is executed by the CU 30 at regular intervals. When the routine starts in FIG. 2, in step 201, the engine speed N, the engine intake air amount Q, and the vehicle speed S are read.
Note that these values are separately read from the respective sensors by a routine that is executed by the ECU 30 at regular intervals, and the latest values are always stored in the RAM of the ECU 30.

【0032】次いで、ステップ203、では過去5分間
の機関負荷状態の積算値が計算される。すなわち、ステ
ップ203では機関1回転当たりの吸入空気量Q/Nを
計算し、ROMに格納した数値テーブルからそのQ/N
に対応する機関負荷トルクを読み出してこの負荷トルク
に機関回転数Nを乗算して機関負荷を算出するととも
に、算出した機関負荷の過去5分間分の積算値Lを計算
する。積算値Lは過去5分間に機関が発生した熱量、す
なわちNOX 吸収剤24が受けた熱量に比例するので積
算値LはNOX 吸収剤24の温度を表すパラメータとし
て使用することが出きる。
Next, at step 203, the integrated value of the engine load state for the past 5 minutes is calculated. That is, in step 203, the intake air amount Q / N per engine revolution is calculated, and the Q / N is calculated from the numerical table stored in the ROM.
The engine load torque corresponding to is read out, the load torque is multiplied by the engine speed N to calculate the engine load, and the integrated value L of the calculated engine load for the past 5 minutes is calculated. Integrated value L is the quantity of heat engine is occurred in the past 5 minutes, i.e. the integrated value is proportional to the amount of heat that the NO X absorbent 24 is received L is as possible out to be used as a parameter representing the temperature of the NO X absorbent 24.

【0033】また、ステップ205では車速Sを用い
て、前回SOX 被毒解消操作を行ってから車両が走行し
た距離の積算値Dが計算される。ここでΔtは本ルーチ
ンの実行間隔(時間)である。走行距離の積算値Dは前
回被毒解消操作実行後にNOX吸収剤に蓄積されたSO
X の量を表すパラメータとして使用される。ステップ2
07から211はSOX 被毒解消操作の実行開始条件の
判定を示す。すなわち、ステップ207では負荷積算値
Lが所定値L0 以上か否か(NOX吸収剤24が所定温
度以上になっているか)、ステップ209では走行距離
積算値Dが所定値D0 以上か否か(NOX 吸収剤24の
SOX 吸収量が所定値以上になっているか)、ステップ
211ではアイドルスイッチ12からのアイドル信号が
ONになっているか(機関がアイドル運転中か)が判断
され、これらの条件が全て成立している場合にのみステ
ップ215以下のSOX 被毒解消操作を実行する。
In step 205, the vehicle speed S is used to calculate an integrated value D of the distance traveled by the vehicle since the SO X poisoning elimination operation was performed last time. Here, Δt is an execution interval (time) of this routine. The cumulative value D of the traveled distance is the SO accumulated in the NO X absorbent after the previous poisoning elimination operation is executed.
Used as a parameter that represents the amount of X. Step two
Reference numerals 07 to 211 indicate the determination of the execution start condition of the SO X poisoning elimination operation. That is, at step 207, it is determined whether or not the integrated load value L is equal to or greater than a predetermined value L 0 (whether the NO X absorbent 24 is at or above a predetermined temperature), and at step 209, is the integrated travel distance value D equal to or greater than a predetermined value D 0. Whether (the SO X absorption amount of the NO X absorbent 24 is equal to or more than a predetermined value), it is determined in step 211 whether the idle signal from the idle switch 12 is ON (whether the engine is in idle operation), Only when all of these conditions are satisfied, the SO X poisoning elimination operation in step 215 and thereafter is executed.

【0034】すなわち、ステップ215では機関空燃比
制御フラグFRがセット(=“1”)される。フラグF
Rがセットされると別途ECU30により実行される燃
料噴射制御ルーチンで機関空燃比がリッチになるように
燃料噴射量が設定され、NO X 吸収剤24に流入する排
気空燃比がリッチ側に移行する。また、ステップ217
では水素供給装置31の制御弁34が開弁され、NOX
吸収剤24上流側排気通路22に水素ガスが供給され
る。
That is, in step 215, the engine air-fuel ratio
The control flag FR is set (= "1"). Flag F
When R is set, the fuel that is separately executed by the ECU 30
Make the engine air-fuel ratio rich in the fuel injection control routine
Fuel injection amount is set, NO XExhaust flowing into the absorbent 24
The air-fuel ratio shifts to the rich side. In addition, step 217
Then, the control valve 34 of the hydrogen supply device 31 is opened, and NOX
Absorbent 24 Hydrogen gas is supplied to the upstream exhaust passage 22
It

【0035】なお、上記走行距離積算値Dは通常の市街
地走行では数時間毎にSOX 被毒解消操作が行われる程
度の値に該当する。ステップ219、221はSOX
毒解消操作の終了条件の判定を示す。すなわちステップ
219では水素ガス供給開始からの経過時間を表すカウ
ンタTをプラス1カウントアップし、ステップ221で
は経過時間Tが所定値T0 に到達したか否かが判断され
る。本実施例では水素ガスの供給を開始してから1分程
度が経過した時にSOX 被毒が解消したと判断するた
め、所定値T0 は経過時間1分に相当する値に設定され
ている。
It should be noted that the traveling distance integrated value D corresponds to a value at which the SO X poisoning elimination operation is performed every several hours in ordinary city driving. Steps 219 and 221 show the determination of the termination condition of the SO X poisoning elimination operation. That is, in step 219, the counter T indicating the elapsed time from the start of hydrogen gas supply is incremented by 1, and in step 221, it is determined whether or not the elapsed time T has reached the predetermined value T 0 . In this embodiment, the predetermined value T 0 is set to a value corresponding to the elapsed time of 1 minute in order to determine that the SO X poisoning has disappeared when about 1 minute has elapsed after the supply of hydrogen gas was started. .

【0036】ステップ221でSOX 被毒が解消したと
判断されたときはステップ223でL、D、T、の各パ
ラメータのクリアとフラグFRのリセット(=“0”)
が行われ、ステップ227で制御弁34が閉弁されてS
X 被毒解消操作を終了する。また、ステップ221で
所定時間が経過していない場合にはそのままルーチンを
終了し水素ガスの供給を継続する。
When it is determined in step 221 that SO X poisoning has been eliminated, in step 223, the L, D, and T parameters are cleared and the flag FR is reset (= "0").
Is performed, the control valve 34 is closed in step 227, and S
The O X poisoning elimination operation ends. If the predetermined time has not elapsed in step 221, the routine is finished and the supply of hydrogen gas is continued.

【0037】なお、上記実施例ではNOX 吸収剤24の
温度を機関運転状態の履歴を用いて検出しているが、例
えばNOX 吸収剤下流側の排気通路に排気温度を検出す
る排気温度センサを設け、排気温度の積算値を算出して
NOX 吸収剤24の温度を検出するようにしても良い。
また、本実施例では排気空燃比をリッチに移行させるの
と同時にNOX 吸収剤に水素ガスを供給してSOX 被毒
の解消を行っているが、排気空燃比をリッチに移行させ
て一定時間経過してから水素ガスの供給を開始するよう
にしてもよい。この場合には排気中の未燃HC、CO成
分によりNOX 吸収剤からのNOX の放出、還元浄化が
行われた後に水素ガスが供給されることになるため、水
素ガスが通常のNOX の放出、還元に消費されずSOX
被毒の解消にのみ使用されるので、更に水素ガスの消費
量を低減することができる。
In the above embodiment, the temperature of the NO X absorbent 24 is detected by using the history of engine operating conditions. For example, an exhaust temperature sensor for detecting the exhaust temperature in the exhaust passage downstream of the NO X absorbent. May be provided, and the temperature of the NO X absorbent 24 may be detected by calculating the integrated value of the exhaust temperature.
Further, in the present embodiment is carried out to eliminate the SO X poisoning by supplying hydrogen gas to the same time the NO X absorbent shifts the exhaust air-fuel ratio rich, constant transitions the exhaust air-fuel ratio to a rich The supply of hydrogen gas may be started after a lapse of time. Unburned HC in the exhaust gas in this case, release of the NO X from the NO X absorbent with CO component, the hydrogen gas after the reduction and purification is performed will be supplied, the hydrogen gas is usually NO X Is not consumed for the release and reduction of SO X
Since it is used only for eliminating poisoning, the consumption of hydrogen gas can be further reduced.

【0038】[0038]

【発明の効果】本発明は、NOX 吸収剤のSOX 被毒解
消の際に、排気空燃比をリッチにするとともに水素ガス
をNOX 吸収剤に供給するようにしたことにより、NO
X 吸収剤のSOX 被毒解消時の水素ガスの消費量を大幅
に低減することができるため、従来補給、貯蔵等に問題
があった水素ガスを使用して効率よくNOX 吸収剤のS
X 被毒解消を図ることができる。また、SOX 被毒解
消に水素ガスを使用することが可能となったため、比較
的低いNOX 吸収剤温度でSOX 被毒解消操作を行うこ
とができるのでSOX 被毒解消操作実行の自由度が増大
し、常にNOX 吸収剤のNOX 吸収能力を高く維持する
ことができる効果が得られる。
According to the present invention, when the SO X poisoning of the NO X absorbent is eliminated, the exhaust air-fuel ratio is made rich and hydrogen gas is supplied to the NO X absorbent.
Since the consumption of hydrogen gas at the time of eliminating SO X poisoning of the X absorbent can be greatly reduced, it is possible to efficiently use the S gas of the NO X absorbent by using the hydrogen gas which has conventionally been problematic in replenishment and storage.
O X poisoning recovery can be achieved. Moreover, since it becomes possible to use the SO X poisoning recovery hydrogen gas, free of SO X poisoning removing operation performed it is possible to perform the SO X poisoning recovery operation at relatively low the NO X absorbent temperature degree is increased, the effect can always maintain a high NO X absorbing capacity of the NO X absorbent can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の内燃機関の排気浄化装置の実施例を示
す図である。
FIG. 1 is a diagram showing an embodiment of an exhaust purification system for an internal combustion engine of the present invention.

【図2】図1の実施例のSOX 被毒解消操作の制御フロ
ーチャートである。
FIG. 2 is a control flowchart of a SO X poisoning elimination operation of the embodiment of FIG.

【図3】本発明のNOX 吸収剤のNOX の吸放出作用を
説明する図である。
FIG. 3 is a diagram for explaining the NO X absorption / release action of the NO X absorbent of the present invention.

【符号の説明】[Explanation of symbols]

1…内燃機関本体 2…吸気通路 4…枝管 5…サージタンク 7…燃料噴射弁 8…エアフローメータ 10…エアクリーナ 11…スロットル弁 12…アイドルスイッチ 13…回転数センサ 14…車速センサ 21…排気マニホルド 22…排気通路 24…NOX 吸収剤 30…電子制御ユニット(ECU) 31…水素ガス供給装置 32…水素ガス発生装置 33…水素貯蔵容器 34…制御弁DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine main body 2 ... Intake passage 4 ... Branch pipe 5 ... Surge tank 7 ... Fuel injection valve 8 ... Air flow meter 10 ... Air cleaner 11 ... Throttle valve 12 ... Idle switch 13 ... Rotation speed sensor 14 ... Vehicle speed sensor 21 ... Exhaust manifold 22 ... Exhaust passage 24 ... NO X absorbent 30 ... Electronic control unit (ECU) 31 ... Hydrogen gas supply device 32 ... Hydrogen gas generator 33 ... Hydrogen storage container 34 ... Control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 流入排気の空燃比がリーンのときにNO
X を吸収し流入排気の酸素濃度が低下したときに吸収し
たNOX を放出するNOX 吸収剤を排気通路に配置して
排気中のNOX を吸収させ、NOX 吸収後に前記NOX
吸収剤に流入する排気空燃比をリッチにして前記NOX
吸収剤から吸収したNOX を放出させるとともに放出さ
れたNOX を還元浄化する内燃機関の排気浄化装置にお
いて、前記NOX 吸収剤に蓄積されたSOX の量を直接
的または間接的に検出する手段と、該検出されたSOX
蓄積量が所定値以上のときにNOX 吸収剤に流入する排
気空燃比をリッチにするリッチ化手段と、該リッチ化手
段により排気空燃比がリッチにされたときに前記NOX
吸収剤に水素ガスを供給する手段とを備えたことを特徴
とする内燃機関の排気浄化装置。
1. NO when the air-fuel ratio of the inflowing exhaust gas is lean
The the NO X absorbent to release the absorbed NO X when the oxygen concentration of the inflowing exhaust absorbs X was reduced by arranging in the exhaust passage to absorb the NO X in the exhaust gas, the NO X after NO X absorbent
When the exhaust air-fuel ratio flowing into the absorbent is made rich, the NO x
In an exhaust emission control device for an internal combustion engine that releases NO X absorbed from an absorbent and reduces and purifies the released NO X , the amount of SO X accumulated in the NO X absorbent is directly or indirectly detected. Means and the detected SO X
Wherein when the amount of accumulation and the enrichment means to rich the air-fuel ratio of the exhaust gas flowing into the NO X absorbent when the predetermined value or more, the exhaust air-fuel ratio by the rich means being rich NO X
An exhaust gas purification apparatus for an internal combustion engine, comprising: a means for supplying hydrogen gas to the absorbent.
JP5093281A 1993-04-20 1993-04-20 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP2780596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5093281A JP2780596B2 (en) 1993-04-20 1993-04-20 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5093281A JP2780596B2 (en) 1993-04-20 1993-04-20 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH06307232A true JPH06307232A (en) 1994-11-01
JP2780596B2 JP2780596B2 (en) 1998-07-30

Family

ID=14078050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5093281A Expired - Lifetime JP2780596B2 (en) 1993-04-20 1993-04-20 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2780596B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067277A1 (en) * 1999-01-21 2001-01-10 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device for internal combustion engines
WO2001014697A1 (en) * 1999-08-21 2001-03-01 Robert Bosch Gmbh Method and device for treating exhaust gases produced by an internal combustion engine
JP2002303127A (en) * 2001-04-03 2002-10-18 Nissan Motor Co Ltd Exhaust emission control system
FR2838770A1 (en) * 2002-04-17 2003-10-24 Renault Sa Diesel engine exhaust gas pollution reduction system has hydrogen injector upstream of catalyzer to raise temperature during regeneration phase
WO2005121517A1 (en) * 2004-06-08 2005-12-22 Honda Motor Co., Ltd. Exhaust gas purifier and method of exhaust gas purification
WO2009041227A1 (en) * 2007-09-26 2009-04-02 Mitsubishi Heavy Industries, Ltd. Exhaust gas purification system and method
CN102635429A (en) * 2012-04-26 2012-08-15 北京工业大学 Device and method for carrying out closed-loop control on discharge of internal combustion engine by using hydrogen and oxygen

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1067277A4 (en) * 1999-01-21 2001-07-25 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engines
EP1067277A1 (en) * 1999-01-21 2001-01-10 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust emission control device for internal combustion engines
US6976356B2 (en) 1999-01-21 2005-12-20 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifier for use in internal combustion engine
US6718756B1 (en) 1999-01-21 2004-04-13 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Exhaust gas purifier for use in internal combustion engine
US6810657B1 (en) 1999-08-21 2004-11-02 Robert Bosch Gmbh Method and device for treating exhaust gases produced by an internal combustion engine
WO2001014697A1 (en) * 1999-08-21 2001-03-01 Robert Bosch Gmbh Method and device for treating exhaust gases produced by an internal combustion engine
JP2002303127A (en) * 2001-04-03 2002-10-18 Nissan Motor Co Ltd Exhaust emission control system
FR2838770A1 (en) * 2002-04-17 2003-10-24 Renault Sa Diesel engine exhaust gas pollution reduction system has hydrogen injector upstream of catalyzer to raise temperature during regeneration phase
WO2005121517A1 (en) * 2004-06-08 2005-12-22 Honda Motor Co., Ltd. Exhaust gas purifier and method of exhaust gas purification
JPWO2005121517A1 (en) * 2004-06-08 2008-07-31 本田技研工業株式会社 Exhaust gas purification device and exhaust gas purification method
WO2009041227A1 (en) * 2007-09-26 2009-04-02 Mitsubishi Heavy Industries, Ltd. Exhaust gas purification system and method
US8468807B2 (en) 2007-09-26 2013-06-25 Mitsubishi Heavy Industries, Ltd. Exhaust gas purification system and exhaust gas purification method
EP2194249A4 (en) * 2007-09-26 2016-03-30 Mitsubishi Heavy Ind Ltd Exhaust gas purification system and method
CN102635429A (en) * 2012-04-26 2012-08-15 北京工业大学 Device and method for carrying out closed-loop control on discharge of internal combustion engine by using hydrogen and oxygen

Also Published As

Publication number Publication date
JP2780596B2 (en) 1998-07-30

Similar Documents

Publication Publication Date Title
JP4034375B2 (en) Exhaust gas purification device for internal combustion engine
JP2985638B2 (en) Exhaust gas purification device for internal combustion engine
JPH06272541A (en) Exhaust emission control device for internal combustion engine
JP2888124B2 (en) Exhaust gas purification device for internal combustion engine
JP4462107B2 (en) Exhaust gas purification device for internal combustion engine
JP2727914B2 (en) Exhaust gas purification device for internal combustion engine
JP2780596B2 (en) Exhaust gas purification device for internal combustion engine
JP2845056B2 (en) Exhaust gas purification device for internal combustion engine
JP2984528B2 (en) Exhaust gas purification device for internal combustion engine
JP3287082B2 (en) Exhaust gas purification device for internal combustion engine
JP4289033B2 (en) Exhaust gas purification system
JP3624747B2 (en) Exhaust gas purification device for internal combustion engine
JPH1113456A (en) Catalyst poisoning regenerator for internal combustion engine
JPH09317447A (en) Exhaust emission control device for internal combustion engine
JP2830668B2 (en) Exhaust gas purification device for internal combustion engine
JP3414323B2 (en) Exhaust gas purification device for internal combustion engine
JP2842122B2 (en) Exhaust gas purification device for internal combustion engine
JP2891057B2 (en) Exhaust gas purification device for internal combustion engine
JP3487269B2 (en) Exhaust gas purification device for internal combustion engine
JP4341351B2 (en) How to recover the purification capacity of an exhaust purifier
JP3582365B2 (en) Exhaust gas purification device for internal combustion engine
JP3591343B2 (en) Exhaust gas purification device for internal combustion engine
JP3580135B2 (en) Exhaust gas purification device for internal combustion engine
JP2743764B2 (en) Exhaust gas purification device for internal combustion engine
JPH06229231A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080515

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090515

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100515

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110515

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110515

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20120515

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20130515

EXPY Cancellation because of completion of term